

The Social Science of Meteorology— An Introduction

Brian Mills

Meteorological Research Division Atmospheric Science & Technology Directorate Environment Canada c/o Faculty of Environment, University of Waterloo Waterloo, ON, Canada N2L 3G1 <u>Brian.Mills@ec.gc.ca</u>

Chair, WMO-WWRP-SERA Working Group http://www.wmo.int/pages/prog/arep/wwrp/new/weather_society.html

Outline

- The "life & times" of Brian
- What is social science?
- Social science contributions to the "weather enterprise"
- A work (plan) in progress
- Discussion

Life & times...

Meteorological Research Division S&TB (2011-?)

Adaptation & Impacts Research Section S&TB (2010-2011)

Adaptation & Impacts Research Division S&TB (2005-2010)

Adaptation & Impacts Research Group MSC (1999-2005)

Environmental Adaptation Research Group AES (1994-1998)

Canadian Climate Centre, AES (1992-1993)

wallpaper.imcphoto.net

Evoke the fire wit

Collaborations and co-locations

- Geography & Environmental Management
- Environment & Resource Studies
- School of Planning
- Civil & Environmental Engineering
- Sociology
- Economics
- Psychology
- Applied Health Sciences and School of Public Health
- · Other universities and research centres

Across and between disciplines

Canada

Although under a climate change umbrella, it's mostly about the weather...

Drought Sensitivity of **Municipal** Water Supply Systems in Ontario

Reid Kreutzwiser¹, Liana Moraru², Rob de Loë¹, Brian Mills³ and Karl Schaefer⁴
¹ Department of Geography, University of Guelph, Guelph, Ontario N1G 2W1
² M Consulting, Guelph, Ontario N1C 1E9
³ Adaptation and Impacts Research Group, Environment Canada, Waterloo, Ontario N2L 3G7
⁴ National Water Research Institute, Environment Canada, Burlington, Ontario L7R 4A6

The Great Lakes Geographer, Vol. 9 No. 2, 2003

THE POTENTIAL IMPACT OF CLIMATE CHANGE IN ONTARIO'S GRAND RIVER BASIN: WATER SUPPLY AND DEMAND ISSUES

Submitted June 1999; accepted November 1999 Written comments on this paper will be accepted until June 2000

Charles F. Southam,¹ Brian N. Mills,² Ralph J. Moulton¹ and Douglas W. Brown¹

1. Water Issues Division, Atmospheric Environment Branch, Environment Canada-Ontario Region 2. Adaptation and Impacts Research Group, Atmospheric Environment Service, Environment Canada

Canadian Water Resources Journal Vol. 24, No. 4, 1999

Climate Change Implications for Flexible Pavement Design and Performance in Southern Canada

Brian N. Mills¹; Susan L. Tighe, Ph.D., P.E.²; Jean Andrey, Ph.D.³; James T. Smith⁴; and Ken Huen⁵

JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / OCTOBER 2009

Int J Biometeorol (2000) 44:190-197

ORIGINAL ARTICLE

Karen E. Smoyer · Daniel G.C. Rainham Jared N. Hewko

Heat-stress-related mortality in five cities in Southern Ontario: 1980–1996

Duncan, K. 1996. Anthropogenic greenhouse gas-induced warming: Suitability of temperatures for the development of *Vivax* and *Falciparum* Malaria in the Toronto region of Ontario,

in L.D. Mortsch and B. N. Mills (eds.) Great Lakes - St. Lawrence Basin Project Progress Report 1: Adapting to the Impacts of Climate Change and Variability. (Downsview: Environment Canada), pp. 112-118.

Vol. 23: 171-181, 2003

CLIMATE RESEARCH Clim Res

Published January 31

Climate change and the skiing industry in southern Ontario (Canada): exploring the importance of snowmaking as a technical adaptation

Daniel Scott^{1,*}, Geoff McBoyle², Brian Mills¹

¹Adaptation and Impacts Research Group, Environment Canada, at the Faculty of Environmental Studies, and ²Department of Geography, Faculty of Environmental Studies, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

What is social science?

