Mid-latitude response to Slow MJO episodes in large ensemble of CFSv2 experiments

Priyanka Yadav, David M. Straus and Erik Swenson
Climate Dynamics Program, George Mason University (email:pyadav2@gmu.edu)

Motivation and Basic Idea of Experiments

The Observational study of Circulation response to Fast and Slow MJO episodes (Yadav and Straus, 2017) shows that the responses to MJO episodes with different propagation speeds are not the same. Key results from observations include:

1. Development of NAO+ teleconnection pattern is stronger in Slow than in Fast MJO episodes, and occurs with a greater time lag after MJO heating is in the Indian Ocean (phase 3).

2. Development of NAO- teleconnection pattern in previous studies is entirely due to the SLOW episodes.

The motivation behind the ensemble experiments presented in this study is

- To understand the role of phase speed in setting up the mid-latitude response.
- To understand the mechanisms that distinguish fast and slow types of response.

The CFSv2 experiments consist of a number of reforecasts in which the identical MJO evolution of three-dimensional diabatic heating has been added. The phase speed of the MJO in these added heating experiments can then be varied. Mechanistic modes of response can then be extracted using Predictable Component Analysis.

Model Reforecasts Experiment

Model: The Climate Forecast System Version 2 (CFSv2) model of NOAA: resolution T126 and 64 levels in vertical

Ensemble size: 4

Initial Conditions: December 1 for 31 years (1980-2011) from CFS reanalysis

Control Reforecasts: length 4 months

SLOW Added Heating Reforecasts: length 4 months, with added heating to produce MJO cycles (phase speed of 3 deg/day), and 2 active events during the 120-day boreal winter season. 31 x 4 = 124 reforecasts in total

Total Model Heating = Added Heating + Model-Generated Heating

Figure 1: Total Diabatic heating anomalies averaged from 15S-15N Unit is Watts m⁻²

Most Predictable Modes

Raw Signal = standard deviation of ensemble mean time series

Raw Noise = standard deviation of all deviations about the signal

Signal-to-Noise F-value

<table>
<thead>
<tr>
<th>Modes</th>
<th>Z200</th>
<th>Z500</th>
<th>Z200</th>
<th>Z500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.27</td>
<td>2.02</td>
<td>281.9</td>
<td>249.9</td>
</tr>
<tr>
<td>2</td>
<td>1.45</td>
<td>1.01</td>
<td>179.7</td>
<td>124.9</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.04</td>
<td>13.06</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.03</td>
<td>6.9</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
<td>0.03</td>
<td>4.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 1: Signal to noise ratio and associated F-values of optimal signal-to-noise modes for 200-hpa and 500-hPa Height

Optimal mode 2 pattern is similar to the observed Slow case composites over Atlantic sector.

500-hPa Height Response

Figure 4: (Left) Lag Correlation between the leading two optimal modes for 500-hPa. (Right) Time series of optimal modes for 200-hPa (green) and 500-hPa (orange) geopotential height.

The lead-lag correlation of first two modes shows that together they form an oscillatory pair.

Geopotential height Response using Multivariate MJO Index

Figure 5: Lag Composite anomalies for MJO phase 4 and phase 7 of daily 500-hPa height for CFSv2 experiments in Slow case. Units are m.

Tentative Conclusions

500-hPa geopotential height response is similar to observed SLOW geopotential height composite occurring with 5 day lag from MJO heating phase 4. The mode shows the development of NAO+. The development of NAO- is seen late in the MJO cycle.

Ongoing work:

Further analysis of SLOW Added Heating Experiments

Experiments with only one SLOW episode
Experiments with repeating FAST episodes
Experiments with only one FAST episode

Reference


Acknowledgements

This material is based upon research supported by, or in part by, the U. S. Office of Naval Research under award number N00014-12-1-0449