!copyright (C) 2001  MSC-RPN COMM  %%%RPNKUO%%%
***S/P LIN_KUOSYM
*
#include "phy_macros_f.h"

      SUBROUTINE LIN_KUOSYM ( CTT,CQT,ilab,CCF,DBDT,CRR,CSR, 2,5
     +                        TP,TM,QP,QM,GZM,PSP,
     +                        SIGMA, TAU, NI, NK )
#include "impnone.cdk"
*
C
      INTEGER NI,NK
      REAL CTT(NI,NK),CQT(NI,NK)
      INTEGER ilab(NI,NK)
      REAL CCF(NI,NK),DBDT(NI),CRR(NI),CSR(NI) 
      REAL TP(NI,NK),TM(NI,NK),QP(NI,NK),QM(NI,NK),GZM(NI,NK)
      REAL PSP(NI),SIGMA(NI,NK)
      REAL TAU
*
*Authors
*          Claude Girard and Gerard Pellerin 1995
*
*Revision
* 001      B.Bilodeau (Jan 2001) - Automatic arrays
* 002      J.-F. Mahfouf (Sept 2002)  - Reecriture pour codage TL/AD versions
*
*Object
*          To calculate the convective tendencies of T and Q
*          using a scheme with a "symmetric Kuo-type closure".
*          Geleyn's method is used to obtain the cloud profiles.
*
*Arguments
*
*            - Outputs -
* CTT      convective temperature tendency
* CQT      convective specific humidity tendency
* ilab     flag array: an indication of convective activity
* CCF      estimated cumulus cloud fraction
* DBDT     estimated averaged cloud fraction growth rate
* CRR      rate of liquid convective precipitation
* CSR      rate of solid convective precipitation
*
*            - Inputs -
* TP       temperature at (t+dt)
* TM       temperature at (t-dt)
* QP       specific humidity at (t+dt)
* QM       specific humidity at (t-dt)
* GZM      geopotential
* PSP      surface pressure at (t+dt)
* SIGMA    sigma levels
* TAU      effective timestep (2*dt)
* NI       horizontal dimension
* NK       vertical dimension
*
*Notes
*          The routine is divided into 5 parts:
*           1)allocation and position for work space
*           2)preliminary computations
*           3)cloud ascent and flagging
*           4)total dry and moist enthalpy accession calculations
*           5)cloud heating and moistening (drying)  calculations
*
**
      LOGICAL LO
      INTEGER IS,IKA,IKB,jk,jkm1,jl
      REAL ZTVC
      REAL ENTRM,TAUCU,CHLS,DELTA2
      REAL ZA1,ZA3,ZA4,ZSIG
      REAL ZK,ZDH,ZTDIF,ZQDIF
*
C
************************************************************************
*     AUTOMATIC ARRAYS
************************************************************************
*
      AUTOMATIC ( LO1    , LOGICAL , (NI   ))
*
      AUTOMATIC ( ZCP    , REAL    , (NI   ))
      AUTOMATIC ( ZLDCP0 , REAL    , (NI   ))
      AUTOMATIC ( ZPR    , REAL    , (NI   )) 
      AUTOMATIC ( ZT1    , REAL    , (NI   ))   
      AUTOMATIC ( ZQ1    , REAL    , (NI   ))     
      AUTOMATIC ( ZP1    , REAL    , (NI   ))
      AUTOMATIC ( ZPP    , REAL    , (NI,NK))
      AUTOMATIC ( ZDSG   , REAL    , (NI,NK))
      AUTOMATIC ( ZDP    , REAL    , (NI,NK))
      AUTOMATIC ( ZSDP   , REAL    , (NI,NK))
      AUTOMATIC ( ZQAC   , REAL    , (NI,NK))
      AUTOMATIC ( ZTAC   , REAL    , (NI,NK))
      AUTOMATIC ( ZSTAC  , REAL    , (NI,NK))
      AUTOMATIC ( ZHAC   , REAL    , (NI,NK))
      AUTOMATIC ( ZSHAC  , REAL    , (NI,NK))
      AUTOMATIC ( ZQSE   , REAL    , (NI,NK))
      AUTOMATIC ( ZTC    , REAL    , (NI,NK))
      AUTOMATIC ( ZQC    , REAL    , (NI,NK))
      AUTOMATIC ( ZTE    , REAL    , (NI,NK))
      AUTOMATIC ( ZQE    , REAL    , (NI,NK))
      AUTOMATIC ( ZTVE   , REAL    , (NI,NK))
      AUTOMATIC ( ZDQ    , REAL    , (NI,NK))
      AUTOMATIC ( ZDT    , REAL    , (NI,NK))
      AUTOMATIC ( ZSDH   , REAL    , (NI,NK))
      AUTOMATIC ( ZESE   , REAL    , (NI,NK))
*
************************************************************************

C
C*    PHYSICAL CONSTANTS.
