

NWP Post-Processing at the Met Office

Bruce Wright, Manager Gridded Post-Processing

Canadian Meteorological Centre (CMC) – 16 June 2014

Met Office Table of Contents

- The changing forecast process
- The NWP modelling capability
- Gridded post-processing & Downscaling
- Nowcasting & STEPS
- Ensemble processing & Neighbourhoods
- Site-specific post-processing & 'BestData'
- The future: Gridded Best Data
- Summary

The changing forecast process

Interpret & Communicate

...Capabilities have evolved improved models – high resolution & ensembles

Met Office

Interpret & Communicate

Observations

... Capabilities have evolved **Met Office**

Observations

improved forecasting tools & greater automation NWP

... More focus on impacts

working more closely with customers

Met Office

Observations

Met Office

The NWP modelling capability

Met Office

Global

- –25km 70 Levels
- –48 hour forecast twice/day
- –6 day forecast twice/day

NAE will be retired on 1 July ' (our previous regional model)

Euro4 –

- –4.4km 70 Levels
 –60 hour forecast twice/day
- -5 day forecast twice/day

UKV-

– 1.5km 70 Levels

— 36 hour forecast eight times/day

Comprehensive NWP suite Continually improving

Global

17km 70 Levels - 48 hour forecast twice/day - 6 day forecast twice/day

NAE will be retired on 1 July ' (our previous regional model)

Euro4 –

- —4.4km 70 Levels —60 hour forecast twice/day
- –5 day forecast twice/day

UKV-

– 1.5km 70 Levels

— 36 hour forecast eight times/day

Wet Office an unprecedented level of detail

MOGREPS-15

- -60km 70 Levels
- –15 day forecast 2 times/day
- -24 members

MOGREPS-G

- 33km 70 Levels 7 day forecast 4 times/day - 12 members

We no longer run MOGREPS-R (our regional ensemble model)

MOGREPS-UK

- –2.2km 70 Levels
- 36 hour forecast 4 times/day
- -12 members

MOGREPS-15

will be retired by March 2015

MOGREPS-G

33km 70 Levels
 7 day forecast 4 times/day
 12 members

We no longer run MOGREPS-R (our regional ensemble model)

MOGREPS-UK

-2.2km 70 Levels

- -36 hour forecast 4 times/day
- -12 members

Gridded Post-Processing & Downscaling

Downscaling Standard grids

Regular Arakawa-A grids

Standard Coordinate Reference Systems in common use

Global vs UKPP resolution

Euro4 vs UKPP resolution

UKV vs UKPP resolution

Downscaling Multiple techniques

Nearest point

- Unadjusted value from the nearest available model grid-point
- Used for non-linear fields

 \checkmark

Cloud precipitation rate and accumulation radiation fluxes run-off for river-flow model snow melt

soil evaporation

Bilinear interpolation

- Spatially adjusted value from the four nearest available model grid-points
- Used for linear fields

Weight proportional to 1/x

Mean sea level pressure Aerosol and water-content (for visibility) Boundary-layer depth Ultra-violet flux Wet-bulb freezing level Snow depth

Trilinear interpolation

- 3D Spatially adjusted value from the four nearest available model grid-points at the nearest levels
- Used for linear 3D fields

3D Temperature 3D Relative Humidity

• With additional interpolation below lowest model level (using level 1-2 model lapse rate)

3D Pressure

Wind interpolation

- Trilinear interpolation in free-atmosphere
- Near-surface points re-calculated by selecting lowest free-atmosphere point and applying a more appropriate drag-coefficient
- This is not required for the highest resolution models (1.5km and 2.2km) where the model drag becomes insignificant

Intelligent grid-point selection +

 Uses model grid-point most closely matching target grid-point for land/sea status and orographic height.

