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Motivations 

• High-resolution multi-year time series of surface-layer 

meteorological fields are of tremendous interest to weather-

dependent energy industries. 

• Canadian Wind Energy Association (CanWEA) targets to 

generate 20% of Canada's electricity from wind by 2025. 

• CanWEA has commissioned Pan Canadian Wind Integration 

Study (PCWIS) to  

 - analyse multi-year wind speed time series  

 - devise plan for large scale wind energy integration 

• EC is responsible for generating the time series data for 

PCWIS. 
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15-km GEM-LAM simulation domain 

480x300 grid cells 

2-km GEM-LAM simulation domain 

3000x1800 grid cells 



Issues to be addressed 

• Controlling large-scale deviation of the atmosphere (with 

LAM-15 simulations). 

• Addressing deviations of evolving surface fields (with LAM-15 

simulations). 

• Extending findings of LAM-15 test simulations to LAM-2 

simulations. 

• Propose optimal configurations for dynamical downscaling. 



Atmospheric large-scale 

deviations: 

The biggest challenge 



Atmospheric large-scale deviations: 

The biggest challenge 

• Atmospheric large-scales can deviate during dynamical 

downscaling primarily due to 

- Large spatial domain 

- Extended length of temporal integration 

 

• The problem may be separated into multiple periods of 

sufficiently small time-frames (e.g. NREL did in the US). 

- May lead to abrupt changes in time-series after temporal blending. 

- Would require additional computational time for spin-up of clouds 

not present in CMC regional analysis. 



Atmospheric large-scale deviations: 

The biggest challenge 

• The problem may be separated into multiple simulations over 

smaller domains for extended periods (e.g. NREL did in the 

US). 

 - May lead to discontinuities in the meteorological fields along the 

lateral boundaries of the small domains due to spatial blending. 

 - The domains cannot be arbitrarily small for proper development 

small scales and to avoid small-scale variance deficiency. 

 

• Overall, continuous temporal integration over the entire 

spatial domain appears to be the most feasible approach, 

provided a mechanism is put in place to control large-

scale deviations. 

 



Similarity of scales 

• Similarity for a meteorological field Ψ between the model outputs 
and the driving fields for a simulation time t and scale of interest L, 
is computed as 

2

2

)()(

)()(
1),(

LDD

LDM

tt

tt
LtP

where < > is spatial average (Storch et al. 2000).   

• The length scale L is separated using Discrete Cosine Transform 
based spectral filter. 

• For large scales higher degree of similarity is desirable, i.e., P(t,L) 
should be close to 1. 

• Small scales between the driving and the driven fields should ideally 
be different. 
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Large-scale similarities between LAM-15 

CONTROL and CMC regional analysis 

For scales larger than 450 km 

(Feb 1 – Mar 2, 2010) (Jun 10 – Jul 9, 2010) 

Significant drop 

Significant drop 



Small-scale similarities between LAM-15 

CONTROL and CMC regional analysis 

(Feb 1 – Mar 2, 2010) (Jun 10 – Jul 9, 2010) 

For scales smaller than 450 km 



Estimating the impact on screen-level 

scores 

• Total number of 

stations is 898. 

 

• Only Canadian 

stations are included 

for evaluation. 

 

•  100 m elevation 

difference permitted 

between model and 

observation. 
 

• Statistical analyses 

using USTAT 

(Marcel Vallée). 



 

Screen-level scores 

 

Winter  (Feb 1 – Mar 2, 2010) 

Temperature Dew point temp Wind speed 

REG FORECAST 

LAM-15 CONTROL 

Temperature Dew point temp Wind speed 



 

Screen-level scores 

 

Summer  (Jun 10 – Jul 9, 2010) 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 

REG FORECAST 

LAM-15 CONTROL 



Controlling large-scale deviations: 

Some basic assumptions 

• Smaller scales are 

preconditioned by the 

large-scales. 

• Large-scale features of 

the driving field (CMC 

analysis for LAM-15, and 

LAM-15 outputs for LAM-

2) are assumed to be 

more reliable.  

• Influence of smaller 

scales on the large 

scales are insignificant. 



Selection of nudging parameters: 

Nudging length scale 

• Selection of nudging length scales λL and λS requires 

- Comparison of variance spectra of analysis and model fields 

- A soft/gradual cut-off of scales between λL and λS 

• Filter applied on the 2D DCT to obtain the DCT of the filtered 

field 

 

 

• It’s followed by inverse DCT. 
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Controlling large-scale deviations: 

Nudging of simulation outputs 

• A meteorological field Ψ at a given vertical level is nudged 

using the following relation 
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Controlling large-scale deviations: 

Nudging of simulation outputs 

• A meteorological field Ψ at a given vertical level is nudged 

using the following relation 

 

 

 

 

 
• Nudging term is expanded in the spectral space to have 

better control over scale selection for retaining. 

