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� To develop a time-stepping scheme that filters 

high-frequency noise, based on Laplace transform
theory

� First used by Lynch (1985). 
Further work in Lynch (1986), (1991) and 
Van Isacker & Struylaert (1985), (1986)

Aim
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Overview

1:  Laplace transform method: background theory

2:  Eulerian shallow water model and Kelvin waves

3:  Semi-Lagrangian model and orographic resonance
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Laplace transform: 0),( ≥ttf

Inverse Transform:

Definitions
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A Simple Filtering Example

� Consider :

� Laplace Transform:
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Poles in the s-plane
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Modify the Inversion Contour
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� Define

� Contribution from frequencies        <        only

� Cauchy’s Integral Formula  =>
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Numerical Inversion
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Numerical Inversion Operator

Approximated by:
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Numerical Inversion Operator
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Numerical Inversion Operator

Divide by correction factor:

Use truncated exponential:
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Numerical Inversion Operator Properties

Symmetry if f(t) is real:

Inversion is exact for constant function and powers of t < N.
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Laplace Transform Properties

Derivatives:

Constants:
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Filtering a Dynamical System

Take the Laplace transform over  :
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Filtered Forecast
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Simple Oscillation Equation



RPN Seminar13 May 2011

Filter Response
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Stability

Lynch (1986):

hoursthoursNExample c 8.16,8: ≤∆⇒== τ
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Applying the 

Laplace Transform Method 

to Shallow Water Models
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Shallow Water Equations

•Suitable testing framework for numerical methods

•Standard test cases used by modelling community

•Two models: Eulerian and semi-Lagrangian

Spectral models for efficient solution of Helmholtz equations 

•Testing against reference semi-implicit method
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Eulerian STSWM

� STSWM code: NCAR – Hack & Jakob (1992)

� Updated by ICON - http://icon.enes.org/

� Spectral transform method

� Centred time-differencing, semi-implicit scheme

� Test cases proposed by Williamson et al (1992)



RPN Seminar13 May 2011

Spectral Solution

Expand each field:
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Spectral Solution

Get system of ODEs for the spectral coefficients:
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Reference Semi-Implicit Scheme
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Laplace Transform Scheme
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LT SI

Comparing the Discretisations
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Test Cases: Williamson et al (1992)

Case 1: Advection of a cosine bell by constant winds

Case 2: Steady zonal flow

Case 5: Flow over an isolated mountain

Case 6: Rossby-Haurwitz wave
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Results

•Comparable accuracy and conservation with reference 

model

•In general, increasing number of points in inversion 

operator, N,  from 8 to 16 did not significantly improve 

accuracy
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Sample Results

Case 5
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Kelvin Waves

•Eigenfunctions of the linearised shallow water equations

•Dynamically important

•Semi-implicit methods slow down waves
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Phase Error Analysis

Oscillation equation:

Look for:

Numerical phase:

Relative Phase Change: 

R = (numerical) / (actual)
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Phase Error Analysis
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Semi-Lagrangian 

Shallow Water Model
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� Define the LT along  

a trajectory

� Then

Semi-Lagrangian Laplace Transform
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� Based on spectral SWEmodel (John Drake, ORNL)

� Compared with semi-Lagrangian semi-implicit 

SLSI

Semi-Lagrangian Laplace Transform 

SLLT
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Shallow Water Equations
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General evolution equation:

SLLT:

SLLT Discretisation
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SLSI Discretisations

SLSI:

SLSI SETTLS, (Hortal, 2002):
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Departure Point Calculations

� Two time level scheme

� Trajectories calculated in spherical coordinates

(Ritchie and Beaudoin, 1994)

� Bilinear interpolation when computing departure points

� Bicubic for model fields

� Extrapolation used for computing midpoint values
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Stability

SLSI: Require (Côté and Staniforth, 1988)

SLLT: Stability not dependent on



RPN Seminar13 May 2011

Sample Results

Case 5
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Symmetry

Can use symmetry in inversion operator:
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Efficiency
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Orographic Resonance
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� Spurious resonance from coupling semi-Lagrangian 
and semi-implicit methods

[reviewed in Lindberg & Alexeev (2000)]

� LT method has benefits over semi-implicit schemes

� Motivates investigating orographic resonance in 
SLLT model

Orographic Resonance
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� Linear analysis of orographically forced stationary 

waves, following Ritchie & Tanguay (1996)

� Numerical simulations with shallow water SLLT

� Results consistently show benefits of SLLT scheme

Orographic Resonance Analysis
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Linear Analysis: R = (Numerical)/(Analytic)

SLSI SLLT
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Test Case with 500hPa Data

� Initial data:

ERA-40 analysis of 12 UTC 12th February 1979

� Used by Ritchie & Tanguay (1996) and Li & Bates 

(1996)

� Running at T119 resolution
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SLSI: dt = 3600: Height at 24 hours

5040

5220

5400

5220

5040

5220

5400

5580

200 250 300 350
0

10

20

30

40

50

60

70

80



RPN Seminar13 May 2011

SLSI SETTLS: dt = 3600: Height at 24 hours
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SLLT: dt = 3600: Height at 24 hours
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Summary

and

Conclusions
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� LT method tested in the shallow water framework

� Comparable with reference semi-implicit schemes in terms 

of accuracy and stability

� Additional computational overhead, decreases with 

increasing resolution

� Advantages:

�Accurate phase speed

�No orographic resonance

Summary and Conclusions
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Next?

� Implementation in a full spectral baroclinic model; 

filtering benefits may be fully exploited

� Alternative formulations?



RPN Seminar13 May 2011

Next?

� Non-spectral model?