Surface temperature Other soil diagnostics

Screen temperature

- Combination of techniques
- Between two model levels: Trilinear interpolation
- Below lowest model level (unresolved valley):
 - If Lapse rate <= 0: Apply lapse rate correction according to height difference
 - If Lapse rate >0 (inversion): Apply lapse rate correction according to height difference up to a maximum of 70m. (Prevents excessively cold valleys)

4km model data

Before downscaling

After downscaling

- Current forecast models do not have the update frequency to be reliable
- Use extrapolation techniques to 'fill the gap'

every 10 mins

lightning location


```
every 5 mins
```


every 15 mins

every 5 mins

Precipitation Characteristics

- Non-Gaussian
 distribution
- Nugget at zero discontinous
- Spatial and temporal scaling properties

- Scale-decomposition framework
- Seamless combination of nowcast & NWP forecasts
- Noise used to generate ensembles & downscale NWP
- Self-calibrating

- What is noise?
 - Random numbers which look like radar or model forecast precipitation
- Why do we need noise?
 - Represent uncertainty in the evolution of forecast precipitation fields
 - Downscale model precipitation forecasts
 - Produce multiple scenarios

Experimental MOGREP-G downscaling using non-parametric noise generator

MOGREPS-G forecast 1 hr	Euro4km forecast 1 hr	Downscaled MOGREPS-G
rain accum	rain accum	1h rain accum using
08Z 17/10/2013	08Z 17/10/2013	Euro4 non-parametric
		noise

Other Nowcast Products

- Precipitation
 - Accumulations
 - Probability of snow
- Visibility
 - Analyses & forecasts of screen visibility
 - Fog probabilities
 - Screen temperature & dewpoint, as products of visibility scheme

Ensemble probabilities & Neighbourhoods

M-UK Wind Speed for time: 22Z 22/04/2013 T+1

MOGREPS-UK

F10

F9

F8

F7 F6

F5 F4

- Ensemble members
 - Percentile ranges
 - Probabilities (with Neighbourhood processing)

Met Office

Improving presentation of convective ensemble probabilities MOGREPS-UK (12 members)

Undersampling leaves "holes" of zero-probability © Crown copyright Met Office ... where showers could still occur

Neighbourhood processing – a way of getting more ensemble members

3x3 neighbourhood

What happens at a particular model grid square is equally likely to occur at nearby grid squares Probability at X = 2/9 = 22%

A deterministic forecast becomes a 9-member ensemble

A 9x9 neighbourhood and 12-member ensemble = 972 members

Not independent members – but justifiable for unpredictable scales

Ensemble NWP forecast with a neighbourhood

Ó 50 · 50

ъ

ò 50 12 25 0.75 1.5 З 12 25 50 100 % 0.75 1.5 З 6 50 100 % 6

- 1. Fuzzy thresholds
 - A rainfall rate of 3.9mm/hr does not mean there is no chance of exceeding 4.0mm/hr.
- 2. Time windowing
 - Takes account of temporal errors. For example, due to the initiation and decay of rain at the wrong times.
- 3. Apply neighbourhood to each member
 - Generate a probability for the centre grid point by calculating how many grid points in the neighbourhood exceed the (fuzzy) threshold.
- 4. Calculate ensemble mean neighbourhood
- 5. Apply recursive filter to smooth out probability field
 - Makes probabilities look more Gaussian
 - Makes square neighbourhoods become more "circular"

Met Office

With Neighbourhood processing: MOGREPS-UK (12 members)

Creation of probability of rain product

Zero-probability "holes" filled in & No spurious detail

5 15 40 70 85 %

2

Site-specific post-processing

Site-specific post-processing

- 6500 UK sites:
 - Population centres
 - Sporting venues
 - Tourist attractions
 - Customers' sites
- ~6500 world-wide sites

(Either post-processed or raw model forecasts)

Kalman Filter to improve at observation sites

- Generic site-specific forecast data
- Makes 'best' use of our operational models
- Updated regularly (hourly)
- Includes deterministic and ensemble model data
 - A single 'best' value and, where appropriate, a set of percentiles