• Spectral decomposition is based on 2D DCT. 
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Variance Spectra 

Averaged over two days (Feb 1-2, 2010) 

CMC Regional Analysis 

LAM-15 CONTROL 

LAM-2 CONTROL 



Variance Spectra 

Averaged over two days (Feb 1-2, 2010) 

kmkm LS 300,100
CMC Regional Analysis 

LAM-15 CONTROL 

LAM-2 CONTROL 



Sensitivity of different nudging 

parameters 

• Sensitivity tests are conducted to identify an optimal nudging 

strategy by investigating 

 - Different nudging vertical profiles β(ζ) 

 - Different temporal relaxations τ(t) 

 - Different nudging length scales, λS and λL 
 

• Only temperature and horizontal wind are nudged. 

• Different test configurations are denoted as follows 

N# T# S# 
Nudging scale 

Temporal relaxation 

Nudging vertical profile 



Different nudging vertical profiles 

• General profile shape is given by 
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Different temporal relaxations 

• General form: 

• T2: Variable strong relaxation  

 tR=Δt and m=2 

• T3: Variable weak relaxation 

  tR=tD and m=2 

1
/τ
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tR Relaxation time scale 

Temporal weighting function 

• T1: Constant weak relaxation  

 tR=tD and m=0, i.e., ω(t)=1 

Time interval between two  

consecutive driving fields 

m
Dttnt }/cos{)(where with m=0,2,4,6,… 



Different nudging length scales 

• S1:  

 λS =100 km and λL=300 km 

 

 

• S2:  

 λS =225 km and λL=450 km 

 

 

• S3:  

 λS =350 km and λL=700 km 

 

 



Sensitivity: Nudging vertical profile 

Variance ratio (LAM-15/Analysis) 

Winter 

Feb 1 – Mar 2, 2010 

LAM-15 N1T1S1 

LAM-15 N2T1S1 

LAM-15 N3T1S1 



Sensitivity: Nudging vertical profile 

Similarity 

LAM-15 N1T1S1 

LAM-15 N2T1S1 

LAM-15 N3T1S1 

Winter (Feb 1 – Mar 2, 2010) 

Large scales (at 500 hPa) Small scales (at 850 hPa) 



Sensitivity: Nudging vertical profile 

Screen-level scores 

REG FORECAST 

LAM-15 CONTROL 

LAM-15 N1T1S1 

LAM-15 N2T1S1 

LAM-15 N3T1S1 

Winter (Feb 1 – Mar 2, 2010) 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 

• Overall N3 is selected as optimal for the next tests. 



Sensitivity: Temporal relaxation 

Variance ratio (LAM-15/Analysis) 

Winter 

Feb 1 – Mar 2, 2010 

LAM-15 N3T1S1 

LAM-15 N3T2S1 

LAM-15 N3T3S1 



Sensitivity: Temporal relaxation 

Variance ratio (LAM-15/Analysis) 

Winter 

Feb 1 – Mar 2, 2010 

LAM-15 N3T1S1 

LAM-15 N3T2S1 

LAM-15 N3T3S1 



Addressing variance deficiency 

• Strong nudging only at times when driving fields are available 

 - May lead to abrupt changes in time series. 

 - Increasing m will have similar impact. 

 

 

 

 

 • Computing hourly analysis estimates from RDPS outputs or 

by running LAM-15 simulations. 

 - More effective but computationally expensive. 



Addressing variance deficiency 

Estimating hourly equivalent of analysis 

Six hourly simulation 

Input 

output 

(ΨA)00 
(ΨA)06 

(ΨM)00-00 (ΨM)00-01 (ΨM)00-02 (ΨM)00-03 (ΨM)00-04 (ΨM)00-05 (ΨM)00-06 

Error, ε00-06 = (ΨM)00-06  - (ΨA)06   

For linear growth of error, ε00-0N = (N/6) ε00-06  

Therefore, hourly analysis estimate, (ΨA)0N = (ΨM) 00-0N - ε00-0N  



Addressing variance deficiency 

Comparison of different approaches 

LAM-15 N3T2S1 

LAM-15 N3T2S2_M6 [with m=6] 

LAM-15 N3T2S3_HA [with hourly analysis estimates] 

Averaged over five days (Feb 1 -5, 2010) 



Sensitivity: Temporal relaxation 

Similarity 

LAM-15 N3T1S1 

LAM-15 N3T2S1 

LAM-15 N3T3S1 

Winter (Feb 1 – Mar 2, 2010) 

