Evaluation of errors in precipitation over Japan reproduced by the non-hydrostatic regional climate model (NHRCM)

Akihiko Murata¹, Hidetaka Sasaki¹, Hiroaki Kawase¹, Masaya Nosaka¹, Toshinori Aoyagi², Mitsuo Oh’izumi³, and Kazuo Saito¹

1: Meteorological Research Institute, 2: Japan Meteorological Agency, 3: Meteorological College

1. Introduction

- **Background**: Increase in horizontal resolution of Regional Climate Models (RCMs)
- **Goal**: Evaluate the performance of a convection-permitting RCM, called NHRCM, in simulating precipitation in the present climate of Japan

2. Model and experimental design

NonHydrostatic Regional Climate Model (NHRCM; Sasaki et al. 2008), based on Japan Meteorological Agency NonHydrostatic Model (JMA-NHM; Saito et al. 2006)

- Horizontal grid spacing: 2km
 (without cumulus parameterization)
- Square Prism Urban Canopy (SPUC: Aoyagi and Seino 2011)

Integration period: Sep 1980 – Aug 2000
(1-year time slice: Sep – next Aug)

3. Annual precipitation

- Calculate bias and RMSE
 - Samples: Data over a region
 - Compare errors between NHRCM02 and NHRCM05

Regions

Model vs. Obs

- NHRCM02 simulation results have
 - A larger correlation coefficient
 - No outliers

4. Heavy precipitation

- Definition of heavy precipitation
 - The 99th percentile of hourly precipitation averaged over 20 years (Integration period)

Regions

Model vs. Obs

- NHRCM02 simulation results have
 - A fitted line showing no underestimates nor overestimates
 - A larger correlation coefficient

5. Topographic effects

- Bias for each location

Annual precipitation
Terrain height = 500 m

- Increase in the index of the improvement in the simulated precipitation with growing terrain complexity

6. Summary

- Evaluation of precipitation in the present climate reproduced by a convection-permitting regional climate model over Japan
 - Horizontal grid spacing: 2 km
 - Improved reproducibility in precipitation, compared with the 5-km mesh model
 - Annual and heavy (99%ile of 1-h) precipitation
 - Effects of topography
 - Improved reproducibility in precipitation in areas of complex topography

Acknowledgments: This work was conducted under the SOUSEI and TOUGOU Programs of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.