ASPECTS OF STRATOSPHERIC ENSEMBLE DATA ASSIMILATION

Thomas Milewski and Michel Bourqui

McGill University

thomas.milewski@mail.mcgill.ca

Context and Objectives

<u>Context</u>

INTRODUCTION	
--------------	--

Context and Objectives

Outline

EnKF-CCM

CHEMISTRY-DYNAMICS

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

Fast Chemistry-Climate Model (CCM) tuned for the stratosphere.

First implementation of ensemble data assimilation with a CCM.

perfect twin \rightarrow imperfect twin \rightarrow real observations

Possible applications: stratospheric reanalysis, guidelines for operational systems.

Objectives

Test the applicability and possible benefits of ensemble data assimilation to a sparsely-observed, multivariate, nonlinear system like the stratosphere.

Improve the unobserved stratospheric winds (Daley, 1995; Riishojgaard, 1996), through multivariate ensemble data assimilation.

Outline

INTRODUCTION

Context and Objectives

Outline

EnKF-CCM

CHEMISTRY-DYNAMICS INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

· EnKF-CCM system

· Chemical-dynamical interaction

· Ensemble Kalman smoother

INTRODUCTION

EnKF-CCM ● EnKF Theory

- Chemistry-Climate Model
- Filter Configurations
- Observations
- Localization
- ullet Optimal Localization: ${f T}$
- Assimilation
- \bullet Optimal Localization: $\mathbf{O}_{\mathbf{X}}$
- Assimilation
- Optimal Simulations

CHEMISTRY-DYNAMICS INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

ENSEMBLE KALMAN FILTERING

with a

CHEMISTRY CLIMATE MODEL

Experimental setup : EnKF

EnKF with perturbed obs (Evensen, 1994; Burgers, 1998)

$$\delta \mathbf{x} = \mathbf{K}_e \, \mathbf{d}$$

INTRODUCTION

EnKF-CCM • EnKF Theory

- Chemistry-Climate Model
- Filter Configurations
- Observations
- Localization
- ullet Optimal Localization: ${\bf T}$
- Assimilation
- Optimal Localization: $\mathbf{O}_{\mathbf{X}}$
- Assimilation
- Optimal Simulations

CHEMISTRY-DYNAMICS

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

 $\delta \mathbf{x} = \mathbf{x}^{a} - \mathbf{x}^{f}$ = analysis increments $\mathbf{d} = \mathbf{y} - \mathcal{H}(\mathbf{x}^{f})$ = observation innovations $\mathbf{K}_{e} = \mathbf{P}_{e}^{f} \mathbf{H}^{T} (\mathbf{H} \mathbf{P}_{e}^{f} \mathbf{H}^{T} + \mathbf{R})^{-1}$ = Kalman Gain

$$\mathbf{P}_{e}^{\mathrm{f}} = \frac{1}{\mathrm{M}} \sum_{m=1}^{\mathrm{M}} (\mathbf{x}_{m}^{f} - \overline{\mathbf{x}^{f}}) (\mathbf{x}_{m}^{f} - \overline{\mathbf{x}^{f}})^{\mathrm{T}}$$

- = sample background error-covariance matrix
- $\mathbf{R} =$ observations error-covariance matrix (prescribed)
- $\mathcal{H} = measurement operator$

Experimental Setup : CCM

CHEMISTRY-CLIMATE MODEL (CCM)

<u>IGCM</u> (F	Forster et al,	2000):
----------------	----------------	--------

- Multilayer spectral GCM run at T21L26, lid at 0.1 hPa
- · Intermediate-complexity physics parametrization
- · Prescribed surface temperatures
- FASTOC (Taylor and Bourqui, 2005):
- · Fast surrogate chemistry scheme
- Based upon comprehensive box model by Fish and Burton (1997), with JPL02 rates.
- Timestep: 24 hrs (diurnal-averaged chemistry)
- \cdot Represented catalytic cycles: O_{x} , HO_{x} , NO_{x} .
- \cdot Advected species: O_x , N_2O_5 , NO_x , HNO_3

INTRODUCTION

EnKF-CCM

● EnKF Theory

- Chemistry-Climate Model
- Filter Configurations
- Observations
- Localization
- Optimal Localization: **T** Assimilation
- Optimal Localization: **O**_X
- Assimilation
- Optimal Simulations