- Between longest forecast horizon (T+360) and T+0 there are
 - 30 MOGREPS-15 runs
 - 30 EC-ensemble runs
 - 20 ECMWF-deterministic runs
 - 14 Global runs
 - 19 Euro4 runs
 - 10 MOGREPS-G runs
 - 12 UKV runs
 - 6 MOGREPS-UK runs
 - 6 nowcasts
- For any given forecast horizon, want to make good use of available models
 - But, don't want to keep all of these on-line in order to create a multi-model ensemble, so ...

etc

- Weights for each model and lead-time optimised to reduce overall error
- Percentiles derived from ensembles are blended in the same way

BestData

What the Blending weights look like as new forecasts are added

Towards 'Best Gridded Data'

Standardisation (technology-focus)

Greater exploitation of ensembles (science-focus)

Gridded version of 'BestData' (science-focus)

Why standardisation?

Because currently post-processing looks rather like ...

Standard forecast information model-independence

NWP model-specific forecast information

Standard Forecast Information User-specific forecast information

Break the direct link between:

- NWP model
- Customer products & services

Provide a controlled bridge between producer and customer, to ensure:

 A change to one does not effect other (i.e. no costs incurred away from the change)

Customers receive data in the right form

Standard, rationalised list of diagnostics across all gridded data products

e.g. provide relative humidity rather than specific humidity or humidity mixing ratio

Standard levels

Same sets of levels across all products Do not expose data on model levels

 — Tropopause
 — 100 mb
 — 250 mb
 — 500 mb
 — 850 mb
 — 100 m — 50 m — 10 m — 1.5 m

Special levels, if required

Pressure for higher levels

Height above orography within boundary layer

Standard time frequencies

All standard diagnostics out to 5 days ahead

Smaller core set of standard diagnostics out to 15 days ahead

Standard time intervals

Standard Processing				
Met Office		standard triggering		
single process	standard software	standard delivery		
modular process	standard languages	standard packaging		
	standard libraries	standard formats		

Comprehensive metadata document and catalogue the data

Data **Items**

- fully described
- single standard diagnostics
- standard grid & level (or set of levels)
- standard set of times

Processing framework

data processing levels

Met Office

Level 0

Level 1

© Crown copyright Met Office

Processing framework level 0: raw model

Met Office

Processing framework

level 1: model in standard form

Met Office

Processing framework

level 2: post-processed

Met Office

Processing framework

level 3: 'best data'

Met Office

© Crown copyright Met Office

Greater use of ensembles

- Met Office Ensembles are...
 - Not just supplementary
 - Essential for quantifying forecast uncertainty
 - Paradigm shift to use of uncertainty
 - Central to Best Gridded Data
 - Describe using Probability Density Function

An ensemble PDF

Met Office

Good description

13 percentiles: 5%, 10% 20% 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%
Lower and upper bounds

- Mean
- Mode
- Standard deviation

Minimum description

- Mean
- Standard deviation

- No estimate of the uncertaintyCan represent a deterministic forecast

Extending BestData to Grids

- No single forecast is the best everywhere and "everywhen"[©]
- Combine many forecasts to get best single forecast (on average)
- Could use 'Stitching' or 'Blending'
- Need to be careful with covariant diagnostics!

Best Gridded Data

More issues due to spatial consistency

Series of Grids to blend data on to

- Met Office Have a comprehensive post-processing suite
 - Gridded downscaling & nowcasts (inc. STEPS)
 - Site-specific, with Kalman Filtering & BestData
 - Some exploitation of ensembles
 - Moving to make Ensembles the key forecast tool, rather than the deterministic forecasts
 - Improved calibration & statistical correction
 - Neighbourhood processing
 - Development of 'Best Gridded Data':
 - Standard processing
 - Gridded version of 'BestData'

Questions?

bruce.wright@metoffice.gov.uk