Resolution sensitivity of European extreme precipitation and its response to large-scale atmospheric circulation variability

Alexander J. Baker1, Reinhard Schiemann1, Marie-Estelle Demory1, Kevin Hodges1, Malcolm J. Roberts2, Len C. Shaffrey1, Pier Luigi Vidale1

1National Centre of Atmospheric Science (Climate Directorate), University of Reading, UK
2MetOffice, Exeter, UK

The effects of atmospheric modes of variability, such as the North Atlantic Oscillation (NAO), on the spatiotemporal distribution of European mean precipitation are relatively well-documented, but less is known about their impact on precipitation extremes. It is important to determine how well GCMs represent relationships between extremes and large-scale modes of atmospheric circulation variability, particularly for understanding the implications of a given medium-range or seasonal NAO forecast for extreme precipitation. Here, we evaluate the resolution sensitivity of European extreme precipitation in gridded observations (ECA&D E-OBS) and in an ensemble of both atmosphere-only and coupled global simulations, compiled as part of the EU Horizon2020-funded PRIMAVERA project, where mid-latitude horizontal resolution is increased from ~135 to ~25km. The global models comprising this study are HadGEM3-GA3, -GA6, -GA7, and EC-Earth3.1 (atmosphere-only), and HadGEM3-GC2, EC-Earth3 and CNRM-CM5 (coupled). We adopt a multi-metric approach to model evaluation by (i) computing extreme quantile composites for NAO+ and NAO- regimes; (ii) applying generalised extreme value analysis to daily precipitation and aggregating results over large European river basins (>50000 km²); and (iii) determining the contribution to extreme precipitation by Euro-Atlantic sector cyclones. For example, the 95th percentile of daily winter precipitation was composit ed (NAO+ - NAO-) and zonally averaged (see figure). The large-scale pattern – wet north-western Europe and dry southern Europe – is reproduced by HadGEM3-GA3. However, the response of extreme precipitation between ~40-50°N to NAO phase is overestimated across the resolution hierarchy and the variability between 58-65°N is captured only at N512 resolution, likely due to its better representation of Norwegian topography. Our complementary statistical and process-based model evaluations attempt to characterise and evaluate the resolution sensitivity of links between European extreme precipitation and large-scale atmospheric variability.

Figure: Zonal mean (~40-60 °E) difference between European extreme (95th percentile) winter precipitation (December-March) under NAO+ vs NAO- in gridded observations (E OBS) and HadGEM3-GA3.0 simulations (UPSCALE campaign), with horizontal resolutions of ~130km (N96), ~60km (N216) and ~25km (N512). Precipitation over land only. Values in legend give ensemble mean root-mean-square error (model-E OBS).