Séminaires RPN

Raffinement d'un modèle mésoéchelle pour la simulation aux grandes échelles

Nicolas Gasset, DRQA/AQRD, Environnement Canada

Thèse réalisé sous la direction de Christian Masson et Robert Benoit École de technologie supérieure

22 Mai 2015

Méthodologie

Évaluation et validation

Conclusion

Table des matières

- Contexte et objectifs
- Méthodologie
- Évaluation et validation
- Conclusion

Ferme d'éoliennes, Murdochville, QC

Méthodologie

Évaluation et validation

Conclusion 000

Contexte de l'étude

Échelles temporelles et spatiales des phénomènes atmosphériques (Stull, 1988)

Méthodologi 0000 Évaluation et validation

Conclusion

Objectifs

Identifier, implémenter et évaluer une approche capable de modéliser les écoulements de la couche limite atmosphérique (ABL) allant des microéchelles aux mésoéchelles

Méthodologi

Évaluation et validation

MEAN HORIZONTAL WIND FLOW

Conclusion

Approches microéchelles et CFD

- Principalement dédiées à l'étude des propriétés moyennes de la couche de surface (SL) ~ 10 % du bas de la ABL
- Stationnaire et turbulence 3D
- Applications en ingénierie
- Domaines de plus en plus grands (L_x)
- $L_x > 10$ km possible mais ...

Essentiel pour :

Évaluation de la ressource locale, positionnement des éoliennes et configuration de ferme d'éoliennes

Illustration des processus prenant place au sein du SL

Méthodologi

Évaluation et validation

Conclusion

Approches mésoéchelles

- Dédiées à la modélisation environnementale et à l'étude de phénomènes atmosphériques synoptiques et mésoéchelles évoluant dans le temps.
- Instationnaire, ABL et turbulence 1D
- Applications météorologiques
- Maillage de plus en plus fin (Δx)
- $\Delta x < 1$ km possible mais ...

Prévision du vent et évaluation de la ressource à grande échelle

6/31

Méthodologi 0000 Évaluation et validation

Conclusion

Simulation aux grandes échelles (LES)

Résolution des grosses structures turbulentes et modélisation des plus petites, i.e. la sous-maille (SGS)

- Instationnaire et turbulence 3D
- Applications météorologiques et en ingénierie
- Filtre et modèles de sous-maille
- Exigeant en temps de calcul et en espace mémoire
- Application plus complexe

Rejoint sous certains aspects la modélisation mésoéchelle

Évaluation et validation

Conclusion 000

LES appliquée à l'ABL

ABL : écoulement à haut Reynolds proche d'une paroi rugueuse

Illustration de résultats typiques de LES de l'ABL (Smagorinsky/Deardorff)

Méthodologie • 0 0 0 Évaluation et validation

Conclusion

Méthodologie

Modélisation couplée mésoéchelle/LES

Bénéficier des aptitudes de modélisation environnementale et grandes échelles du modèle mésoéchelle, tout en restant bien adapté aux plus fines échelles grâce à un modèle SGS.

Implémenter et valider une approche de modélisation de la sous-maille (SGS) (et autres composantes requises) au sein d'un modèle mésoéchelle pour son utilisation en mode LES

Défis :

- Projet à cheval entre la météorologie et l'ingénierie
- Simulation aux grandes échelles nouveau axe de recherche
- Valider un modèle mésoéchelle à microéchelle

Méthodologie

Évaluation et validation

Conclusion

Fondement de l'approche

Modèle mésoéchelle compressible communautaire (MC2)

- Prévision numérique du temps (NWP)
- Noyau dynamique (i.e. partie résolue)
 - Semi-Implicite Semi-Lagrangien (SISL)
 - Résolution des Équations d'Euler compressibles (Non-hydrostatique)
- Librairie physique (i.e. partie modélisée)
 - Rayonnement, condensation, stratification thermique, turbulence, ...
 - Commune aux autres modèles mésoéchelles d'Environnement Canada

Gratuit et libre (licence LGPL)

collaboration.cmc.ec.gc.ca/science/rpn.comm

Illustration d'une cascade ($\Delta x = 50$ km à 0.4 km), Benoit et al. (1997) (en haut) et élément de maillage (en bas)

Méthodologie

Évaluation et validation

Conclusion 000

Adaptations et améliorations

Raffinement du modèle de turbulence existant

- Diffusion turbulente 3D
- Équation 3D de la TKE
- Termes volumétriques inclus dans le noyau dynamique
- Nouvelle discrétisation de la librairie physique
- Nouveaux modèles de sous-maille
- Nouveau modèle de turbulence "standalone" explicite (sans librairie physique)
- Nouveaux modes opératoires