Large scales (at 500 hPa) 

Small scales (at 850 hPa) Small scales (at 850 hPa) 

Large scales (at 500 hPa) 



Sensitivity: Temporal relaxation 

Screen-level scores 

REG FORECAST 

LAM-15 N3T1S1 

LAM-15 N3T2S1 

LAM-15 N3T3S1 

Winter (Feb 1 – Mar 2, 2010) 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 

• Overall N3T2 is selected for further tests 



Sensitivity: Nudging length scale 

Variance ratio (LAM-15/Analysis) 

Summer 

Jun 10 – Jul 9, 2010 

LAM-15 N3T2S1 

LAM-15 N3T2S2 

LAM-15 N3T2S3 

S1: λS =100 km, λL=300 km 

S2: λS =225 km, λL=450 km 

S3: λS =350 km, λL=700 km 



Sensitivity: Nudging length scale 

Similarity 

LAM-15 N3T2S1 

LAM-15 N3T2S2 

LAM-15 N3T2S3 

Summer (Jun 10 – Jul 9, 2010) 

S1:  

λS =100 km,  λL=300 km 

S2: 

 λS =225 km, λL=450 km 

S3:  

λS =350 km, λL=700 km 

Large scales (at 500 hPa) 

Small scales (at 850 hPa) 

Large scales (at 500 hPa) 

Small scales (at 850 hPa) 



Sensitivity: Nudging length scale 

Screen-level scores 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S2 

LAM-15 N3T2S3 

Summer (Jun 10 – Jul 9, 2010) 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 



LAM-15 simulations 

Overall comparison 

• Overall N3T2S1, i.e., uniform nudging vertical profile and with 

variable strong relaxation and nudging length scales defined 

by λS=100 km and λL=300 km, is found to be optimal for 

LAM-15 simulation. 

S1: λS =100 km, λL=300 km 

S2: λS =225 km, λL=450 km 

S3: λS =350 km, λL=700 km 



Deviations in the evolving 

surface fields: 

Another challenge 



Deviations in the evolving surface fields: 

Another challenge 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S1_EXT 

Summer (Jun 10 – Jul 9, 2010) 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 

N3T2S1_EXT was initialized 4 months earlier 



Deviations in the evolving surface fields: 

Another challenge 

• Prognostically evolving surface fields (e.g. soil moisture, 
surface temperature, snow-conditions) may deviate from their 
expected values due to accumulation of error. 

• This may lead to erroneous surface induced fluxes and 
inaccurate prediction of surface-layer meteorology. 



Deviations in the evolving surface fields: 

Another challenge 

• Prognostically evolving surface fields (e.g. soil moisture, 
surface temperature, snow-conditions) may deviate from their 
expected values due to accumulation of error. 

• This may lead to erroneous surface induced fluxes and 
inaccurate prediction of surface-layer meteorology. 

• Any evolving surface field, Φ, at a given time step can be 

readjusted using the following relation 
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Impact of surface nudging 

Screen-level score 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S1_SPS 

(with γF=0.01) 

LAM-15 N3T2S1_SPSV3 

(with γF=0.25) 

a) Winter 

b) Summer 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S1_SPS 

(with γF=0.01) 

LAM-15 N3T2S1_SPSV3 

(with γF=0.25) 

Surface fields for nudging: Surface temperature, soil 

moisture, and snow-conditions (snow depth and density) 



Extension to 2 km GEM-

LAM simulations 



Extension to LAM-2 simulations 

Experiment configurations 

• Period: Winter (Feb 5 -18, 2010) 

• Vertical profiles:  

 - N3 (uniform) 

 - N4 (steep gradient in surface-layer) 

• Temporal relaxation:  

 - T2 

 - T4 (tR=Δt, m=0, i.e. τ=1) 

1
/τ

 

tD 



Extension to LAM-2 simulations 

Variance ratio (LAM-2/LAM-15) 

For winter (Feb 5 – 18, 2010) LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 



Extension to LAM-2 simulations 

Screen-level scores 

Temperature  (Feb 5 – 18, 2010) 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 



Extension to LAM-2 simulations 

Screen-level scores 

Dew point temperature (Feb 5 – 18, 2010) 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 



Extension to LAM-2 simulations 

Screen-level scores 

Wind speed (Feb 5 – 18, 2010) 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 



Evaluation of LAM-15 and 

LAM-2 generated time 

series against observations 

from wind turbine locations 



Extension to LAM-2 simulations 

Time series at 80 m 

Wind speed at Station 1 (Feb 5-18, 2010) 

Observation 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 

OBS 
LAM-

15 

LAM-2 

N3T4S1 N4T2S1 

Variance 11.8 15.4 11.0 11.0 

Bias 0.7 -0.5 -0.1 

SE 2.1 1.7 1.7 

Correlation 0.85 0.87 0.88 

Both LAM-2 simulations are 

better than LAM-15. 



