!copyright (C) 2001  MSC-RPN COMM  %%%RPNPHY%%%
***S/P DIFUVDFj
*
#include "phy_macros_f.h"

      SUBROUTINE DIFUVDFj(TU, U, KU, GU, R, ALFA, BETA, S, SK, 8,2
     %                    TAU, TYPE, F, A, B, C, D, NU, NR, N, NK)
*
#include "impnone.cdk"
      INTEGER NU, NR, N, NK
      REAL TU(NU, NK), U(NU, NK), KU(NR, NK), GU(NR, NK), R(NR,NK)
      REAL ALFA(N), BETA(N), S(n,NK), SK(n,NK), TAU, F
      INTEGER TYPE
      REAL A(N, NK), B(N, NK), C(N, NK), D(N, NK)
*
*Author
*          R. Benoit (Mar 89)
*
*Revisions
* 001      R. Benoit (Aug 93) -Local sigma: s and sk become 2D
* 002      B. Bilodeau (Dec 94) - "IF" tests on integer 
*          instead of character.
* 003      J. Mailhot (Sept 00) - Add type 4='EB'
* 004      A. PLante (June 2003) - IBM conversion
*             - calls to vrec routine (from massvp4 library)
*
*Object
*          to solve a vertical diffusion equation by finite
*          differences
*
*Arguments
*
*          - Output -
* TU       U tendency (D/DT U) due to the vertical diffusion and to
*          term R
*
*          - Input -
* U        variable to diffuse (U,V,T,Q,E)
* KU       diffusion coefficient
* GU       optional countergradient term
* R        optional inhomogeneous term
* ALFA     inhomogeneous term for the surface flux (for type 1='U' or 2='UT')
*          surface boundary condition (for type 4='EB')
* BETA     homogeneous term for the surface flux
* S        sigma coordinates of full levels
* SK       sigma coordinates of diffusion coefficient levels
* TAU      length of timestep
* TYPE     type of variable to diffuse (1='U',2='UT', 3='E' or 4='EB')
* F        waiting factor for time 'N+1'
* A        work space (N,NK)
* B        work space (N,NK)
* C        work space (N,NK)
* D        work space (N,NK)
* NU       1st dimension of TU and U
* NR       1st dimension of KU, GU and R
* N        number of columns to process
* NK       vertical dimension
*
*Notes
*          D/DT U = D(U) + R
*          D(U) = D/DS J(U)
*          J(U) = KU*(D/DS U + GU)
*          Limiting Conditions where S=ST: J=0(for 'U'), D=0(for 'UT'
*          and ST=1)
*          U=0(for 'E' and 'EB')
*          Limiting Conditions where S=SB: J=ALFA+BETA*U(S(NK))(for
*          'U'/'UT'), J=0(for 'E'), U=ALFA(for 'EB')
*          ST = S(1)-1/2 (S(2)-S(1)) (except for 'TU')
*          SB = SK(NK)
*
**
*
      INTEGER I, K, NKX
      REAL SC, SCTU, ST, SB, HM, HP, HD, KUM, KUP, SCK1
      EXTERNAL DIFUVD1, DIFUVD2
      LOGICAL DEBUG
      SAVE DEBUG
      DATA DEBUG /.FALSE./
************************************************************************
*     AUTOMATIC ARRAYS
************************************************************************
*
      AUTOMATIC (VHM  ,REAL   ,(N,NK) )
      AUTOMATIC (VHP  ,REAL   ,(N,NK) )
      AUTOMATIC (RHD  ,REAL*8 ,(N,NK) )
      AUTOMATIC (RHMD ,REAL*8 ,(N,NK) )
      AUTOMATIC (RHPD ,REAL*8 ,(N,NK) )
*
      st(i)=s(i,1)
      sb(i)=sk(i,nk)
*
      IF (DEBUG) THEN
         PRINT *,' S/R DIFUVDFj..TAU,TYPE,F,NU,N,NK=',
     %   TAU,TYPE,F,NU,N,NK
*        PRINT *,' S=',S
*        PRINT *,' SK=',SK
         I=1
         PRINT *,' ALFA(',I,')=',ALFA(I)
         PRINT *,' BETA(',I,')=',BETA(I)
         PRINT *,' U(',I,',*)=',(K,U(I,K),K=1,NK)
         PRINT *,' KU(',I,',*)=',(K,KU(I,K),K=1,NK)
         PRINT *,' GU(',I,',*)=',(K,GU(I,K),K=1,NK)
         PRINT *,' R(',I,',*)=',(K,R(I,K),K=1,NK)
      ENDIF
*     these definitions hereunder for st, sb are always true.
*     so use as statement functions in code directly
*     to handle local sigma.
