Untangling microphysical impacts on moist convection applying a novel modeling methodology

Wojciech W. Grabowski

NCAR, MMM Laboratory

Microphysical piggybacking...

Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. *J. Atmos. Sci.* **71**, 4493-4499.

Grabowski W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology *J. Atmos. Sci.* (in press).

Grabowski W. W., and D. Jarecka, 2015: Modeling condensation in shallow nonprecipitating convection. *J. Atmos. Sci.* (submitted).

Since microphysics feed back on the cloud dynamics, numerical simulations diverge after a relatively short time. Separating physical effects from natural variability is difficult...

shallow convection

Franklin ACP 2014

deep convection (squall line)

microphysics alone or microphysics plus dynamics?

Morrison et al. JAS 2015

The traditional approach: two (many?) simulations...

http://www2.mmm.ucar.edu/eulag/

Upcoming Events Past Events

What is New in Eulag?

Public Notice

EULAG is a numerical solver for all-scale geophysical flows. The underlying anelastic equations are either solved in an EULerian (flux form), or a LAGrangian (advective form) framework.

EULAG model is an ideal tool to perform numerical experiments in a virtual laboratory with time-dependent adaptive meshes and within complex, and even time-dependent model geometries. These abilities are due to the unique model design that combines the nonoscillatory forward-in-time (NFT) numerical algorithms and a robust elliptic solver with generalized coordinates. The code is written as a research tool with numerous options controlling the numerical accuracy and to allow for a wide range of numerical sensitivity tests. These capabilities give the researcher confidence in the numerical solutions of his/her problem. The formulation of the model equations allow for various derivatives of the code including codes for stellar atmospheres, ocean currents, sand dune propagation or biomechanical flows. EULAG is a fully parallelized code and is easily portable between different platforms.

All the model developments and details of the numerical algorithms are documented in a number of peer reviewed papers by Piotr Smolarkiewicz and his colleagues. The EULAG modeling system is developed and supported by

Current announcements:

"Eulerian vs. Lagrangian methods for cloud microphysics", Warsaw on April 20-22, 2015. - workshop aimed at bring together researchers working on modelling cloud microphysics.

Past events:

4th International EULAG Workshop on Forward-in-time Differencing for Earth-System Models, 20-24 October 2014 in Mainz, Germany

3rd International EULAG Workshop held 25th -28th June 2012 in Loughborough UK.

2nd EULAG Model Users' Workshop took place in Sopot, Poland, 13-16 September 2010.

1st EULAG Model Users' Workshop was held in Bad T∳lz, Germany 6-10 October 2008. The workshop offered tutorials covering essential physical, mathematical and numerical aspects of EULAG and provided a forum to exchange information and ideas among EULAG users.

Special issues:

The special issue of the Acta Geophysica: Special volume 59 (6), 2011: Modeling Atmospheric Circulations with Sound-Proof Equations The papers collected in the present volume of Acta Geophysica 3D babyEULAG: a simple anelastic toy model targeting moist convection (shallow – LES; deep – CSRM; etc):

- no topography;
- no subgrid-scale model (i.e., ILES)
- stretched vertical grid;
- periodic (horizontal), rigid lid (top and bottom boundaries)
- explicit microphysics;
- single-thread

Fortran 77 code, ~3k lines, ~300 lines in the main program

To be run on a laptop or a desktop PC

My experience (Mac): 100³ grid-point LES/CSRM runs not much slower than real time...

Part I: Shallow convection.

Effect of cloud droplet concentration on drizzle/rain from shallow cumulus field bulk microphysics (Grabowski 1998) with autoconversion depending on

the cloud droplet concentration: 70 versus 100 per cc

JAS 2003

A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection

A. PIER SIEBESMA,^a CHRISTOPHER S. BRETHERTON,^b ANDREW BROWN,^c ANDREAS CHLOND,^d JOAN CUXART,^e PETER G. DUYNKERKE,^{f*} HONGLI JIANG,^g MARAT KHAIROUTDINOV,^b DAVID LEWELLEN,ⁱ CHIN-HOH MOENG,^j ENRIQUE SANCHEZ,^k BJORN STEVENS,¹ AND DAVID E. STEVENS^m

The Barbados Oceanographic and Meteorological Experiment (BOMEX) case (Holland and Rasmusson 1973)

Simulations:

ensemble of 5 simulations driven by 70 per cc – D70, P100 ensemble of 5 simulations driven by 100 per cc – D100, P70

- look at D simulations only (traditional approach)
- look at D/P simulations (the new methodology)

Comparison of two D simulation ensembles (5 members):

Comparison of two D simulation ensembles (5 members):

8-hr rain accumulations		
(in units of 0.01 mm)		

ensemble mean, st. dev.