PHYS. & NAT. SCIENCES

SOCIAL SCIENCES

HUMANITIES

- Anthropology -----
- Communication Studies
- Economics
- Geography
- History -----
- Political Science
- Psychology
 - Sociology

Different approaches to risk

Treatment of Risk	Perspective/key reference	Primary discipline	Example study/application focused on natural hazards
Real and objective	Technical risk assessment		
	Actuarial (expected value)	Natural sciences	Deaths from natural events in the U.S. (Thacker et al. 2008)
	Epidemiology	Health sciences	Heat-related mortality risk (Rocklöv and Forsberg 2010)
	Probabilistic risk assessment	Engineering	Flood and levee failure risk (Apel et al. 2003)
	Psychometric paradigm and cognitve heuristics (Fischhoff et al. 1978, Khaneman and Tversky 1979)	Psychology	Relative perception of natural, technological and social risks (McDaniels et al. 1997)
	Natural hazards paradigm (Burton et al., 1993)	Geography	Perception of volcanic and flood/landslide hazards in Mexico (Tobin et al. 2011)
	Edgework (sensation- seeking) (Lyng 1990)	Sociology and psychology	Storm chasing for thrill and recreation (Robertson 1999)
↓	Cultural theory (Douglas and Wildavsky 1982)	Anthropology and sociology	Cross-cultural differences in risk perceptions of disasters (Gierlach et al. 2010)
Socially constructed			

Contextual Factors Affecting Risk Perception

Characteristic	Influence	Natural Hazard Interpretation
Personal control	Increases risk tolerance	Overestimation of one's ability to drive in poor weather
Institutional control	Depends upon confidence in institutional performance	Municipality will have the roads/sidewalks cleared and salted before my trip
Voluntariness	Increases risk tolerance	Risks associated with weather and natural phenomena generally seen as involuntary
Familiarity	Increases risk tolerance	I've driven in this weather before and not been in an accident
Dread	Decreases risk tolerance	Tornadoes, hurricanes seen as much more serious than day-to-day weather
Blame [trust]	Increases quest for social and political responses	Toronto snow emergency in 1998

Renn 2008, based largely on work of Fischhoff, Slovic and colleagues; interpretation added

What is social science?

"...the goal of social science is to uncover proximate causes of behaviour." (Elster 2010)

- No universal social theory akin to those developed in the physical sciences (myth of the rational actor)
- Theories of the "middle-range" and "contextualized conceptualizations"

Objectives: Description, explanation, and prediction

Data and methods

Original data collection

- Surveys and questionnaires (various sampling designs)
- Structured, semi-structured, unstructured interviews
- Focus groups
- Direct observation (overt, covert; in situ, remote)
- Experimentation and simulation

Secondary data collection

- National, regional or thematic censuses/surveys (e.g., Canadian Community Health Survey)
- Government, media, industry or nongovernmental records (e.g., newspaper reports)
- Mining past research (for metaanalyses, benefit/impact transfer functions)

Research design and analytical methods

- One-shot case studies are common, also quasi-experimental designs for field trials, simulations, and secondary data analysis
- Various statistical methods (descriptive, correlational, inferential), content analysis, and qualitative techniques used

Survey example

<u>Source:</u> Ekos, 2011 (Weather and Environmental Services Quality of Services survey)

Content analysis example

ACCN10 CWTO 020710

Forecast of thunderstorm potential for the province of Ontario Issued by Environment Canada at 1:50 AM EDT Wednesday 2 May 2012. The next statement will be issued at 4.30 PM today.

Forecast of thunderstorm potential.

Today..Over Southwestern Ontario beginning this afternoon, slight risk of severe thunderstorms with wind gusts of 90 km/h, torrential downpours giving local rainfall amounts of 25 to 50 mm in an hour or less, intense lightning and large hail. An isolated tornado isn't completely out of the question. Otherwise over Southern Ontario About as far northeast as a line from Kincardine to St Catharines a few non-severe thunderstorms with heavy downpours and frequent lightning are possible as a warm front approaches from the Ohio Valley and the us midwest. Isolated non-severe thunderstorms with brief downpours, wind gusts to 70 km/h and small hail are possible across Northwestern Ontario extending northeast towards Southern James Bay as a sharp Arctic cold front approaches from the northwest.

Social science contributions to/from the "weather enterprise"

Justification for past and planned investments

rironment

Canada

Canada

- Complementary role in the selection, design, testing, implementation and evaluation of system changes/improvements (publication quantity and quality; standard verification procedures; simple measures of public use, awareness, satisfaction)
- Advancement of broader social science theory, conceptualization, and analytical methods

Specific questions, example studies

- What are the social and economic impacts of weather-related hazards?
 - relative to a problem/decision scale and outcome-oriented
 - establishes a baseline, priority and order
 - reveals exposure and other characteristics relevant to decisions (e.g., magnitude, frequency, duration, severity, location and extent, timing, interactions)
- How much of the impact can be affected by improved weather and related risk information and associated services?
 - basis for estimating social and economic value
 - assumptions concerning information, behaviour, and outcomes

Specific questions, example studies

Ranking of selected causes of weather-related fatalities

- 1. Ambient air pollution
- 2. Motor vehicle collisions
- 3. Exposure to heat
- 4. Exposure to cold
- 5. Snow avalanche
- 6. Lightning
- 7. Flooding
- 8. Tornadoes

Slips and falls?