C     -------- ----------
C
#include "consphy.cdk"
C
      ENTRM = 5.E-6
      TAUCU = 3600.
      DELTA2 = CPV/CPD - 1.
      CHLS   = CHLC + CHLF
      ZA1 = 610.78
C
C     ------------------------------------------------------------------
C
C*         1.     ALLOCATION AND POSITION FOR WORK SPACE.
C                 ---------- --- -------- --- ---- ------
C
C
C
C***
C
C     METHOD.
C     -------
C
C          IN (3) A NEARLY ADIABATIC ASCENT IS ATTEMPTED FOR A CLOUD
C     PARCEL STARTING FROM THE LOWEST MODEL LAYER. THIS CLOUD ASCENT
C     IS COMPUTED IN TERMS OF TEMPERATURE AND SPECIFIC HUMIDITY.
C     ENTRAINMENT IS SIMULATED VIA AN ENTRAINMENT PARAMETER.
C     THE LAYERS ARE FLAGGED ACCORDING TO THE FOLLOWING CODE:
C     0 = STABLE OR INACTIVE LAYER,
C     1 = PART OF THE WELL MIXED BOUNDARY LAYER OR DRY UNSTABLE LAYER,
C     2 = MOIST UNSTABLE OR ACTIVE OR CLOUD LAYER.
C     THE 1-FLAGS ARE RESET TO 0-FLAGS FOR THE NEXT SECTION.
C          IN (4) THE INTEGRATED MOIST AND DRY ENTHALPY ACCESSIONS
C     FOR EACH CLOUD LAYER ARE STORED INTO ALL THE CORRESPONDING
C     LAYERS IF THE FIRST IS POSITIVE WHILE THE SECOND IS NEGATIVE,
C     OTHERWISE, THE 2-FLAGS ARE ALSO RESET TO 0-FLAGS.
C          IN (5) THE ACTUAL MODIFICATIONS OF TEMPERATURE AND SPECIFIC
C     HUMIDITY ARE COMPUTED. A CLOUD-COVER VALUE IS ESTIMATED BY
C     COMPARING THE TIME AT WHICH THE ENVIRONMENT WOULD REACH
C     EQUILIBRIUM WITH THE CLOUD TO A PRESCRIBED CLOUD LIFE-TIME.
C
C     ------------------------------------------------------------------
C
C*         2.     PRELIMINARY COMPUTATIONS.
C                 ----------- -------------
C
C*         2.0     INITIALISATION OF OUTPUT FIELDS
C
      ilab(:,:) = 0
      CTT(:,:) = 0.0
      CQT(:,:) = 0.0
      CCF(:,:) = 0.0
      CRR(:) = 0.0
      CSR(:) = 0.0
C
C*         2.1     ENVIRONMENTAL PROFILES AND PARAMETERS,
C*                 DRY AND MOIST ENTHALPY ACCESSIONS (divided by cp)
C*                 AND INITIALIZATIONS.
C
      DO jl=1,NI
         ZDSG(jl,1)=0.5*(SIGMA(jl,2)-SIGMA(jl,1))
      END DO
C
      DO jk=2,NK-1
         DO jl=1,NI
            ZDSG(jl,jk)=0.5*(SIGMA(jl,jk+1)-SIGMA(jl,jk-1))
         END DO
      END DO
C
      DO jl=1,NI
         ZDSG(jl,NK)=0.5*(1.-SIGMA(jl,NK-1))+0.5*(1.-SIGMA(jl,NK))
      END DO
C
      DO jl=1,NI
         DBDT(jl) = 0.
