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Context and Objectives

Context

Fast Chemistry-Climate Model (CCM) tuned for the
stratosphere.

First implementation of ensemble data assimilation with a
CCM.

perfect twin → imperfect twin → real observations

Possible applications: stratospheric reanalysis, guidelines for
operational systems.

Objectives

Test the applicability and possible benefits of ensemble data
assimilation to a sparsely-observed, multivariate, nonlinear
system like the stratosphere.

Improve the unobserved stratospheric winds (Daley, 1995;
Riishojgaard, 1996), through multivariate ensemble data
assimilation.
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Outline

· EnKF-CCM system

· Chemical-dynamical interaction

· Ensemble Kalman smoother
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ENSEMBLE KALMAN FILTERING

with a

CHEMISTRY CLIMATE MODEL
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Experimental setup : EnKF

EnKF with perturbed obs (Evensen, 1994; Burgers, 1998)

δx = Ke d

δx = xa − xf = analysis increments

d = y −H(xf) = observation innovations

Ke = Pf
eH

T(HPf
eH

T +R)−1 = Kalman Gain

Pf
e =

1

M

M
∑

m=1

(xfm − xf )(xfm − xf )T

= sample background error-covariance matrix

R = observations error-covariance matrix (prescribed)

H = measurement operator
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Experimental Setup : CCM

CHEMISTRY-CLIMATE MODEL (CCM)

IGCM (Forster et al, 2000):

· Multilayer spectral GCM run at T21L26, lid at 0.1 hPa

· Intermediate-complexity physics parametrization

· Prescribed surface temperatures

FASTOC (Taylor and Bourqui, 2005):

· Fast surrogate chemistry scheme

· Based upon comprehensive box model by Fish and Burton
(1997), with JPL02 rates.

· Timestep: 24 hrs (diurnal-averaged chemistry)

· Represented catalytic cycles: Ox, HOx, NOx.

· Advected species: Ox, N2O5, NOx, HNO3
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Experimental Setup : Filter Configurations

model state
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· Perfect-twin experiment

· Initial ensemble is climatological with 128
members (Jan 1st of each year)

· Sequential Double-EnKF assimilation of
observations by batches (Houtekamer &
Mitchell, 2001)

· Separate horizontal and vertical
covariance localization parameters
for ozone and temperature covariances

· No covariance inflation

· Analysis performed every 24 hours
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Experimental Setup : Observations

· Synthetic MIPAS-like
temperature retrievals
with 2K error

· Synthetic MIPAS-like
ozone retrievals with
10% error

· Diagonal R matrix

· Obs instantaneous at
00UTC

· Vertical coverage between
4hPa and 200hPa on
pressure levels

· Horizontal coverage on
model grid points :

Tem
perature

(K
)



INTRODUCTION

EnKF-CCM

● EnKF Theory

● Chemistry-Climate Model

● Filter Configurations

● Observations

● Localization
● Optimal Localization: T

Assimilation
● Optimal Localization: Ox
Assimilation

● Optimal Simulations

CHEMISTRY-DYNAMICS

INTERACTION

ENSEMBLE KALMAN

SMOOTHER

CONCLUSIONS AND FUTURE

WORK

SPARC-DA Workshop: June 20–22, 2011 ASPECTS OF STRATOSPHERIC ENSEMBLE DATA ASSIMILATION - p. 9/35

Localization

Localization: ρv ◦ ρh ◦Pf
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No localization

localized, Ch=2800km

+ Increase rank of
background error-
covariance matrix.

+ Remove (far-away)
sampling noise.

- Lose the natural
anisotropy : risk of in-
troducing imbalance.

→ Ideally, find op-
timal decorrelation
length
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Localization

Localization: ρv ◦ ρh ◦Pf
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Diagnostics: RMSE and SPREAD

True state

RMSE =

√

∑N
i=1

(xi−xt
i)

2

N

Ensemble mean

SPREAD =

√

∑N
i=1

∑M−1
j=1

(xi,j−xi)
2

N(M−1)

var2

var1

var2

var1

time
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Optimal Localization: T Assimilation

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

R
M

S
E

 (
m

/s
)

SPREAD (m/s)

Temperature assimilation localization sensitivity study : 
 Time-averaged square-root of TE RMSE and SPREAD for various localization scenarios

   [2800,2]

   [2800,4]

   [2800,10]

   [5600,2]

   [5600,4]
   [5600,10]

   [14000,2]

   [14000,4]
   [14000,10]

   [20000,2]

   [20000,4]
   [20000,10]

[Ch,Cv]

TE = u′2

2 + v′2

2 +
Cp
Tref

T′2 + RαTref (
P′
s

Pref
)2



INTRODUCTION

EnKF-CCM

● EnKF Theory

● Chemistry-Climate Model

● Filter Configurations

● Observations

● Localization
● Optimal Localization: T

Assimilation
● Optimal Localization: Ox
Assimilation

● Optimal Simulations

CHEMISTRY-DYNAMICS

INTERACTION

ENSEMBLE KALMAN

SMOOTHER

CONCLUSIONS AND FUTURE

WORK

SPARC-DA Workshop: June 20–22, 2011 ASPECTS OF STRATOSPHERIC ENSEMBLE DATA ASSIMILATION - p. 11/35

Optimal Localization: T Assimilation
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Optimal Localization: Ox Assimilation
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Optimal Localization: Ox Assimilation
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 Time-averaged square-root of TE RMSE and SPREAD, alpha and beta for various localization scenarios
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Optimal Localization: Ox Assimilation
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Evolution of Optimal Simulation: Total Energy
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Evolution of Optimal Simulation: Ozone
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Evolution of Optimal Simulation: Ozone
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CHEMISTRY-DYNAMICS INTERACTION
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Experiments