Lightning injuries and costs

- Common meteorological hazard yet little current Canadian information on baseline risks/costs
- Investment in CLDN and climatological, detection, and forecast information—basis for planning, design and evaluation from the user's perspective

Lightning injuries and costs

Mills, B., D. Unrau, L. Pentelow, and K. Spring 2010. Assessment of lightning-related damage and disruption in Canada, *Natural Hazards*, 52(2):481-499.

Mills, B., D. Unrau, C. Parkinson, B. Jones, J. Yessis, K. Spring, and L. Pentelow. 2008. An assessment of lightning-related fatality and injury risk in Canada, *Natural Hazards*, 47(2):157-183.

Author	Timeframe	Location	Deaths and injuries	Annual mortality, injury or casualty rates per million population (unless otherwise stated)	Data Sources
Bains and Hoey (1998)	1991-1995	Canada	27 deaths	n/a	Death certificates (government)
Baker (1984)	1941-1980	England and Wales	263 deaths	7.0 million to one	Unknown
Baker (1984)	1951-1980	Scotland	9 deaths	17.3 million to one	Unknown
Baker (1984)	1954-1969	Ireland	7 deaths	n/a	Unknown
Baker (1984)	1941-1980	Northern Ireland	1 death	57.1 million to one	Unknown
Cherington (2001)	1989-1995	Rocky Mountains (Colorado)	39 deaths	n/a	Newspapers
Coates et al. (1993)	1824-1991	Australia	650 deaths	0.08 per 100,000 (1910-89) 0.01 per 100,000 (1980-89)	Newspapers, Australian Bureau of Statistics
Curran et al. (2000)	1050 1004	United States	3239 deaths	0.42 (0.0-1.88, Alaska-New Mexico)	US NOAA Storm data
Guiran et al. (2000)	1909-1994	United States	9818 injuries	1.26 (0.0-5.74, Alaska-Wyoming)	- US NOAA Stoffi data
Duclos <i>et al.</i> (1990)	1978-1987	Florida	101 deaths	0.09 per 100,000	Death certificates, autopsy reports, Florida Hospital Cost
			44 injuries ^a (1987)	0.54 casualties ^b per 100,000 (1987)	- Containment Board, US NOAA Storm data, hospitais
ten Duis (1998)	1910-1995	Netherlands	602 deaths ^c	n/a	Unknown
Elsom (1993)	1975-1990	England and Wales	56 deaths	n/a	Office of Population Censuses and Surveys
Els ans (2004)	4000 4000		22 deaths	0.05	Tornado and Storm Research Organisation database
Elsom (2001)	1993-1999	United Kingdom	341 injuries	n/a	 observer network)
Formett and Qiele (1002)	4050 4007	Mishissa	81 deaths	n/a	
Ferrett and Ojala (1992)	1959-1987	Michigan	527 injuries	n/a	- US NOAA Storm Data
Gourbière (1999)	1979-1996	France	180 deaths	0.17	Newspapers, physicians, survivor accounts
Hornstein (1961,1962)	1939-1958	Canada	320 deaths	1.1	Bureau of Government Statistics
Lopez and Holle (1996)	1959-1990	United States	2983 deaths	n/a	US NOAA Storm Data
Longs and Holle (1009)	1000 1001	United States	20758 deaths	0.3-6.3 (1991, 1901)	Bureau of the Census and Public Health Service
Lopez and Holle (1996)	1900-1991	United States	8233 injuries	n/a	(mortality and vital statistics)
			36-51 deaths ^d	n/a	Colorado Department of Health (death certificates), US
Lopez et al. (1993)	1980-1991	Colorado	46-82 injuries ^e (1988- 1991)	n/a	 NOAA Storm Data, newspapers, Colorado Hospital Association (discharge data)
			103 deaths	n/a	
Lopez <i>et al.</i> (1995)	1950-1991	Colorado	299 injuries	0.1 casualties ^b per million people per 10,000km ²	US NOAA Storm Data
Nouven and Bailey (2004)	1991-1996	Canada	5 deaths (0-19 years)	0.01 per 100,000 children 0-19 years old	Provincial and territorial coroners offices, Canadian
Ngayen and Dailey (2004)	1331-1330	Canada	9 injuries(0-19 years)	n/a	Hospitals Injury Reporting and Prevention Program data
Pakiam <i>et al.</i> (1981)	1956-1979	Singapore	80 deaths	1.7 (1961-79)	Meteorological Services Singapore, report on Registration of Birth and Deaths, Ministry of Health, newspapers
Shearman and Ojala	1978-1994	Michigan	39-47 deaths ^f	n/a	US NOAA Storm data, Michigan Department of Public
(1999)	.510 1001		203-246 injuries ^g	n/a	Health (death certificates, hospital discharge records)