CHEMISTRY-DYNAMICS INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

INTRODUCTION EnKF-CCM EnKF Theory Chemistry-Climate Model Filter Configurations Observations Localization • Optimal Localization: **T** Assimilation • Optimal Localization: **O**_X Assimilation Optimal Simulations CHEMISTRY-DYNAMICS INTERACTION ENSEMBLE KALMAN SMOOTHER CONCLUSIONS AND FUTURE WORK

Э				
vector				
$\mathbf{P_s}$				
Q				
O _x				
N_2O_5				

- · Perfect-twin experiment
 - Initial ensemble is climatological with 128 members (Jan 1st of each year)
 - Sequential Double-EnKF assimilation of observations by batches (Houtekamer & Mitchell, 2001)
 - Separate horizontal and vertical covariance localization parameters for ozone and temperature covariances
 - · No covariance inflation
 - · Analysis performed every 24 hours

Experimental Setup : Observations

INTRODUCTION

EnKF-CCM

• EnKF Theory

- Chemistry-Climate Model
- Filter Configurations

Observations

- Localization
 Optimal Localization: T
 Assimilation
- Optimal Localization: **O**_X
- Assimilation
- Optimal Simulations

CHEMISTRY-DYNAMICS INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

- Synthetic MIPAS-like temperature retrievals with 2K error
- Synthetic MIPAS-like
 ozone retrievals with
 10% error
- Diagonal R matrix
- Obs instantaneous at 00UTC
- Vertical coverage between 4hPa and 200hPa on pressure levels

 Horizontal coverage on model grid points :

Temperature (K)

Localization

+ Increase rank of background error-covariance matrix.

+ Remove (far-away) sampling noise.

- Lose the natural anisotropy : risk of introducing imbalance.

 \rightarrow Ideally, find optimal decorrelation length

Localization

Localization:

 $\rho_v \circ \rho_h \circ \mathbf{P^f}$

+ Increase rank of background error-covariance matrix.

+ Remove (far-away) sampling noise.

- Lose the natural anisotropy : risk of introducing imbalance.

 \rightarrow Ideally, find optimal decorrelation length

Diagnostics: RMSE and SPREAD

Optimal Localization: T Assimilation

Optimal Localization: T Assimilation

Optimal Localization: $\mathbf{O}_{\mathbf{x}}$ Assimilation

Optimal Localization: O_{x} Assimilation

Optimal Localization: O_{x} Assimilation

Evolution of Optimal Simulation: Total Energy

Evolution of Optimal Simulation: Ozone

Evolution of Optimal Simulation: Ozone

INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS INTERACTION

• Experiments

• **T** Assimilation:

Time-Averaged Global Analyses

Schematics

 $\bullet O_{\mathbf{X}}$ Assimilation:

Time-Averaged Global Analyses

Zonally-Averaged Analyses

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

CHEMISTRY-DYNAMICS INTERACTION

Experiments

Experiments

INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS INTERACTION

Experiments

• **T** Assimilation: Time-Averaged Global Analyses

Schematics

• $O_{\mathbf{X}}$ Assimilation:

Time-Averaged Global Analyses

Zonally-Averaged Analyses

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

T assimilation	$O_{\mathbf{x}}$ assimilation
Control	Control
T obs transmit their information to all variables	$\mathbf{O}_{\mathbf{x}}$ obs transmit their information to all variables
NoChem	NoDyn
${\bf T}$ obs transmit their information only to ${\bf u},{\bf v},{\bf T},{\bf q}$ and ${\bf P_s}$	O_x obs transmit their information only to O_x,N_2O_5,NO_x,HNO_3 and P_s
	NoTemp
	$\mathbf{O}_{\mathbf{x}}$ obs transmit their information to all variables except \mathbf{T}
	NoWinds
	$\mathbf{O_x}$ obs transmit their information to all variables except \mathbf{u} and \mathbf{v}

$\ensuremath{\mathrm{T}}$ Assimilation: Time-Averaged Global Analyses

Schematics

O_x Assimilation: Time-Averaged Global Analyses

O_x Assimilation: Time-Averaged Global Analyses

Zonally-Averaged Zonal Wind Analyses

Zonally-Averaged Zonal Wind Analyses

Zonally-Averaged Ozone Analyses

Zonally-Averaged Ozone Analyses

INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS

ENSEMBLE KALMAN SMOOTHER

EnKS Configurations

EnKS Analyses

Experiment

● EnKS vs. EnKF

CONCLUSIONS AND FUTURE WORK

ENSEMBLE KALMAN SMOOTHER

EnKS Configurations

INTRODUCTION EnKF-CCM CHEMISTRY-DYNAMICS INTERACTION ENSEMBLE KALMAN SMOOTHER EnKS Configurations EnKS Analyses Experiment EnKS vs. EnKF CONCLUSIONS AND FUTURE WORK