D70	2.54, 1.72, 2.99, 1.81, 1.22
D100	1.01, 1.97, 1.96, 2.58, 2.43

2.06, 0.63 1.99, 0.55

	8-hr rain accumulations (in units of 0.01 mm)	ensemble mean, st. dev.
D70	2.54, 1.72, 2.99, 1.81, 1.22	2.06, 0.63
D100	1.01, 1.97, 1.96, 2.58, 2.43	1.99, 0.55

The difference is consistent with the expected effect of droplet concentration on surface rainfall from shallow convection, but the confidence is low: the difference is much smaller that the standard deviations among ensemble members...

Comparison of two D/P simulations:

	8-hr rain accumulations	ensemble	D-P
	(in units of 0.01 mm)	mean, st. dev.	mean, st. dev.
D70	2.54, 1.72, 2.99, 1.81, 1.22	2.06, 0.63	0.41, 0.08
D100	1.01, 1.97, 1.96, 2.58, 2.43	1.99, 0.55	-0.43, 0.07
P100 P70	2.06, 1.33, 2.48, 1.44, 0.94 1.32, 2.38, 2.46, 3.04, 2.91		

Applying the piggybacking methodology, the effect of droplet concentration is estimated with significantly higher confidence...

	8-hr rain accumulations	ensemble	D-P
	(in units of 0.01 mm)	mean, st. dev.	mean, st. dev.
D70	2.54, 1.72, 2.99, 1.81, 1.22	2.06, 0.63	0.41, 0.08
D100	1.01, 1.97, 1.96, 2.58, 2.43	1.99, 0.55	-0.43, 0.07
P100 P70	2.06, 1.33, 2.48, 1.44, 0.94 1.32, 2.38, 2.46, 3.04, 2.91		

The fact that differences are almost the same suggests negligible impact on cloud dynamics...

Part II: Deep convection.

Rosenfeld et al. *Science*, 2008 "Flood or Drought: How Do Aerosols Affect Precipitation?"

Cloud buoyancy: the potential density temperature

$$\theta_d = \theta (1 + \varepsilon q_v - q_c)$$

latent heating increases the temperature... ...but condensate loading reduces the buoyancy

Cloud buoyancy: the potential density temperature

$$\theta_d = \theta (1 + \varepsilon q_v - q_c)$$

latent heating increases the temperature...

...but condensate loading reduces the buoyancy

The two almost perfectly balance each other...

doi: 10.1256/qj.04.147

Daytime convective development over land: A model intercomparison based on LBA observations

By W. W. GRABOWSKI^{1*}, P. BECHTOLD², A. CHENG³, R. FORBES⁴, C. HALLIWELL⁴, M. KHAIROUTDINOV⁵, S. LANG⁶, T. NASUNO⁷, J. PETCH⁸, W.-K. TAO⁶, R. WONG⁸, X. WU⁹ and K.-M. XU³

Current simulations:

Extended to 12 hrs 50 x 50 km² horizontal domain, 400 m gridlength 24 km deep domain, 81 levels, stretched grid

1. Contrasting simulations applying different microphysical schemes: separating dynamical and microphysical effects.

2. Contrasting simulations assuming clean and polluted conditions (with droplet concentration of 100/1,000 per cc for pristine/polluted) and the same microphysical scheme: exploring dynamical basis of deep convection invigoration in polluted environments. Two microphysics schemes: Grabowski 1998 (G98) – simple ice: SIM Grabowski 1999 (G99) – more complex ice: IAB

G98

$$\frac{\partial \rho_o \theta}{\partial t} + \nabla \cdot (\rho_o \mathbf{u} \theta) = \frac{L_v \theta_e}{c_p T_e} (\text{CON} + \text{DEP}) + D_{\theta}, \quad (1a)$$

$$\frac{\partial \rho_o q_v}{\partial t} + \nabla \cdot (\rho_o \mathbf{u} q_v) = -\text{CON} - \text{DEP} + D_{qv}, \quad (1b)$$

$$\frac{\partial \rho_o q_e}{\partial t} + \nabla \cdot (\rho_o \mathbf{u} q_e) = \text{CON} - \text{ACC} - \text{AUT} + D_{q_e}, \quad (1c)$$

$$\frac{\partial \rho_o q_p}{\partial t} + \nabla \cdot [\rho_o (\mathbf{u} - V_T \mathbf{k}) q_p] = \text{ACC} + \text{AUT} + \text{DEP} + D_{q_e}. \quad (1d)$$

 q_c – cloud condensate q_p – precipitation

freezing/melting not considered: saturation adjustment applies always latent heat of condensation, even at cold temperatures