Extension to LAM-2 simulations 

Time series at 80 m 

Wind speed at Station 2  (Feb 5-18, 2010) 

Observation 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 

OBS 
LAM-

15 

LAM-2 

N3T4S1 N4T2S1 

Variance 8.5 7.6 7.4 8.0 

Bias -1.2 -0.1 0.3 

SE 2.0 1.8 1.9 

Correlation 0.76 0.80 0.78 

Both LAM-2 simulations are 

better than LAM-15. 



Extension to LAM-2 simulations 

Time series at 80 m 

Wind speed at Station 3 (Feb 5-18, 2010) 

Observation 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 

OBS 
LAM-

15 

LAM-2 

N3T4S1 N4T2S1 

Variance 6.4 5.4 6.8 6.5 

Bias 2.0 0.4 0.9 

SE 2.3 2.1 2.5 

Correlation 0.56 0.66 0.53 

LAM-2 N3T4S1 is better than 

LAM-15 and other LAM-2. 



Extension to LAM-2 simulations 

Time series at 40 m and 80 m 

Temperature at Station 3 (Feb 5-18, 2010) 

Observation 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 

OBS 
LAM-

15 

LAM-2 

N3T4S1 N4T2S1 

Variance 3.8 3.3 4.4 5.1 

Bias 0.4 -0.3 0.2 

SE 1.1 0.9 0.8 

Correlation 0.84 0.91 0.93 

Both LAM-2 simulations are 

slightly better than LAM-15. 

Scores (Feb 8-18, 2010) 



Extension to LAM-2 simulations 

Time series at 80 m above surface 

Temperature at Station 3 (Feb 5-18, 2010) 

OBS 
LAM-

15 

LAM-2 

N3T4S1 N4T2S1 

Variance 4.0 3.6 3.7 5.2 

Bias 1.0 0.4 0.7 

SE 1.1 0.9 0.9 

Correlation 0.85 0.90 0.92 

Both LAM-2 simulations are 

better than LAM-15. 

Observation 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 

Scores (Feb 8-18, 2010) 



LAM-2 simulations 

Overall comparison 

• Both N3T4S1 and N4T2S1 LAM-2 

configurations lead to comparable scores. 

• LAM-2 N3T4S1 results in better score 

compared to LAM-15 simulation  

 - for all stations 

 - for both wind and temperature 

• Overall N3T4S1, i.e., uniform nudging 

vertical profile and with constant temporal 

relaxation (τ=1), is found to be optimal for 

LAM-2 simulation. 



Summary 

• Spectral nudging of atmosphere 

 - Maintains large-scale similarities  

 - Does  not suppress small scales significantly 

 - Restricts substantial deviations of the evolving surface fields  

• Uniform nudging vertical profile is found to be optimal. 

• Surface nudging towards SPS fields  

 - Significantly improves screen-level temperature and dew point. 

 - Neutral for screen-level wind 

• 2-km simulations in general improves statistical scores at 40 

m and 80 m above surface. 
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Future Work 

• Impact of dynamical downscaling on sub-kilometer GEM-LAM 

simulations over both large and smaller spatial domains may be 

investigated. 

 



Objectives of the project 

• Produce multi-year surface-layer meteorological fields. 

• Spatial coverage: Canadian territory (south of 70º N) 

• Grid spacing: 2 km 

• Time coverage: 2008 – 2010 (possible extension up to 2012) 

• Output frequency: 10 min (for mandatory fields) 

• Output fields (mandatory):  

 Wind speed and direction, air temperature, specific humidity at 80, 

100, and 120 m above ground level, and surface pressure. 

• Output fields (additional):  

 Incoming solar radiation, cloud water content, precipitation amount 

and type, etc. 



Downscaling Methodologies 

• Mainly three types 

– Dynamical downscaling 

– Statistical downscaling 

– Mixed statistical-dynamical downscaling 

 

Dynamical downscaling 

- Based on atmospheric model simulations. 

- Resolves various dynamical and physical atmospheric processes. 

- Outputs of coarse-resolution atmospheric simulation drive higher 

resolution limited-area simulations  

- Adds and improves small-scale features in the meteorological fields. 

- Often involve multiple stages of simulations. 

- Computationally expensive. 