         IF (TP(jl,NK) < TRPL) THEN
           ZLDCP0(jl) = CHLS / CPD
         ELSE
           ZLDCP0(jl) = CHLC / CPD
         ENDIF
      END DO
C
      DO jk=1,NK
         DO jl=1,NI
            ZPP(jl,jk)=SIGMA(jl,jk)*PSP(jl)
            ZDP(jl,jk)=ZDSG(jl,jk)*PSP(jl)
            ZTE(jl,jk)=TP(jl,jk)
            IF (ZTE(jl,jk) > TRPL) THEN
              ZA3=17.269
              ZA4=35.860
            ELSE
              ZA3=21.875
              ZA4= 7.660
            ENDIF
            ZESE(jl,jk)=ZA1*EXP(ZA3*(ZTE(jl,jk)-TRPL)/(ZTE(jl,jk)-ZA4))
            ZQSE(jl,jk)=EPS1*ZESE(jl,jk)/(ZPP(jl,jk)-EPS2*ZESE(jl,jk))
            IF (ZQSE(jl,jk) > QM (jl,jk)) THEN
              ZQE(jl,jk) = QM(jl,jk)
            ELSE
              ZQE(jl,jk) = ZQSE(jl,jk)
            ENDIF 
            ZTVE(jl,jk) = ZTE(jl,jk)*(1.0 + DELTA*ZQE(jl,jk))
C
            ZTAC(jl,jk)=(TP(jl,jk)-TM(jl,jk))*ZDP(jl,jk)/TAU
            ZQAC(jl,jk)=(QP(jl,jk)-ZQE(jl,jk))*ZDP(jl,jk)/TAU
C
            ZHAC(jl,jk)= ZTAC(jl,jk) + ZLDCP0(jl)*ZQAC(jl,jk)
         END DO
      END DO
C
C*         2.2     SPECIFY TC AND QC AT THE LOWEST LAYER TO START THE
C*                 CLOUD ASCENT. CHECK FOR POSITIVE ACCESSION
C*                 BETWEEN SURFACE AND CLOUD BASE.
C*                 ZQC=0 INDICATES STABLE CONDITIONS.
C
      DO jl=1,NI
         ZPR(jl) = 0.
         ZTC(jl,NK)=ZTE(jl,NK)
         ZQC(jl,NK)=0.
         IF (ZHAC(jl,NK) > 0.) THEN
            ZQC(jl,NK)=ZQE(jl,NK)
            ilab(jl,NK) = 1
         ENDIF
      END DO
C
C     ------------------------------------------------------------------
C
C*         3.     CLOUD ASCENT AND FLAGGING.
C                 ----- ------ --- ---------
C
C*         3.1     CALCULATE TC AND QC AT UPPER LEVELS BY DRY ADIABATIC
C*                 LIFTING FOLLOWED BY LATENT HEAT RELEASE WHEN REQUIRED.
C*                 CONDENSATION CALCULATIONS ARE DONE WITH TWO ITERATIONS.
C***
      DO jk=NK-1,1,-1
C***
         DO jl=1,NI
            ZCP(jl)=CPD*(1.+DELTA2*ZQC(jl,jk+1))
            IF ( ZTC(jl,jk+1) > ZTE(jl,jk+1) ) THEN
              ZTDIF = ZTC(jl,jk+1)-ZTE(jl,jk+1)
            ELSE
              ZTDIF = 0.0
            ENDIF
            ZTC(jl,jk)=ZTC(jl,jk+1)+(GZM(jl,jk+1)-GZM(jl,jk))*
     *         (1./ZCP(jl)+ENTRM*ZTDIF)
            IF ( ZQC(jl,jk+1) > ZQE(jl,jk+1) ) THEN
              ZQDIF = ZQC(jl,jk+1)-ZQE(jl,jk+1)
            ELSE
              ZQDIF = 0.0
            ENDIF  
            ZQC(jl,jk)=ZQC(jl,jk+1)+(GZM(jl,jk+1)-GZM(jl,jk))*
     *           ENTRM*ZQDIF  
             ZTVC = ZTC(jl,jk)*(1.0 + DELTA*ZQC(jl,jk))  
             LO= ZTVC.GT.ZTVE(jl,jk) .AND. ZQC(jl,jk).NE.0.
