A new observation operator for the variational assimilation of equivalent neutral scatterometer ocean surface wind vectors

Robert Tardif

Stéphane Laroche

ARMA, Meteorological Research Division **Mateusz Reszka, Judy St-James** CMDA, Meteorological Service of Canada

Canadian Meteorological Center April 8th 2011

Outline

- Overall context of research
 - Search And Rescue-New Initiative Funds (SAR-NIF) funded project
 - Specific **goals**
- Background on:
 - Scatterometry vs. ocean surface winds: Not really a real wind!!
- Improvements to scatterometer wind data assimilation
 - Surface wind variational data assimilation: concepts
 - New observation operator and its impact
- GEM short-term forecasts vs scatterometer comparisons [i.e. O-F]
 O What are they telling us about the model wind (stress)...

Context – SAR-NIF project

- Env. Can. and Dept. of Fisheries & Oceans (DFO) partnership
- Coordinated research & development efforts toward:

Context – <u>SAR-NIF</u> project

- Improving NWP ocean surface wind analyses & forecasts:
 - Operational implementation of Advanced SCATterometer (ASCAT) wind observations (completed in March 2009)
 - Improved quality control and thinning of observations + optimized observation error statistics (upcoming seminar by Mateusz Reszka)
 - Model-to-observation correspondence (nonlinear observation operator) & associated tangent linear + adjoint (TL/AD) for improved scatterometer wind data assimilation
 - Work performed in the context of the **Global Deterministic Prediction System** (GDPS) but developments **transferable to other systems**

Context – Usage of scatterometer winds

- Operationally assimilated in:
 - o Global 4D-var deterministic & EnKF ensemble forecast systems
 - Regional **3D-var** deterministic system
- Observations:
 - SeaWinds (on QuikSCAT)
 100-km winds
 - Assimilated from May 2008 to 23 Nov. 2009 (sensor failure)
 - ASCAT (on Metop-A)
 25-km winds
 - Thinned to ~100 km
 - Assimilated since
 March 31 2009...

Context- Impact of scatterometer winds

• Positive impact on atmospheric forecasts in S. Hemis.

Verification against 4D-var analyses (January 2009)

without scat.
 with scat. (SeaWinds+ASCAT)

Background on scatterometry

Scatterometry & ocean surface winds

The physics underlying the observations

8

Scatterometer wind retrievals

- Wind retrievals (provided by Royal Netherlands Meteorological Institute KNMI)
 - \rightarrow Backscatter (σ_{o}) to wind vector
 - → Empirical Geophysical Model Function (GMF)
 - → Derived from **collocated** radar **backscatter** and **buoy observations**

Retrievals calibrated as 10-m equivalent neutral winds

• Real (stability-dependent) wind profile

$$\begin{bmatrix} U(z) \\ V(z) \end{bmatrix} = \frac{u_*}{k} \begin{bmatrix} \ln(z/z_o + 1) + \psi_m((z + z_o)/L) - \psi_m(z_o/L) \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

log wind profile "Stability modification"
to log profile

• Equivalent neutral wind profile

$$\begin{bmatrix} U_{en}(z) \\ V_{en}(z) \end{bmatrix} = \begin{bmatrix} u_* \\ k \end{bmatrix} \left[\ln \left(\frac{z}{z_o} + 1 \right) \right] \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

 \rightarrow Relation with wind stress: $\tau = \rho_o \left| \vec{u_*} \right| \vec{u_*}$

Equivalent neutral wind profile

$$\begin{bmatrix} U_{en}(z) \\ V_{en}(z) \end{bmatrix} = \begin{bmatrix} u_* \\ k \end{bmatrix} \left[\ln \left(\frac{z}{z_o} + 1 \right) \right] \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

Friction velocity:

$$u_{*} = \frac{k\sqrt{(U(z))^{2} + (V(z))^{2}}}{\left[\ln\left(\frac{z}{z_{o}} + 1\right) + \psi_{m}\left(\frac{z + z_{o}}{L}\right) - \psi_{m}\left(\frac{z_{o}}{L}\right)\right]}$$

Ocean surface roughness length:

$$z_0 = C_{ch} \frac{u_*^2}{g}$$
 $C_{ch} = 0.018$

Stability-dependent or "real" vs. equivalent neutral wind profiles

Canada

Janada

12

- Difference between equivalent neutral & stability-dependent 10-m wind speed
- Average difference ≈ +0.2 m s⁻¹
- In accord with
 Portabella &
 Stoffelen (JAOT,09)
 Kara et al. (JGR, 98)

- But:
 - Dependence on surface layer stratification
 - Dependence on wind speed

Difference between equivalent neutral & stabilitydependent 10-m wind speed

Improvements to scatterometer wind data assimilation

Equivalent neutral observation operator

Scatterometer wind data assimilation: concepts

• Variational data assimilation: cost function to minimize (incremental formulation)

Observation operator – forward

Model-to-obs. correspondence (observation or "forward" operator) Difference between obs. (O) and model equivalent (F) = innovation [O-F]

'ETAGE

- Tangent linear & adjoint (TL/AD)
- **Differences in determination of increments**

Canada

18

- **Control variables** of **equivalent neutral** operator:
 - Surface layer **momentum turbulent transfer** (wind stress)
 - Controlling factors represented by Richardson number Ο

$$\Rightarrow \frac{z}{L} \sim Ri_{b} = \frac{g}{\overline{\theta_{v}}} \frac{\left(\theta_{v,z_{\text{mod}}} - \theta_{v,sfc}\right) z_{\text{mod}}}{\left(U_{z_{\text{mod}}}\right)^{2} + \left(V_{z_{\text{mod}}}\right)^{2}} \qquad \begin{array}{c} \text{buoyancy} \\ \text{vs.} \\ \text{wind shear} \end{array}$$

Control variables: \bigcirc Δ (U,V)H \mathbf{Z}_{mod} • (U,V) @ Z_{mod} wind shear • **θ**_v @ Z_{mod} θ_v @ surface (SST) Z_{mod} itself 10 m sfc

Canada

VS.