 



Downscaling Methodologies 

Statistical downscaling 

- Based on statistical equations (e.g., regression, neural networks, 

etc.). 

- Converts coarse-resolution atmospheric fields from global climate or 

atmospheric models to high-resolution limited-area fields. 

- Can improve model bias without significant computational effort. 

- More emphasis on long-term climate statistics. 

- Large error may appear in day-to-day or hour-to-hour outputs. 

- Limited to regions with access to historical observations from 

meteorological stations. 



Downscaling Methodologies 

Mixed statistical-dynamical downscaling 

- First dynamically downscales predefined large-scale weather 

patterns in the coarse-resolution fields. 

- Mean downscaled variables are obtained through weighted average 

of mesoscale model simulated values of each weather type and their 

occurrence frequencies. 

- Lower computational cost compared to dynamical downscaling. 

- Usually provides mean downscaled fields and not suitable for time 

series generation. 

- Recent schemes based on empirical orthogonal functions are 

capable of time series generation, but restricted by temporal 

frequency of coarse-resolution fields. 



List of physical parameteritzation 

Physical process Parameterization scheme 

Radiation CCCMARAD (Li and Barker 2005) 

Land surface ISBA (Noilhan and Planton 1989; Bélair et al. 2003) 

Deep convection Kain and Fritsch 1990 (Only for 15-km simulations)  

Shallow convection Kuo transient (Kuo et al. 1965; Bélair et al. 2005) 

Mixing length Blackadar  

Boundary layer turbulence MOISTKE  

Condensation Sundqvist et al.1989 



Some important configurations 

• Model lid at 10 hPa for both LAM-15 and LAM-2 

• First momentum level 10 m agl 

• First few mom levels: 10, 30, 50, 80, 120, 216 m agl 

• First few therm levels: 5, 20, 40, 65, 100m agl 

• Non-hydrostatic: 10 min (for mandatory fields) 

• Vertical sponge layer (4 for LAM-15, 6 for LAM-2) 

• Radiation calculation every 30 min for both 

• Limit snow depth to 10cm over sea ice 

• Used filtered topography and variable topography 



GenPhysX configurations 

• TOPO: CDED250 (~90 m Canada) 

     SRTM (~90 m -60.0<lat<+60.0) 

     USGS (~900 m Global) 

• MASK: GLOBCOVER (~300 m lat>-65.0) 

• VEG: USGS (~900 m Global) 

• SOIL: USDA (~1 km USA) 

     AGRC (~10 km Canada) 

    FAO (~1 degree Global) 



Selection of nudging parameters: 

Nudging length scale 

• The 2D DCT of the filtered field is obtained as 

),(),(),( nmfnmFnmF FF
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Sensitivity: Nudging length scale 

Variance Spectra 

Winter 

Feb 1 – Mar 2, 2010 

LAM-15 N3T2S1 

LAM-15 N3T2S2 

LAM-15 N3T2S3 



Sensitivity: Nudging length scale 

Similarity 

LAM-15 N3T2S1 

LAM-15 N3T2S2 

LAM-15 N3T2S3 

Winter (Feb 1 – Mar 2, 2010) 



Sensitivity: Nudging length scale 

Screen-level scores 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S2 

LAM-15 N3T2S3 

Winter (Feb 1 – Mar 2, 2010) 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 



Impact of surface nudging 

Screen-level score 

SPS vs Analysis as reference 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S1_ANA 

LAM-15 N3T2S1_SPS 

a) Winter 

b) Summer 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 

REG FORECAST 

LAM-15 N3T2S1 

LAM-15 N3T2S1_ANA 

LAM-15 N3T2S1_SPS 



Impact of surface nudging 

Screen-level score 

Sensitivity of surface fields for nudging 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

N3T2S1_SPSV3_ST 

N3T2S1_SPSV3_SD-DN 

a) Winter 

b) Summer 

Temperature Dew point temp Wind speed 

Temperature Dew point temp Wind speed 
REG FORECAST 

LAM-15 N3T2S1_SPSV3 

N3T2S1_SPSV3_ST 

N3T2S1_SPSV3_SM 



Extension to LAM-2 simulations 

Screen-level scores 

Temperature in winter (Feb 5 – 18, 2010) 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 



Extension to LAM-2 simulations 

Screen-level scores 

Dew point temperature in winter (Feb 5 – 18, 2010) 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 



Extension to LAM-2 simulations 

Screen-level scores 

Wind speed in winter (Feb 5 – 18, 2010) 

REG FORECAST 

LAM-15 N3T2S1_SPSV3 

LAM-2 N4T2S1 

LAM-2 N4T2S1_SPSV3 

LAM-2 N3T4S1_SPSV3 