Experiments

T assimilation Ox assimilation

Control Control
T obs transmit their information
to all variables

Ox obs transmit their information
to all variables

NoChem NoDyn
T obs transmit their information
only to u, v, T, q and Ps

Ox obs transmit their information
only to Ox, N2O5, NOx, HNO3

and Ps

NoTemp
Ox obs transmit their information
to all variables except T

NoWinds
Ox obs transmit their information
to all variables except u and v
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T Assimilation: Time-Averaged Global Analyses
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Schematics
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Ox Assimilation: Time-Averaged Global Analyses
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→ Ox-Dyn error covariances account for
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Ox Assimilation: Time-Averaged Global Analyses

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

A
pp

ro
xi

m
at

e 
H

ei
gh

t (
km

)

Ozone relative to true state RMSE and SPREAD (%)

RMSE
SPREAD
Obs Error

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

A
pp

ro
xi

m
at

e 
H

ei
gh

t (
km

)

Ozone relative to true state RMSE and SPREAD (%)

Climatology
Ox Assimilation Control
Ox Assimilation NoDyn

→ Ox-Dyn error covariances account for

about half the Ox error reduction.
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critical to constrain the dynamics.
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Zonally-Averaged Zonal Wind Analyses

Control Ox assimilation
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Zonally-Averaged Zonal Wind Analyses

Control T assimilation
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Zonally-Averaged Ozone Analyses

Control T assimilation
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Zonally-Averaged Ozone Analyses

Control Ox assimilation
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ENSEMBLE KALMAN SMOOTHER



INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS

INTERACTION

ENSEMBLE KALMAN

SMOOTHER

● EnKS Configurations

● EnKS Analyses

● Experiment

● EnKS vs. EnKF

CONCLUSIONS AND FUTURE

WORK

SPARC-DA Workshop: June 20–22, 2011 ASPECTS OF STRATOSPHERIC ENSEMBLE DATA ASSIMILATION - p. 26/35

EnKS Configurations

model state
vector



































u

v

T

Ps

Q

Ox

N2O5

NOx

HNO3



































· Perfect-model twin experiment

· Initial ensemble is
ensemble of analyses from
Control Mipas Ox and Mipas T
assimilation experiments,
every three days in February

· Double-EnKS assimilation of a single-
batch of daily observations

· Compressed Row Storage (CRS) for
sparse background error-covariance
matrix

· No covariance inflation
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Ox Assimilation: Time-Lagged EnKS Analyses
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Ox Assimilation: Time-Lagged EnKS Analyses



INTRODUCTION

EnKF-CCM

CHEMISTRY-DYNAMICS

INTERACTION

ENSEMBLE KALMAN

SMOOTHER

● EnKS Configurations

● EnKS Analyses

● Experiment

● EnKS vs. EnKF

CONCLUSIONS AND FUTURE

WORK

SPARC-DA Workshop: June 20–22, 2011 ASPECTS OF STRATOSPHERIC ENSEMBLE DATA ASSIMILATION - p. 29/35

Ensemble Kalman Smoother

Experiments

EnKF Mipas daily Mipas data assimilation

EnKS Mipas daily EnKF Mipas data assimila-
tion + two days of posterior Mi-
pas data assimilation

EnKF 3×Mipas daily assimilation of three times
the amount of Mipas data, same
amount of observations as EnKS
Mipas
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EnKF vs. EnKS: U RMSE Corrections
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EnKF vs. EnKS: Ox RMSE Corrections
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Summary

EnKF-CCM :

· EnKF assimilation of MIPAS-like stratospheric observations in the IGCM-FASTOC can
efficiently constrain the whole model state.

· Two-month ozone (10% error) or temperature (2K error) assimilation experiments yield
approximately the same constraint on the dynamical state of the system.

· Temperature assimilation has however more problems constraining the chemical state.

CHEMISTRY-DYNAMICS INTERACTION:

· T→Ox covariances permit to slightly improve the ozone analysis, compared to using
only T→dynamics covariances.

· Ox→u and Ox→T covariances permit to constrain wind motion during ozone
assimilation, but particularly Ox→u covariances.

Milewski, T. and M.S. Bourqui, 2011a: Assimilation of stratospheric temperature and ozone with an Ensemble Kalman Filter in

a Chemistry-Climate Model. Monthly Weather Review 139, pp.3389-3404

ENSEMBLE KALMAN SMOOTHING :

· Steady decrease of analysis corrections with time-lag, but still beneficial corrections for
48 hours.

· For Ox assimilation, analysis improvements from adding posterior data almost as good
as from adding horizontal data.

Milewski, T. and M.S. Bourqui, 2011b: Impact of synchronous and asynchronous ensemble assimilation of stratospheric

observations. In preparation.
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Future Work

· Extreme events : stratospheric sudden warmings
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· Imperfect-twin experiment : model errors
→ Additive or multiplicative inflation do not work in
sparsely-observed systems.
→ Bias correction.
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THANK YOU !
ANY FEEDBACK IS HIGHLY APPRECIATED
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Zonally-Averaged Temperature Analyses

Ox assimilation
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Zonally-Averaged Temperature Analyses

T assimilation
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Zonally-Averaged Odd Nitrogen Analyses

T assimilation
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Zonally-Averaged Odd Nitrogen Analyses

Ox assimilation
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