Conclusion

Adaptations et améliorations (suite)

Évaluation et validation

Conclusion

Évaluation et validation

Défis

- MC2 à valider à microéchelle en mode LES
- Beaucoup de composantes de MC2 modifiées ou nouvelles

Philosophie

- Reproduction de cas théoriques simples
- Complexité ajoutée pas à pas

Objectifs

- Évaluer chaque composante (nouvelle et raffinée) de la méthode
- Désactiver un maximum de processus sauf ceux à valider

Cas théoriques

- Onde de montagnes : pas de librairie physique (pas de turbulence)
- Ekman : librairie physique simplifiée (RANS algébrique)
- Microéchelle : librairie physique complète (RANS ou LES)

Évaluation et validation

Conclusion

Cas Ekman : Berger et Grisogono (1998)

Forçages géostrophiques + périodicité avec librairie physique simplifiée

- Original/Original+ : mode numérique
 - Erreur max. : \sim 3 % de u_g
 - Cause : interpolation/extrapolation
 - Solution : discrétisation contigüe
- Nouveau/Standalone
 - Erreur max. : \sim 0.2 % de u_g
 - Indépendant du maillage vertical
 - Résultats presque identiques

Forçages géostrophiques, nouvelle librairie physique et diffusion verticale de Nouveau/Standalone : valides en 1D

Méthodologie

Évaluation et validation

Conclusion 000

Cas microéchelle : Moeng et Sullivan (1994)

Cas convectif et neutre (ABL complète)

- Forte inversion : $8^{\circ}K$ en $6\Delta z$
- Cas bien décrit et reproduit par plusieurs auteurs
- Modèles LES et SGS éprouvés

Initialisation

- Profils initiaux : u_g , θ
- Perturbation aléatoire de vitesse
- Surface terrestre chauffante

Conditions limites

- Surface homogène (similitude)
- Périodicité latérale
- · Gradient nul et zone tampon au toit

Librairie physique complète

Méthodologie

Évaluation et validation

Conclusion 000

Cas microéchelle : Moeng et Sullivan (1994)

Cas convectif et neutre (ABL complète)

- Forte inversion : $8^{\circ}K$ en $6\Delta z$
- Cas bien décrit et reproduit par plusieurs auteurs
- Modèles LES et SGS éprouvés

Initialisation

- Profils initiaux : u_g , θ
- Perturbation aléatoire de vitesse
- Surface terrestre chauffante

Conditions limites

- Surface homogène (similitude)
- Périodicité latérale
- · Gradient nul et zone tampon au toit

Librairie physique complète

16/31

Évaluation et validation

Coupe instantanée horizontale à 0.1 z_i

Neutre : u

Delta: 6.00e-01 Min: -3.12e+00 Max: 2.94e+00

x [km]

Évaluation et validation

Conclusion

Comparaison directe : neutre

- MS1994 bien reproduit (au-dessus du SL)
- Deux modèles SGS : en accord
- Dispersion dans les résultats
- Modèle colonne : différences notables
- MC2 semble plus dissipatif

 Conclusion

Comparaison directe : convectif

- MS1994 correctement reproduit mais
 - Dispersion marquée
 - Décalage dans les variances (SGS)
- Deux modèles SGS : en accord
- Modèles colonne : différences notables

Méthodologi 0000 Évaluation et validation

Conclusion

Paramètres de post-traitement : neutre

- · Oscillation inertielle très amortie
 - Régime quasi-stationnaire (t > 0.15T_{inert})
 - Tend vers régime permanent (t > 0.5T_{inert})
- Hauteur de ABL constante
- Survitesse à l'inversion (t > 0.5T_{inert})
- LONG et TINERT : intervalles appropriés

Paramètres de post-traitement : convectif

- Régime quasi-stationnaire (t > 0.1 T_{inert})
 - ABL et θ_{ABL} en constante croissance
 - Solution affectée par le toit à t > 0.46T_{inert}
- Intervalle trop long affecte résultats (LONG)
- INTER : intervalle optimum

Évaluation et validation

Conclusion

Dispersion des résultats

Dispersion provient de la partie résolue

Toujours présente, elle dépend de :

- Intervalle de post-traitement
- Taille et résolution du maillage

Neutre :

- MS1994 vs LONG (x2.5) : gros impact
- LONG vs TINERT (x2.5) : peu d'impact

Convectif :