^a estimated

Lightning injuries and costs

<u>Methods</u>

- Collection of government data and development of media report database
- Simple filtering and statistical analyses of data
- Spatial and temporal extrapolation and aggregation to develop national estimates

Mortality and morbidity data sources

Data	Period	Source	Region	Completeness
Vital statistics - cause-of-death by gender	1921-2002	Statistics Canada	National and provincial (except 1950- 64)	 based on ICD codes (E907) and place of residence non-Canadians excluded
National Trauma Registry - admissions to acute care hospitals	1999- 2003*	Canadian Institute for Health Information (CIHI)	National	 based on ICD-9 code (E907) and ICD-10 code (X33 victim of lightning) data collected only for acute care hospitals
National Ambulatory Care Registry System - emergency room visits	2002- 2003ª	Canadian Institute for Health Information (CIHI)	Ontario	 based on ICD-10 code (X33 victim of lightning)
Injuries and fatalities caused by fires ignited by lightning	1986-2001	Council of Canadian Fire Marshals and Fire Commissioners (CCFMFC)	National and provincial	 based on standard code of fires by source of ignition (CCFMFC 2002) includes fires where response was from a government fire department does not include forest fires that do not affect structures
Media reports of injuries and fatalities	1994-2006	460 daily and weekly Canadian newspapers	National	 incidents derived from qualitative interpretation of specific articles <i>Factiva</i> online searchable worldwide database used to access 20+ year archive of articles in major daily Canadian newspapers Four online databases provided links to community newspapers with archives ranging from 7 days to 21 years

^abased on fiscal year (April 1-March 31)

Fatalities and rates

Sources: Statistics Canada, vital statistics; Lopez & Holle, 1998

Injuries

Fiscal Year	NTR Hospital Admissions (cases)*	NACRS Emergency Room Visitation (Ontario only)**
1999	33	n/a
2000	30	n/a
2001	7	n/a
2002	16	59
2003	12	52
Annual Average	20.0	55.5

Source: Canadian Institute for Health Information (CIHI)

AGE	DEATHS		INJURIES		
	Count	Percentage of total*	Count	Percentage of total*	
<16	6	11.3 (14.6)	12	4.3 (17.1)	
16-30	10	18.9 (24.4)	21	7.6 (30.0)	
31-45	11	20.8 (26.8)	22	7.9 (31.0)	
46-60	8	15.1 (19.5)	10	3.6 (14.2)	
> 60	6	11.3 (14.6)	5	1.8 (7.1)	
Unknown	12	22.6	207	74.7	
TOTAL	53	100.0**	277	100.0**	

*numbers in parentheses refer to percentage of known deaths or injuries

**numbers may not add to 100 due to rounding

45

<u>ACTIVITY</u>		DEATHS			INJURIES	
	Count	% of total*	Per Incident	Count	% of total*	Per Incident
Golf	4	7.5 (8.3)	1.0	29	10.5 (11.3)	1.9
Camp/Hike	11	20.8 (22.9)	1.1	47	17.0 (18.4)	3.6
Picnic	5	9.4 (10.4)	1.7	11	4.0 (4.3)	2.2
Boating	8	15.1 (16.7)	1.1	18	6.5 (7.0)	1.6
Soccer	1	1.9 (2.1)	1.0	11	4.0 (4.3)	11.0
Baseball	1	1.9 (2.1)	1.0	28	10.1 (10.9)	9.3
Other Sport**	4	7.5 (8.3)	1.0	15	5.4 (5.9)	2.5
Work	3	5.7 (6.3)	1.0	41	14.8 (16.0)	2.3
In Home	4	7.5 (8.3)	2.0	24	8.7 (9.4)	1.6
In Shelter	1	1.9 (2.1)	1.0	7	2.5 (2.7)	3.5
Other	6	11.3 (12.5)	1.0	25	9.0 (9.8)	1.8
Unknown	5	9.4	1.0	21	7.6	1.8
TOTAL	53	100.0*		277	100.0*	

