5th WGNE workshop, June 19, 2017

The impact of the systematic mean bias on MJO prediction in the ECMWF ensemble prediction system

Hyemi Kim

School of marine and atmospheric sciences Stony Brook University, NY

Frédéric Vitart (ECMWF), Daehyun Kim (UW), Peter Webster(GT), Violeta Toma (GT)

Madden Julian Oscillation (MJO)

- The dominant mode of intraseasonal variability in the tropics
- MJO tends to develop in the Indian Ocean and propagate eastward
- Major source of global subseasonal predictability

Source: <u>http://envam1.env.uea.ac.uk/mjo.html</u>

Outline

- MJO prediction skill in current models
- Prediction of the MJO propagation
- MJO propagation and the mean state bias

Source: http://envam1.env.uea.ac.uk/mjo.html

Real-time Multivariate MJO (RMM) index

Wheeler and Hendon (2004)

Capability of MJO forecast

MJO prediction skill (RMM index) 0.9 **Predictability** 0.8 **Correlation Coefficient** 0.7 **Prediction skill** 6-7 weeks 0.6 (ensemble mean) 0.5 ~ 3-4 weeks 0.4 ECMWF (CY32R3) 0.3 NCEP CFSv2 0.2 0.1 24 3 Ó 21 27 30 12 15 18 6 9 Forecast lead day

Kim et al. (2014)

Capability of MJO forecast

Source: http://cpo.noaa.gov/sites/cpo/MAPP/Webinars/2017/05-24-17/Webinar_FV.pdf

Data

	Reforecast (CY40R1)
Period, lead time, ensembles	 1994~2013 (20yr) 32-day forecast lead Five ensemble members
Initialization	 Once/week (Jan-Dec)
Resolution	 32 km up to day 10 (64 km after day 10) 91 levels (0.01 hPa)

• ERA Interim

Details: <u>https://software.ecmwf.int/wiki/display/S2S/ECMWF+Model+Description+CY40R1</u>

ECMWF Reforecast

MJO Skill Dependency

- Initial amplitude: Higher with initially strong MJO signal
- MJO Phase: Higher in Phase 2-3

MJO eastward propagation

MJO events

- NH winter (Oct-Mar, 1994-2013)
- IC: Phase2&3, strong (>1.0)
- \rightarrow 89 events for ERA-I
- \rightarrow 445 events for ECMWF (5 ens)

Shading: OLRa Contour: U850a Stippling, purple contours > 95% sig.

Quicker decay of MJO signal

Kim (JGR, in review)

MJO eastward propagation

Kim (JGR, in review)

MC Prediction Barrier

Percentage of MJO events <u>not crossing the MC</u> (S2S reforecasts, 1999-2010)

Q: How do mean state biases impact on MJO propagation?

* F. Vitart (NOAA Webinar, May 2017)

Source: http://cpo.noaa.gov/sites/cpo/MAPP/Webinars/2017/05-24-17/Webinar_FV.pdf

"Moisture mode" theory

- MJO physics is governed by feedbacks that regulate moisture anomalies
- MSE as a proxy for MJO convection

Moist static energy (MSE): $\boldsymbol{m} = c_p T + gz + Lq$

Colum-integrated MSE budget

$$\frac{\partial \langle m \rangle}{\partial t} = -\langle V \cdot \nabla m \rangle - \left\langle \omega \frac{\partial m}{\partial p} \right\rangle + Fsfc + \langle Qr \rangle$$
Tendency
Horizontal
advection
Vertical
Surface
Radiative
Fluxes
Fluxes

* Yu and Neelin (1994), Raymond and Fuchs (2008), Raymond et al. (2009), Maloney (2009), Sobel and Maloney (2012, 2013), Jiang et al. (2015), Kim and Adames (2016), Jiang (2017), many others

MJO Propagation

MSE analysis in multi-models

Jiang (2017): MJOTF/GASS MJO project

MSE analysis in ECMWF reforecast

* Averaged area: 20°S-5°S, 120°-150°E

Prediction: Weaker horizontal moisture advection

Kim (JGR, in review)

Mean Moisture Bias

Maloney (2009), Andersen and Kuang(2012), D.Kim et al. (2014), Jiang (2017)

Mean Moisture Bias Gonzalez and Jiang (2017)

Mean Moisture Bias

Mean Moisture Bias

Specific Humidity (q)

Kim (JGR, in review)

Summary

- The MJO is the main source of subseasonal predictability.
- Current operational models successfully predict the MJO up to 3-4 weeks but have Maritime Continent MJO propagation/prediction barrier.
- The weak predicted MSE tendency to the east of the MJO convection is due to the **weak horizontal MSE advection.**
- The biases in seasonal mean tropospheric moisture field is a key factor that weakens the horizontal MSE advection.

References

- Kim, H. M.: The impact of the **mean moisture bias** on the key physics of MJO propagation in the ECMWF reforecast, *JGR-Atmospheres (in revision)*

- Kim, H. M., D. Kim, F. Vitart, V. Toma, J. Kug, and P. Webster, 2016: **MJO Propagation across the Maritime Continent** in the ECMWF Ensemble Prediction System. J. Climate, 29, 3973–3988

- Kim, H. M., P. J. Webster, V. E. Toma, and D. Kim, 2014: **Predictability and prediction skill of the MJO** in two operational forecasting systems, *J. Climate*, 27, 5364-5378