G99

$$\begin{split} \frac{\partial \rho_{o} \theta}{\partial t} + \nabla(\rho_{o} u \theta) = \mathscr{F}_{\theta} \equiv \\ \frac{L_{v} \theta_{e}}{c_{p} T_{e}} (\text{COND} - \text{REVP}) + \frac{L_{s} \theta_{e}}{c_{p} T_{e}} (\text{DEPA} + \text{DEPB} + \text{HOMA1}) \\ + \frac{L_{f} \theta_{e}}{c_{p} T_{e}} (\text{RIMA} + \text{RIMB} + \text{HOMA2} + \text{HETA} + \text{HETB1} - \text{MELA} - \text{MELB}) \\ (1a) \\ (1a) \\ \frac{\partial \rho_{o} q_{v}}{\partial t} + \nabla(\rho_{o} u q_{v}) = \mathscr{F}_{q_{v}} \equiv -\text{COND} + \text{REVP} - \text{DEPA} - \text{DEPB} - \text{HOMA1} \\ (1b) \\ \frac{\partial \rho_{o} q_{c}}{\partial t} + \nabla(\rho_{o} u q_{c}) = \mathscr{F}_{q_{e}} \equiv \text{COND} - \text{AUTC} - \text{RCOL} - \text{RIMA} - \text{RIMB1} \\ - \text{HOMA2} - \text{HETA} \\ (1c) \\ \frac{\partial \rho_{o} q_{r}}{\partial t} + \nabla[\rho_{o}(u - V_{r}k) q_{r}] = \mathscr{F}_{q_{e}} \equiv -\text{REVP} + \text{AUTC} + \text{RCOL} + \text{MELA} \\ + \text{MELB} - \text{HETB1} - \text{RIMB2} \\ (1d) \\ \frac{\partial \rho_{o} q_{A}}{\partial t} + \nabla[\rho_{o}(u - V_{A}k) q_{A}] = \mathscr{F}_{q_{A}} \equiv \text{HOMA} + \text{HETA} + \text{DEPA} + \text{RIMA} \\ - \text{MELA} - \text{HETB2} \\ (1e) \\ \frac{\partial \rho_{o} q_{B}}{\partial t} + \nabla[\rho_{o}(u - V_{B}k) q_{B}] = \mathscr{F}_{q_{B}} \equiv \text{HETB} + \text{DEPB} + \text{RIMB} - \text{MELB} \\ (1f) \end{split}$$

 q_c - cloud water q_r - rain q_{iA} - ice A q_{iB} - ice B

freezing/melting included

 q_p – precipitation

freezing/melting not considered: saturation adjustment applies always latent heat of condensation, even at cold temperatures

 q_c - cloud water q_r - rain q_{iA} - ice A q_{iB} - ice B

freezing/melting included

Two microphysics schemes: Grabowski 1998 (G98) – simple ice: SIM Grabowski 1999 (G99) – more complex ice: IAB

Two collections of simulations:

C1: 12 piggybacking simulations with SIM and IAB: 3 pristine ensemble members for D-SIM/P-IAB and 3 for D-IAB/P-SIM 3 polluted ensemble members for D-SIM/P-IAB and 3 for D-IAB/P-SIM

C2: 12 piggybacking simulations with polluted and pristine:
3 SIM ensemble members for D100/P1000 and 3 for D1000/P100
3 IAB ensemble members for D100/P1000 and 3 for D1000/P100

Example of model results: maps of the total water path (liquid plus ice); a single simulations from IAB ensemble

contour interval: 0.1 x maximum

Example of model results: cloud fraction profiles from IAB ensemble

Example of model results: cloud fraction profiles from IAB ensemble

Droplet concentration seems to have an insignificant effect...

Piggybacking with different schemes: D-IAB/P-SIM versus D-SIM/P-IAB

Piggybacking with different schemes: D-IAB/P-SIM versus D-SIM/P-IAB

Differences between left and right panel suggest modified dynamics between SIM and IAB driving...

SIM

IAB

Pristine simulations still produce more rain... Differences (D-P and P-D) are similar (except for the sign)...

IAB

	12-hr rain accumulations (mm)	D ensemble mean, st. dev.
D100	2.91, 3.03, 2.79	2.91, 0.10
D1000	3.01, 2.90, 2.91	2.94, 0.09

IAB

?

IAB

Comparing cloud updraft buoyancies in SIM D/P simulation:

Comparing cloud updraft buoyancies in SIM D/P simulation:

Comparing cloud updraft buoyancies in SIM D/P simulation:

Comparing cloud updraft buoyancies in IAB D/P simulation:

Comparing cloud updraft buoyancies in IAB D/P simulation:

Rosenfeld et al. *Science*, 2008 "Flood or Drought: How Do Aerosols Affect Precipitation?"

Conclusions:

1. The piggybacking methodology allows confident assessment of impacts of cloud microphysical parameterizations. It decouples their effect from the impact on cloud dynamics.

2. Contrasting D/P and P/D simulations allows investigating the impact on the dynamics. The fact that the D-P differences are similar (except for the sign) between D/P and P/D implies small impact on the cloud dynamics as in the collection C2. Large differences imply significant impact as in the collection C1.

3. For shallow convection, the methodology allows assessing microphysical impacts with unprecedented accuracy.

4. For deep convection, the methodology calls into question the dynamic basis of convective invigoration in polluted environments.