*     ST=S(1)
*     SB=SK(NK)
*
      IF (TYPE.LE.2) THEN
         SC=1
         SCTU=0
         NKX=NK
         SCK1=1
         IF (TYPE.EQ.2) THEN
               SCK1=0
*     line below for st=s(1) is commented out. see note above on
*     definition of st and sb
*              ST=S(1)
         ENDIF
      ELSE IF (TYPE.EQ.3 .OR. TYPE.EQ.4) THEN
         SC=1-F
         SCTU=1
         NKX=NK-1
      ELSE
         PRINT *,' S/R DIFUVDFj. TYPE INCONNU= ',TYPE,' STOP...'
         CALL QQEXIT(1)
      ENDIF
*
* (1) CONSTRUIRE L'OPERATEUR TRIDIAGONAL DE DIFFUSION N=(A,B,C)
*                ET LE TERME CONTRE-GRADIENT (DANS D)
*
      IF (TYPE.LE.2) THEN
*
*     K=1
*
         HM=0
         DO 10 I=1,N
            HP=S(i,2)-S(i,1)
            HD=0.5*(S(i,1)+S(i,2))-ST(i)
            A(I,1)=0
            B(I,1)=-SCK1*KU(I,1)/(HP*HD)
            C(I,1)=-SCK1*B(I,1)
10          D(I,1)=SCK1*KU(I,1)*GU(I,1)/HD
*
*     K=2...NK-1
*
         DO K=2,NK-1,1
            DO I=1,N
C              THE FOLLOWING LHS ARE IN REAL
               VHM(I,K)=S(I,K)-S(I,K-1)
               VHP(I,K)=S(I,K+1)-S(I,K)
               HD=0.5*(VHM(I,K)+VHP(I,K))
C	       THE FOLLOWING LHS ARE IN REAL*8
               RHD(I,K)=HD
               RHMD(I,K)=VHM(I,K)*HD
               RHPD(I,K)=VHP(I,K)*HD
            ENDDO
         ENDDO
         CALL VREC(RHD (1,2), RHD(1,2),N*(NK-2))
         CALL VREC(RHMD(1,2),RHMD(1,2),N*(NK-2))
         CALL VREC(RHPD(1,2),RHPD(1,2),N*(NK-2))
         DO K=2,NK-1,1
            DO I=1,N
               A(I,K)=KU(I,K-1)*RHMD(I,K)
               B(I,K)=-(KU(I,K-1)/VHM(I,K) +KU(I,K)/VHP(I,K))*RHD(I,K)
               C(I,K)=KU(I,K)*RHPD(I,K)
               D(I,K)=(KU(I,K)*GU(I,K)-KU(I,K-1)*GU(I,K-1))*
     $              RHD(I,K)
            ENDDO
         ENDDO
*
*     K=NK
*
         HP=0
         DO 12 I=1,N
            HM=S(i,NK)-S(i,NK-1)
            HD=SB(i)-0.5*(S(i,NK-1)+S(i,NK))
            A(I,NK)=KU(I,NK-1)/(HM*HD)
            B(I,NK)=-(KU(I,NK-1)/HM + 0)/HD
            C(I,NK)=0
12          D(I,NK)=(0-KU(I,NK-1)*GU(I,NK-1))/HD
*
      ELSE IF (TYPE.EQ.3 .OR. TYPE.EQ.4) THEN
*
*     TYPE='E' or 'EB'
*
*     K=1
*
         DO 13 I=1,N
            HM=S(i,2)-S(i,1)
            HP=SK(i,2)-SK(i,1)
            HD=0.5*(SK(i,2)+SK(i,1)) -S(i,1)
            KUM=0.5*KU(I,1)
            KUP=0.5*(KU(I,1)+KU(I,2))
            A(I,1)=KUM/(HM*HD)
            B(I,1)=-(KUM/HM+KUP/HP)/HD
            C(I,1)=KUP/(HP*HD)
13          D(I,1)=(KUP*(GU(I,1)+GU(I,2))-KUM*GU(I,1))/(2*HD)
*
*     K=2...NK-2
*
         DO K=2,NK-2,1
            DO I=1,N
C              THE FOLLOWING LHS ARE IN REAL
               VHM(I,K)=SK(I,K)-SK(I,K-1)
               VHP(I,K)=SK(I,K+1)-SK(I,K)
               HD=0.5*(VHM(I,K)+VHP(I,K))
C	       THE FOLLOWING LHS ARE IN REAL*8
               RHD(I,K)=HD
               RHMD(I,K)=VHM(I,K)*HD
               RHPD(I,K)=VHP(I,K)*HD
            ENDDO
         ENDDO
         CALL VREC( RHD(1,2), RHD(1,2),N*(NK-3))      