- MS1994 vs INTER (x3) : gros impact
- INTER vs LONG (x3) : impact notable

Intervalle MS1994 trop court

Évaluation et validation

Conclusion

Paramètres numériques : grille horizontale

Résolution et taille du maillage horizontal :

Grand S' : 96x96, $\Delta x = 31.25$ m (Moeng, 1994) Moyen S^m : 64x64, $\Delta x = 31.25$ m (Sullivan, 1994) Petit S^s : 50x50, $\Delta x = 40$ m (Ding, 2001)

Grand vs Moyen :

- Pas d'impact sur les résultats moyens
- Dispersion légèrement augmentée

Moyen vs Petit :

- Impact classique de l'agrandissement du Δx
- Dispersion notablement augmentée

Petite grille : allumage du régime turbulent retardé et extinctions sporadiques

Méthodologie

Évaluation et validation

Conclusion

Paramètres numériques : grille verticale

Pour modèles SGS avec $\Delta = \Delta_H$:

- Diminuer Δz proche de la paroi
- Augmenter Δz dans ABL ($\Delta z < \Delta_H$)
- Augmenter la hauteur du domaine

=> Pas d'impact

Processus à l'inversion sensible à Δz :

- Plus grand domaine => moins sensible
- Prédiction de w'θ'_i et z_i sensible à Δz dans la partie haute de ABL et jusqu'en haut de l'inversion de température

Grille de Moeng suffisamment haute ; Discrétisation valide pour des grilles verticales non-uniformes

z_ik_x

Évaluation et validation

Conclusion

Discrétisation de la librairie physique

Discrétisation originale :

- Mode numérique pollue la solution
- Pas d'impact au niveau spectral
- Pas d'impact sur les échanges d'énergie (paramètres et résultats moyens en accord)

Nouvelle discrétisation :

Suppression du mode numérique
=> gain net pour 1D et la partie SGS

Mode numérique corrigé ; Nouvelle discrétisation valide (en 3D)

Évaluation et validation

Conclusion

Approche standard vs standalone

Les deux approches sont en très bon accord malgré des implémentations différentes

- Approche standalone avec diffusion explicite : valide
- Interface librairie physique : pas d'impact sur résultats
- Séparation des termes horizontaux et verticaux : pas d'impact sur résultats

Diffusion implicite-explicite permet un Δt plus grand pour des résultats analogues

Méthodologi

Évaluation et validation

Conclusion

Différents modèles SGS

- UKMO Smagorinsky, TKE Hybride et Deardorff : résultats similaires
- Redelsperger : gains dans SL neutre (profils et spectres)
- Kosovic linéaire : problèmes
 - Extinction de la turbulence (neutre)
 - Partie SGS plus grandes Cause : C_S effectif
- Filtre : $\Delta = \Delta_H$ vs $\Delta = \Delta_{3d}$
 - Léger impact dans les spectres

Modèles SGS testés : peu d'impact (sauf SL neutre)

Évaluation et validation

Conclusion •00

Conclusion

Améliorations et raffinements d'un modèle mésoéchelle compressible pour la modélisation 3D de la turbulence

- Ajout des termes volumétriques avec la pression
- Amélioration de la discrétisation verticale
- Validation de la séparation espace/temps des termes turbulents

- Évaluation de cinq modèles SGS
- Évaluation des cas neutre et convectif de Moeng (1994)
- Étude de la dispersion des résultats
- Biève étude des paramètres numériques

Comparaison favorable avec les résultats de la littérature

MC2-LES plus dissipatif que les modèles de référence

Base solide pour des travaux futurs

Évaluation et validation

Conclusion

Transfert de connaissances

Publication :

 N. Gasset, R. Benoit et C. Masson, "Implementing Large-Eddy Simulation Capability in a Compressible Mesoscale Model", *Monthly Weather Review*, 142(8) :2733–2750, 2014.

Présentations à des conférences :

- N. Gasset, R. Benoit, et C. Masson, "Refinement and validation of LES methods embedded in a mesoscale model", *Congrès de l'association canadienne de l'énergie éolienne 2010*, Montréal, QC, Canada.
- N. Gasset, R. Benoit et C. Masson, "Refinement and Validation of a LES and URANS Methods Embedded in a Mesoscale Model", 44^{ième} congrès de la société canadienne de météorologie et d'océanographie, 2010, Ottawa, ON, Canada.
- N. Gasset, R. Benoit et C. Masson,, "Toward the Use of a Mesoscale Model at a Very High Resolution", *Congrès de l'association canadienne de l'énergie éolienne 2008*, Vancouver, BC, Canada.
- Gasset, N., Benoit, R., Masson, C., "Toward the use of a mesoscale model at a microscale resolution", *Conférence européenne de l'énergie éolienne 2008*, Bruxelles, Belgique.