*numbers in parentheses refer to percentage of Inown deaths or injuries; numbers may not add to 100 due to rounding **other sport includes cycling, equestrian, tennis

Canada

Lightning-related fatality/injury estimates

- 9-10 deaths and 90-160 injuries per year
- Lightning mortality has declined significantly over the past century
- The majority of lightning-related fatalities and injuries in Canada occur in Ontario. With the exception of B.C., the distribution of fatalities reflects current provincial population and CG lightning frequencies
- Most lightning-related fatalities and injuries occur during the June-August summer season. The Thursday-Saturday period accounted for almost 55% of all fatalities and over 70% of all injuries, most likely related to higher rates of participation in outdoor activities.
- Most victims are male, less than 45 years old, and engaged in outdoor recreational activities when injured or killed in a lightning incident

Cost/loss estimates

Sector	Key impact/cost	Estimated Annual Costs/Losses ¹		
		Low	High	
Health	Lightning-related injuries and fatalities	\$3,648,793	\$79,291,126	
Property	Lightning-ignited municipal fires	\$14,858,541	\$16,414,436	
	Insured losses and deductibles	\$7,906,521	\$23,540,272	
Forestry	Forest fire suppression and pre-suppression	\$306,981,081	\$437,611,328	
Electricity	Sustained and momentary outage costs to customers	\$266,940,187	\$444,900,311	
	Lost revenue	\$16,187	\$16,187	
TOTAL		\$600,351,310	\$1,001,773,660	

¹ low and high estimates taken from report tables; electricity low and high values determined by subtracting and adding 25% to baseline estimates (Mills et al., 2008b)

Value of the National Doppler Radar Program

Cost-benefit analysis by Vodden and Smith (2003)

- Benefits assessed using contingent valuation and benefits transfer approaches
- Stratified random sample of over 1000 households surveyed via telephone interview to determine WTP for improved services above and beyond the annual \$11 in taxes already paid
- Subset of individual decisions examined using transfers from existing studies to estimate benefits of reduced motor vehicle collisions and hail damage, and efficiencies in winter road maintenance and truck routing

Value of the National Doppler Radar Program

Exhibit 1 Annual and present	value (2003 \$	6 Million) o	of costs a	and benefi	ts, total an	nd by ben	<u>efit compon</u> ent
Year Cos	ts Tota	ıl					
	Benet	fits Bene	Benefit by components				
	Conting	gent S	ub-	Vehicle	Hail	Winter	Trucking
	valu	e to	otal	trips*	damage	road	
1997	6.65						
1998	6.65						
1999	6.65						
2000	6.65						
2001	6.65						
2002	6.65						
2003	4.95 5	5.6	27.5	4.0	1.5	13.0	9.9
2004	4.95 5	6.4	27.5	4.0	1.5	13.0	9.9
2005	4.95 5	7.1	27.5	4.0	1.5	13.0	9.9
2006	4.95 5	7.9	27.5	4.0	1.5	13.0	9.9
2007	4.95 5	8.7	27.5	4.0	1.5	13.0	9.9
2008	4.95 5	9.5	27.5	4.0	1.5	13.0	9.9
2009	4.95 6	0.4	27.5	4.0	1.5	13.0	9.9
2010	4.95 6	1.2	27.5	4.0	1.5	13.0	9.9
2011	4.95 6	2.0	27.5	4.0	1.5	13.0	9.9
2012	4.95 6	2.9	27.5	4.0	1.5	13.0	9.9
2013	4.95 6	3.7	27.5	4.0	1.5	13.0	9.9
2014	4.95 6	4.6	27.5	4.0	1.5	13.0	9.9
2015	4.95 6	5.5	27.5	4.0	1.5	13.0	9.9
2016	4.95 6	6.4	27.5	4.0	1.5	13.0	9.9
2017	4.95 6	7.3	27.5	4.0	1.5	13.0	9.9
2018	4.95 6	8.2	27.5	4.0	1.5	13.0	9.9
2019	4.95 6	9.2	27.5	4.0	1.5	13.0	9.9
2020	4.95 7	0.1	27.5	4.0	1.5	13.0	9.9
2021	4.95 7	'1.1	27.5	4.0	1.5	13.0	9.9
2022	4.95 7	2.1	27.5	4.0	1.5	13.0	9.9
Present value SDR*							
10 years 5.0%	87.6 47	77.2	223.0	32.4	11.8	105.4	80.3
7.5%	88.3 43	33.1	202.9	29.5	10.8	95.9	73.1
10.0%	89.9 39	95.8	185.9	27.0	9.9	87.9	66.9
20 years 7.5%	106.3 67	74.0	301.4	34.7	16.0	142.5	108.5

* The minimum of the likely range is used to assess this benefit.