- "Complete" TL of operator
- Equivalent neutral wind perturbations:

$$\delta U_{EN} \left(10m \right) = \left(\frac{\partial U_{EN}}{\partial U_{\text{mod}}} \right) \delta U_{\text{mod}} + \left(\frac{\partial U_{EN}}{\partial V_{\text{mod}}} \right) \delta V_{\text{mod}} + \left(\frac{\partial U_{EN}}{\partial Z_{\text{mod}}} \right) \delta Z_{\text{mod}} + \left(\frac{\partial U_{EN}}{\partial \theta_{v,\text{mod}}} \right) \delta \theta_{v,\text{mod}} + \left(\frac{\partial U_{EN}}{\partial \theta_{v,\text{sfc}}} \right) \delta \theta_{v,\text{sfc}} + \left(\frac{\partial U_{EN}}{\partial \theta_{v,\text{sfc}}} \right) \delta \theta_{v,\text{sfc$$

Jacobian estimated w/ finite differences of NL (forward) operator output obtained by individually perturbing control variables (perturbation method)

Perturbations of 1x10⁻³ were found appropriate

20

- Increments on θ_v desirable? e.g. adjusting sfc layer stratification to adjust wind toward scat. obs.
 - Uncoupled system • SST ($\theta_{v.sfc}$) fixed (separate analysis)
 - Sensitivity projected only at upper level (z_{mod}): increments only on $\theta_{v,mod}$
 - Over-constrained problem...
 - Coupled atmosphere-ocean system (looking ahead...)
 - Availability of ocean background error statistics (on SST)
 - Allow estimation of atmosphereocean covariances
 - Increments on SST from scat. wind obs. operator possible ...

22

• "One observation" experiment – increment profiles

"One observation" experiments – increment profiles

Data assimilation experiments

- **3D-var F**irst-**G**uess at **A**ppropriate **T**ime (FGAT)
 - Adequate framework for assessing impact of **obs. operator**
- « Simplified » configuration
 - Feed from QC`d observations obtained from prior control cycle (ensures use of **identical data selection as in control experiment**)
 - Background check and QC-var disabled (faster execution)
 - Surface analyses from prior control cycle

• Control cycle: Based on currently operational configuration

- Operational surface layer operator (interpolation of gridded 10m diagnostics)
- Variational system v10.2.2, GEM v3.2.2
- Assimilated: RAOBs, aircraft, profilers, satwinds, ATOVS, GOES, GPS-RO, in situ surface, SeaWinds & ASCAT scatterometer winds
- Experiment: Introduction of new surface obs. operator (for scatterometer equivalent neutral winds)
- Test period: January 2009

Observation operator – impact (innovation)

• Average differences in [O-F] over January 2009

Environment Environnement Canada Canada

Observation operator – impact (analyses)

Impact on 3D-var analyses (mean differences over Jan. 2009)

difference = (new operator - control)

Observation operator – impact (forecasts)

Characterizing innovations

Model short-term forecasts vs. scatterometer observations

- Model equiv. neutral winds too strong over Gulf Stream & zone between Atlantic sub-tropical high and storm track
- Model equiv. neutral winds too strong in wind max. in SH storm track
- Equiv. neutral winds too weak over Kuroshio
- Equiv. neutral winds too weak around Atlantic sub-tropical high, but too strong in SH trade winds (Atlantic and E. Pacific)
- Meridional equiv. neutral winds too weak around ITCZ + tropical Indian Ocean

Short-term forecast errors w.r.t. scatterometer retrievals *confirmed* by comparison with in-situ obs.

Equatorial eastern Pacific obs vs. model (monthly average)

ASCAT obs.

Persistent weaker convergence around ITCZ

Equatorial eastern Pacific obs vs. model

ASCAT obs.

Better representation of convergence around ITCZ in analyses

(from assimilation of scat. winds!)

But persistent errors in model background indicate that information

provided by scat. winds partially **rejected** during subsequent 6-hr forecasts

Data assimilation vs. model

Summary

- New observation operator for:
 - Better representation of fundamental character of scat. observations (improved innovations)
 - Increments determined from representation of turbulent transfer sensitivities (TL/AD based on surface layer physics)
- Impact:
 - O Noticeable changes to analyses
 - O Has slight positive impact on medium-range forecasts
 - O Neutral for shorter-range forecasts
 - But also: provides for more accurate view on background (model) errors in surface wind stress over global ocean

Possible diagnostic to characterize boundary layer model errors

Concluding remarks

- Model vs. scatterometer observations
 - Distinct signals in model background errors over well-defined large areas. Most notably :
 - Model winds appear too strong in extra-tropical storm tracks (particularly in the unstable boundary layer over Gulf Stream)
 - O Lack of convergence around ITCZ in E. Pacific & Atlantic
- Assimilation of boundary layer observations ... a problem?
 - Information introduced in boundary layer by assimilation of scat. winds partially "rejected" during subsequent model short-term forecasts
 - This needs further attention to improve **model-obs. synergy**

Des questions?