             IF (LO) ilab(jl,jk) = 1
         END DO
C
         DO jl=1,NI
            ZP1(jl) = ZPP(jl,jk)
            ZT1(jl) = ZTC(jl,jk)
            ZQ1(jl) = ZQC(jl,jk)
         END DO
C 
         CALL LIN_ADJTQ ( ZT1, ZQ1, ZP1, NI )
C
         DO jl=1,NI
            LO1(jl) = ZT1(jl) /= ZTC(jl,jk)
            ZTC(jl,jk) = ZT1(jl)
            ZQC(jl,jk) = ZQ1(jl)
         END DO
C
         DO jl=1,NI
            ZTVC=ZTC(jl,jk)*(1.0+DELTA*ZQC(jl,jk)) 
            LO= ZTVC.GT.ZTVE(jl,jk)  .AND. LO1(jl)
            IF (LO) ilab(jl,jk) = 2
            LO1(jl)=ilab(jl,jk).EQ.0
            IF (LO1(jl)) THEN
              ZTC(jl,jk) = ZTE(jl,jk)
              ZQC(jl,jk) = 0.0
            ENDIF
         END DO
C
C*         3.2     IF NOT AT THE TOP CHECK FOR NEW LIFTING LEVEL, I.E.
C*                 ENTHALPY ACCESSION IN A STABLE LAYER.
C***
         IF (jk.NE.1) THEN
            DO jl=1,NI
               IF (LO1(jl).AND.(ZHAC(jl,jk) > 0.)) THEN
                 ZTC(jl,jk) = ZTE(jl,jk)
                 ZQC(jl,jk) = ZQE(jl,jk)
               ENDIF 
            END DO
         ENDIF
C***
      END DO
C***
C*         3.3     ilab=0 UNLESS ilab=2
C*                 IKA INDICATES THE HIGHEST TOP OF A CLOUD
C*                 (TO AVOID UNNECESSARY COMPUTATIONS LATER).
C
      IKA=NK+1
C
      DO jk=1,NK
C
         DO jl=1,NI
            IF (ilab(jl,jk) == 1) ilab(jl,jk) = 0
         END DO
C
         IF (IKA == NK+1) THEN
            IS=0
            DO jl=1,NI
               IS=IS+ilab(jl,jk)
            END DO
            IF (IS.NE.0) IKA=jk
         ENDIF
C
      END DO
C***
      IF (IKA == NK+1) RETURN
C***
C     ------------------------------------------------------------------
C
C*         4.     TOTAL ENERGY ACCESSION
C                 ----- ------ ---------
C
C*         4.1     CALCULATE TOTAL ENTHALPY ACCESSIONS REQUIRING THAT
C*                    - TOTAL MOIST ENTHALPY ACCESSION BE > 0
C*                    - TOTAL   DRY ENTHALPY ACCESSION BE < 0
C*                 IKB IS AN UPDATE OF IKA.
C
      DO jl=1,NI
         ZSHAC(jl,:) = 0.0
         ZSTAC(jl,:) = 0.0
         ZSDP(jl,:) = 0.0
      END DO
C
      DO jk=NK-1,IKA,-1
         DO jl=1,NI
           IF (ilab(jl,jk) == 2) THEN
             ZSHAC(jl,jk) = ZSHAC(jl,jk+1)+ZHAC(jl,jk)
             ZSTAC(jl,jk) = ZSTAC(jl,jk+1)+ZTAC(jl,jk)
             ZSDP(jl,jk)  = ZSDP(jl,jk+1)+ZDP(jl,jk)
           ENDIF
         END DO
      END DO
C
      IKB=NK+1
C
      DO jk=IKA,NK-1
      jkm1=max0(jk-1,1)
C
         DO jl=1,NI
            IF ((ilab(jl,jk) == 2).AND.(ilab(jl,jkm1) == 2)) THEN
              ZSHAC(jl,jk) = ZSHAC(jl,jkm1)
              ZSTAC(jl,jk) = ZSTAC(jl,jkm1)
              ZSDP(jl,jk) = ZSDP(jl,jkm1)
            ENDIF
            LO = ZSHAC(jl,jk).GT.0. .and. ZSTAC(jl,jk).LT.0.
     &           and. ZSDP(jl,jk).GT.0.