 ** SDR = Social Discount Rate. A rate of 7.5% is used as a base case with

sensitivity analyses performed at 5.0% and 10.0%.

- Assess current situation, use and need for societal and economic research (various elements of the system within EC; key weathersensitive agencies, organizations and sectors within Canada; and the international community)
- Establish a social and economic research framework and virtual network of interest and expertise to guide the selection of particular applications
- Longer term goal is to populate the framework with studies that produce immediate value to ASTD (e.g., evaluations of current research projects) and MSC (e.g., cases based on signature projects) and contribute to the development of new and better methods.

Two sets of potential studies envisioned:

- Large projects that are national in scope and/or involve considerable resource and effort (2+ years)
- Meteorological Research Division/MSC projects that are smaller in scope but with potential to expand as warranted (6 months to 1.5 years)

Type 1 example: Sensitivity of the Canadian economy to weather

- Estimates the sensitivity of annual gross domestic product at the national and provincial levels in Canada using the general empirical approach adopted by Lazo et al. (2011)
- 12 sectors: agriculture; communications; construction; finance, insurance, and real estate; manufacturing; mining; retail trade; services; transportation; utilities; wholesale trade; and government services.
- Results will provide a first order approximation of the weather sensitivity of the Canadian economy by sector and province, and at the national aggregate level (by percent and in absolute terms, \$xx billion).
- Provides an initial baseline against which the impact of improved weather information can be derived and a starting point for the evaluation of sub-regional, disaggregated, and interactive effects.

- 1. Identification of a new, changing, or proposed technology, capacity, infrastructure, or investment for which we require an understanding of potential societal use and/or economic value in decision-making
- 2. Define, characterize and quantify where possible the historic, existing and potential uses, decision-makers, problems or opportunities that are of primary importance (safety, livelihood, economic and environmental damage; number affected/exposed)
- 3. Select a subset of uses, users, and problems for detailed decision analysis

- 1. Identification of a new, changing, or proposed technology, capacity, infrastructure, or investment for which we require an understanding of potential societal use and/or economic value in decision-making
- 2. Define, characterize and quantify where possible the historic, existing and potential uses, decision-makers, problems or opportunities that are of primary importance (safety, livelihood, economic and environmental damage; number affected/exposed)
- 3. Select a subset of uses, users, and problems for detailed decision analysis

- 4. Develop a tailored experimental approach, using multiple methods and sources of data where feasible, to discern the impact of the improved system, model, forecast, service, etc. relative to an established basis for comparison.
- 5. Conduct a sensitivity analysis to ascertain the effects of the assumptions and methods adopted.
- 6. Translate results to an economic value as appropriate and required.
- 7. Report, interpret, publish and communicate results
- 8. Assess need for further monitoring and research

- 4. Develop a tailored experimental approach, using multiple methods and sources of data where feasible, to discern the impact of the improved system, model, forecast, service, etc. relative to an established basis for comparison.
- 5. Conduct a sensitivity analysis to ascertain the effects of the assumptions and methods adopted.
- 6. Translate results to an economic value as appropriate and required.
- 7. Report, interpret, publish and communicate results
- 8. Assess need for further monitoring and research

Type 2 potential project topics that have been identified

- The existing and potential value of sub-seasonal to seasonal weather and related risk forecasts in Canada: Comparison of deterministic and ensemble-based prediction systems
- Evaluation of changes to the Canadian Lightning Risk Display (CLRD), associated CLDN services, and incorporation of lightning forecast information
- Analysis of the impact of vigilance and other early warning/nowcasting systems on decision-making and behaviour in Canada
- Benefits of an enhanced Great Lakes-St. Lawrence River prediction system
- Urban-scale applications of high resolution land surface classification and mesoscale models: Costs and benefits
- A societal impact perspective to data denial and targeted observations: Reanalysis of past experiments

Discussion

Especially ideas regarding possible projects