Méthodologi

Évaluation et validation

Conclusion

Étude financée par le réseau stratégique du CRSNG sur l'énergie éolienne (WESNet)

Environment Envi Canada Can

Environnement Canada

Merci pour votre attention

Semi-Implicite Semi-Lagrangien (SISL)

$$\frac{\delta_{tr}\Psi}{2\Delta t} + \overline{\mathbf{L}}^{tr} = \overline{\mathbf{R}}^{tr0} + \mathbf{F}_{\mathbf{x}}^{*}$$
(1)

avec

$$\frac{\delta_{tr}\Psi}{2\Delta t} = \frac{\Psi_{\mathbf{x}}^{+} - \Psi_{\mathbf{x}-2\alpha}^{-}}{2\Delta t} \quad \text{avec} \quad \alpha = \Delta t \mathbf{v}_{\mathbf{x}-\alpha'}^{0} \tag{2}$$
$$\overline{\mathbf{L}}^{tr} = \frac{(1+\varepsilon)\mathbf{L}_{\mathbf{x}}^{+} + (1-\varepsilon)\mathbf{L}_{\mathbf{x}-2\alpha}^{-}}{2} \tag{3}$$
$$\overline{\mathbf{R}}^{tr0} = \frac{(1+\varepsilon)\mathbf{R}_{\mathbf{x}}^{0} + (1-\varepsilon)\mathbf{R}_{\mathbf{x}-2\alpha}^{0}}{2} \tag{4}$$

qui devient

$$\begin{bmatrix} \Psi^{+} + \Delta t^{+} \mathbf{L}^{+} \end{bmatrix}_{\mathbf{x}} = \begin{bmatrix} \Psi^{-} - \Delta t^{-} \mathbf{L}^{-} + \Delta t^{-} \mathbf{R}^{0} \end{bmatrix}_{\mathbf{x} - 2\alpha} + \begin{bmatrix} \Delta t^{+} \mathbf{R}^{0} + 2\Delta t \mathbf{F}^{*} \end{bmatrix}_{\mathbf{x}}$$
(5)

Discrétisation verticale

Discrétisation verticale des principales composantes du modèle

Cas microéchelle : paramètres numériques

S =cas neutre (shear); B =cas convectif (buoyancy).

Nom	Modèle	L_{x_i}	Lz		и _g	$\overline{w'\theta'}_s$	Δt
		[km]	[km]	$N_X \wedge N_Y \wedge N_Z$	[m/s]	[K m/s]	[s]
S _{1d}	<i>k</i> – <i>l</i> column	0.3	1	$3 \times 3 \times 96$	15	0.0	2
S_S	Smagorinsky	3	1	96 imes 96 imes 96	15	0.0	1.5
S_M	TKE hybrid	3	1	96 imes 96 imes 96	15	0.0	1.5
B _{1d}	<i>k</i> – <i>l</i> column	0.3	2	$3 \times 3 \times 96$	10	0.24	4
B _S	Smagorinsky	5	2	96 imes 96 imes 96	10	0.24	4
B _M	TKE hybrid	5	2	96 imes 96 imes 96	10	0.24	4

Évaluation des paramètres numériques

S = cas neutre (shear); B = cas convectif (buoyancy).

Namo	Model	$N_x imes N_y imes N_z$	L_{x_i}	Lz	Δt	Iteration
Name	WOUEI		[km]	[km]	[s]	max.
S _{1d}	<i>k</i> – <i>l</i> column	$3 \times 3 \times 96$	0.3	1	2	60000
S_S^s		50 imes 50 imes 96	2	1	2	30000
S_S^m	Smagorinsky SGS	64 imes 64 imes 96	2	1	1.5	40000
$S_{S}^{\prime} (\equiv S_{S})$		96 imes96 imes96	3	1	1.5	15000
S^s_M		50 imes 50 imes 96	2	1	2	30000
S_M^m	Hybrid TKE SGS	64 imes 64 imes 96	2	1	1.5	40000
$S'_M (\equiv S_M)$		$96\times96\times96$	3	1	1.5	15000
B _{1d}	<i>k</i> – <i>l</i> column	3 imes 3 imes 96	0.3	2	4	10000
B _S	Smagorinsky SGS	96 imes 96 imes 96	5	2	4	10000
B _M	Hybrid TKE SGS	96 imes 96 imes 96	5	2	4	10000