- model state vector 11 \mathbf{V} T $\mathbf{P_s}$ Q O_x N_2O_5 NO_x HNO₃
- · Perfect-model twin experiment
 - \cdot Initial ensemble is ensemble of analyses from Control Mipas ${\rm O}_{\rm x}$ and Mipas ${\rm T}$ assimilation experiments, every three days in February
 - Double-EnKS assimilation of a singlebatch of daily observations
 - Compressed Row Storage (CRS) for sparse background error-covariance matrix
 - No covariance inflation

O_{x} Assimilation: Time-Lagged EnKS Analyses

O_{x} Assimilation: Time-Lagged EnKS Analyses

Ensemble Kalman Smoother

Experiments

INTRODUCTION

EnKF-CCM	EnKF Mipas	daily Mipas data assimilation
CHEMISTRY-DYNAMICS INTERACTION		
ENSEMBLE KALMAN SMOOTHER		
EnKS Configurations	FnKS Minas	daily EnKE Minas data assimila-
Experiment		tion a trace days of a setarion Mi
● EnKS vs. EnKF		tion + two days of posterior Mi-
CONCLUSIONS AND FUTURE		pas data assimilation
WORK	EnKF 3×Mipas	daily assimilation of three times the amount of Mipas data, same amount of observations as EnKS Mipas

EnKF vs. EnKS: U RMSE Corrections

EnKF vs. EnKS: Ox RMSE Corrections

INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

Summary

• Future Work

CONCLUSIONS AND FUTURE WORK

Summary

EnKF-CCM :

- EnKF assimilation of MIPAS-like stratospheric observations in the IGCM-FASTOC can efficiently constrain the whole model state.
- Two-month ozone (10% error) or temperature (2K error) assimilation experiments yield approximately the same constraint on the dynamical state of the system.
- · Temperature assimilation has however more problems constraining the chemical state.

CHEMISTRY-DYNAMICS INTERACTION:

- $T \rightarrow O_x$ covariances permit to slightly improve the ozone analysis, compared to using only $T \rightarrow$ dynamics covariances.
- $O_x \rightarrow u$ and $O_x \rightarrow T$ covariances permit to constrain wind motion during ozone assimilation, but particularly $O_x \rightarrow u$ covariances.

Milewski, T. and M.S. Bourqui, 2011a: Assimilation of stratospheric temperature and ozone with an Ensemble Kalman Filter in a Chemistry-Climate Model. Monthly Weather Review 139, pp.3389-3404

ENSEMBLE KALMAN SMOOTHING :

- Steady decrease of analysis corrections with time-lag, but still beneficial corrections for 48 hours.
- $\cdot\,$ For $O_{\mathbf{x}}$ assimilation, analysis improvements from adding posterior data almost as good as from adding horizontal data.

Milewski, T. and M.S. Bourqui, 2011b: Impact of synchronous and asynchronous ensemble assimilation of stratospheric

observations. In preparation.

EnKF-CCM

CHEMISTRY-DYNAMICS INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

Summary

Future Work

Future Work

EnKF-CCM

CHEMISTRY-DYNAMICS

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

Summary

Future Work

· Extreme events : stratospheric sudden warmings

- · Imperfect-twin experiment : model errors
 - \rightarrow Additive or multiplicative inflation do not work in sparsely-observed systems.
 - \rightarrow Bias correction.

INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS

INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

Summary

Future Work

THANK YOU ! ANY FEEDBACK IS HIGHLY APPRECIATED

INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS INTERACTION

ENSEMBLE KALMAN SMOOTHER

CONCLUSIONS AND FUTURE WORK

EXTRA FIGURES

EXTRA FIGURES

Zonally-Averaged Temperature Analyses

Zonally-Averaged Temperature Analyses

Zonally-Averaged Odd Nitrogen Analyses

Zonally-Averaged Odd Nitrogen Analyses