         CALL VREC(RHMD(1,2),RHMD(1,2),N*(NK-3))
         CALL VREC(RHPD(1,2),RHPD(1,2),N*(NK-3))
         DO K=2,NK-2,1
            DO I=1,N
               KUM=0.5*(KU(I,K-1)+KU(I,K))
               KUP=0.5*(KU(I,K+1)+KU(I,K))
               A(I,K)=KUM*RHMD(I,K)
               B(I,K)=-(KUM/VHM(I,K) +KUP/VHP(I,K))*RHD(I,K)
               C(I,K)=KUP*RHPD(I,K)
               D(I,K)=.5*(KUP*(GU(I,K)+GU(I,K+1))
     %                -KUM*(GU(I,K-1)+GU(I,K)))*RHD(I,K)
            ENDDO
         ENDDO
*
*     K=NK-1=NKX
*
        IF (TYPE.EQ.3) THEN
*
*       TYPE='E'
*
           HP=0
           DO 15 I=1,N
              HM=SK(i,NK-1)-SK(i,NK-2)
              HD=SB(i)-0.5*(SK(i,NK-1)+SK(i,NK-2))
              KUM=0.5*(KU(I,NK-1)+KU(I,NK-2))
              KUP=0
              A(I,NKX)=KUM/(HM*HD)
              B(I,NKX)=-(KUM/HM + 0)/HD
              C(I,NKX)=0
15            D(I,NKX)=(0-KUM*(GU(I,NK-1)+GU(I,NK-2)))/(2*HD)
*
        ELSE IF (TYPE.EQ.4) THEN
*
*       TYPE='EB'
*
           DO I=1,N
              HM=SK(i,NK-1)-SK(i,NK-2)
              HP=SB(i)-SK(i,NK-1)
              HD=S(i,NK)-S(i,NK-1)
              KUM=0.5*(KU(I,NK-1)+KU(I,NK-2))
              KUP=0.5*(KU(I,NK)+KU(I,NK-1))
              A(I,NKX)=KUM/(HM*HD)
              B(I,NKX)=-(KUM/HM + KUP/HP)/HD
              C(I,NKX)=0
              D(I,NKX)=(KUP*(GU(I,NK)+GU(I,NK-1))
     %                 -KUM*(GU(I,NK-1)+GU(I,NK-2)))/(2*HD)
     %                 +KUP*ALFA(I)/(HD*HP)
           ENDDO
*
        ENDIF
*
      ENDIF
*
*
* (2) CALCULER LE COTE DROIT D=TAU*(SC*N(U)+R+D/DS(KU*GU))
*
      IF (DEBUG) THEN
         PRINT *,' ETAPE(2) DE DIFUVDFj'
         I=1
         PRINT *,' A(',I,',*)=',(K,A(I,K),K=1,NK)
         PRINT *,' B(',I,',*)=',(K,B(I,K),K=1,NK)
         PRINT *,' C(',I,',*)=',(K,C(I,K),K=1,NK)
         PRINT *,' D(',I,',*)=',(K,D(I,K),K=1,NK)
      ENDIF
      CALL DIFUVD1 (D, SC, A, B, C, U, D, N, NU, NKX)
      DO 20 K=1,NKX
         DO 20 I=1,N
20       D(I,K)=TAU*(D(I,K)+R(I,K))  +SCTU*U(I,K)
      IF (DEBUG) THEN
         PRINT *,' ETAPE(2) DE DIFUVDFj. D FINAL'
         I=1
         PRINT *,' D(',I,',*)=',(K,D(I,K),K=1,NK)
      ENDIF
*
* (3) CALCULER OPERATEUR DU COTE GAUCHE
*
      DO 30 K=1,NKX
         DO 30 I=1,N
            A(I,K)= -F*TAU*A(I,K)
            B(I,K)=1-F*TAU*B(I,K)
30          C(I,K)= -F*TAU*C(I,K)
*
* (4) AJOUTER TERME DE FLUX DE SURFACE POUR TYPE='U'/'UT'
*
      IF (TYPE.LE.2) THEN
         DO 40 I=1,N
            HD=SB(i)-0.5*(S(i,NK-1)+S(i,NK))
            B(I,NKX)=B(I,NKX)-F*TAU*BETA(I)/HD
40          D(I,NKX)=D(I,NKX)+(ALFA(I)+BETA(I)*U(I,NKX))*TAU/HD
      ENDIF
*
* (5) RESOUDRE SYSTEME TRIDIAGONAL [A,B,C] X = D. METTRE X DANS TU.
*
      CALL DIFUVD2 (TU, A, B, C, D, D, NU, N, NKX)
*
* (6) OBTENIR TENDANCE
*
      DO 60 K=1,NKX
         DO 60 I=1,N
60       TU(I,K)=(TU(I,K)-SCTU*U(I,K))/TAU
*     K=NKX+1..NK
      DO 70 K=NKX+1,NK
         DO 70 I=1,N
70       TU(I,K)=0
*
      RETURN
      END