            IF (.not.LO) ilab(jl,jk) = 0
         END DO
C
         IF (IKB == NK+1) THEN
            IS=0
            DO jl=1,NI
               IS=IS+ilab(jl,jk)
            END DO
            IF (IS.NE.0) IKB=jk
         ENDIF
C
      END DO
C***
      IF (IKB == NK+1) RETURN
C***
C     ------------------------------------------------------------------
C
C*         5.     HEATING AND MOISTENING
C                 ----------------------
C
C*         5.1     COMPUTE THE TOTAL CLOUD-ENVIRONMENT ENTHALPY
C*                 DIFFERENCE IN CLOUD LAYERS.
C
      DO jl=1,NI
         ZSDH(jl,:)=0.
      END DO
C
      DO jk=NK-1,IKB,-1
         DO jl=1,NI
            ZTVC = ZTC(jl,jk)*(1.0 + DELTA*ZQC(jl,jk)) 
            ZDQ(jl,jk) = (ZQSE(jl,jk)-ZQE(jl,jk))*ZDP(jl,jk)
            ZDT(jl,jk) = (ZTVC-ZTVE(jl,jk))*ZDP(jl,jk)
            ZDH = ZDT(jl,jk)+ZLDCP0(jl)*ZDQ(jl,jk)
            IF (ilab(jl,jk) == 2) THEN
              ZSDH(jl,jk) = ZSDH(jl,jk+1) + ZDH
            ENDIF 
         END DO
      END DO
C
      DO jk=IKB+1,NK-1
         DO jl=1,NI
            IF ((ilab(jl,jk) == 2).AND.(ilab(jl,jk-1) == 2)) THEN
              ZSDH(jl,jk)= ZSDH(jl,jk-1)
            ENDIF
         END DO
      END DO
C
C*         5.2     COMPUTE CONVECTIVE HEATING AND MOISTENING.
C*                 ESTIMATE CONVECTIVE CLOUD FRACTION.
C
      DO jk=IKB,NK-1
         DO jl=1,NI
            IF (ilab(jl,jk) == 0) THEN
              ZQAC(jl,jk) = 0.0
              ZTAC(jl,jk) = 0.0
              ZSHAC(jl,jk) = 0.0
            ENDIF  
            IF (ZSDH(jl,jk) <= 0.) THEN
              ZSDH(jl,jk) = -1.0
            ENDIF  
C
            ZK = ZSHAC(jl,jk)/ZSDH(jl,jk)
C
            CQT(jl,jk) = (ZK*ZDQ(jl,jk)-ZQAC(jl,jk))/ZDP(jl,jk)
            CTT(jl,jk) = (ZK*ZDT(jl,jk)-ZTAC(jl,jk))/ZDP(jl,jk)
C
            ZPR(jl) = ZPR(jl) + CTT(jl,jk)/ZLDCP0(jl)*ZDP(jl,jk)
C
            IF (DBDT(jl)  < ZK) THEN
              DBDT(jl) = ZK
            ENDIF 
C
         END DO
      END DO
C
C*    STORE SURFACE PRECIPITATION    
C
      DO jl=1,NI
         IF (ZTE(jl,NK) > TRPL) THEN
           CRR(jl) = ZPR(jl) / GRAV
         ELSE
           CSR(jl) = ZPR(jl) / GRAV
         ENDIF
      END DO
C
      DO jl=1,NI
         ZPR(jl) = ZPR(jl) / ( GRAV * 1.E3 )
         IF (ZPR(jl) < 1.0E-12) THEN
           ZPR(jl) = 1.0E-12
         ENDIF
         ZPR(jl) = 2.5  + 0.125 * ALOG(ZPR(jl))
         IF (ZPR(jl) < DBDT(jl) * TAU) THEN
           ZPR(jl) = DBDT(jl) * TAU
         ENDIF
         IF (ZPR(jl) > 0.8) THEN
           ZPR(jl) = 0.8
         ENDIF     
      END DO
C
      DO jk=IKB,NK-1
         DO jl=1,NI
           IF (ilab(jl,jk) == 2) THEN
             CCF(jl,jk) = ZPR(jl)
           ELSE
             CCF(jl,jk) = 0.0
           ENDIF
           ZSIG=(SIGMA(jl,jk)/0.8)**2
           IF (ZSIG > 1.0) ZSIG=1.0 
           CCF(jl,jk) = CCF(jl,jk) * ZSIG
         END DO
      END DO
C
      RETURN
      END SUBROUTINE LIN_KUOSYM