Mesoscale Ensemble Analysis and Prediction of High-Impact Weather

Yongsheng Chen

Department of Earth and Space Science and Engineering

redefine THE POSSIBLE.

Weather Impact

Each year, Americans cope with ...

90% of all presidentially declared disasters are weather related causing billions in damage !

Weather Impact

For Canadian ...

Ice storms

Snow blizzards

High-Impact Weather

- Weather phenomena that have significant impact on socio-economic well-being
- Moist processes are often very important
- Across multiple scales
 - Tropical cyclones
 - Mid-latitude cyclones
 - Convective storms
 - Heat, drought, and fire weather

Major Hurricane History Data from 1949 in the Pacific, from 1851 in the Atlantic

Image courtesy of NOAA

Hurricanes that Canada Remembered ...

- 1775 The Newfoundland Hurricane (also called the Independence Hurricane)
 - 4000 sailors, mostly from England and Ireland, were lost off the coast of Newfoundland
 - turning point in the American Revolution?

Hurricanes that Canada Remembered ...

• 1954 – Hurricane Hazel

 claimed the lives of 81 people in southern Ontario (mostly Toronto) from the flooding rainfalls

The Lawrence Avenue bridge was washed out by the Humber River

Hurricanes that Canada Remembered ...

• 2003 – Hurricane Juan

 50–100 million trees came down in Nova Scotia in two hours (one million in Halifax alone)

90% of the mature growth of Halifax's Point Pleasant Park came down

Hurricane Prediction Skills

Track

Intensity

Landsea and Lawrence (2004)

Key Issues in Hurricane Prediction

• Improve forecast skill

- Yearly-average 24-h track forecast error ~ 150 km
- Intensity forecast top-priority task for NHC
- Need advanced models & data assimilation method (making use of existing and future remotely sensed observations)

Advanced models

- High resolution -- less sub-grid scale parameterization
- Accurate physics microphysics, turbulence, surface waves, upper ocean feedback, ...

Better data assimilation method

- Weak correlations among variables in mesoscale
- Observations (e.g. Doppler radar) may be very dense locally, but usually not directly in model space

These also apply to other high-impact weather prediction!

What is Data Assimilation?

- A process to obtain an analysis (or estimate) of the atmospheric state at certain time, given
 - heterogeneous (in space and time) observations of some atmospheric quantities, and
 - additional information, such as climatology or previous forecasts,

according to physical laws, empirical or statistical rules.

Hand analysis is the original form of data assimilation. – Subjective and time consuming!

Objective Analysis

- Function fitting
- Successive corrections
- Statistical interpolation
- Variational methods (3DVAR, 4DVAR)
- Ensemble Kalman filter
 - Efficiently spreading flow-dependent information
 - "Effortless" use of nonlinear observation operators
 - Rapid prototyping for easy experimentation & tuning

Ensemble Kalman Filter

$$\overline{\mathbf{X}}^{a} = \overline{\mathbf{X}}^{f} + \mathbf{K}(\mathbf{y} - \mathbf{H}\overline{\mathbf{X}}^{f})$$

Analysis Forecast Correction

Kalman Gain K ~ Cov (X,HX)

can be computed directly from the ensemble

• Observation operator H: project X to y

y=vortex position
H=(find vortex position from X)

Assimilating Center Position – A Simple Example

+	prior mean center
0	observed center
dot	posterior mean center

Ensemble Analysis and Forecast System -- WRF/DART

- WRF -- Weather Research and Forecasting model
 - ARW dynamical core: non-hydrostatic, mass-coordinate
 - Two-way nesting and moving nests
 - Various physics packages
 - WRF-DA data assimilation system (3DVar, 4DVar, Hybrid)
- DART -- Data Assimilation Research Testbed
 - Ensemble adjustment filter
 - Parallel and model-independent implementation
 - Interfaces for several simple and complex models, including CAM and WRF
 - Observation operators implemented include conventional obs, GPS occultation, radar obs, and *satellite radiances* (with WRF-Var)
 - Updates multiple nests simultaneously
 - Covariance localization, adaptive inflation
- WRF/DART has been used to simulate tropical cyclones and convective storms, to produce regional re-analysis, etc.

Hurricane Analysis and Forecast Experiments using WRF/DART

- Ensemble initial and boundary conditions are generated by perturbing GFS analysis/forecast with WRF-Var error statistics
- Assimilated observations:
 - hurricane track (center position and minimum sea level pressure from NHC advisories)
 - conventional observations (radiosondes, surface obs, satellite winds, etc.)
 - GPS occultation
 - satellite radiances
- Perform a deterministic forecast (at the same or higher resolution) and ensemble forecasts initialized from the EnKF mean and ensemble analyses respectively, and compare with forecasts without data assimilation

Hurricane Katrina 2005

- Analysis: 36-km horizontal resolution, 26 ensemble members
- Assimilate position, intensity, and satellite winds every hour for a total of 12 hours
- Compare forecasts with 36-12km nested domains initialized from the EnKF analysis, WRF-3DVAR analysis and from the GFS forecasts.

Ensemble Forecast

 \sim

Ivan 2004 Sep., EnKF 36km

Impact of GPS Reflectivity Assimilation on Cyclogenesis

(Illustration courtesy Bill Schreiner UCAR, Broad Reach Engineering, and Orbital Sciences Corporation)

Low-level moisture change by assimilating GPS

2006-08-24-00Z (18h forecast)

Sat. IR

NO GPS GFS, Total Q Cloud [log(kg/kg)], 2006-08-24-00Z

GPS 1 GPS 1 sounding, Total Q Cloud [log(kg/kg)], 2006-08-24-00Z

2006-08-26-00Z (66h forecast)

Sat. IR

NO GPS GFS, Total Q Cloud [log(kg/kg)], 2006-08-26-00Z

GPS 1 GPS 1 sounding, Total Q Cloud [log(kg/kg)], 2006-08-26-00Z

2006-08-27-12Z (102h forecast)

Sat. IR

NO GPS GFS, Total Q Cloud [log(kg/kg)], 2006-08-27-12Z

GPS 1 GPS 1 sounding, Total Q Cloud [log(kg/kg)], 2006-08-27-12Z

Assimilating Radiance in DART

- Use existing radiance operator and bias correction in WRF-3DVar
- DART ingests precomputed observations
- Vertical localization centered at the height of peak levels of Jacobian from CRTM

Assimilating Radiance in DART

- Case study: Typhoon Morakot (2009)
- WRF: 45-15-5 km, 45 levels, Ptop=30hPa
- 64 members, 6-h cycling from 08/03 18Z – 08/08 00Z, assimilating conventional and microwave radiances from AMSU-A/B and MHS only in d01
- 72-h forecast initialized from the ensemble mean after each analysis

Impact of Radiance Assimilation

Radiance assimilation

- alters slightly track forecast
- improves intensity forecast

Hurricane Initialization -- Challenge

Hurricane Dean (2007)

Ensemble Forecast of 2009 Ontario Tornado Outbreak

- A record number of tornadoes occurred during this event – 18 in total
- 4 of these tornadoes were of F2 intensity

Credit: Jim Parsons

High-Resolution Ensemble Forecast

- Evaluate usefulness of high-resolution ensemble analysis and forecast in severe convective storm
- Use ensemble technique to assess the dynamics predictability and to study the dynamics of convective storm and its environment
- WRF ensemble: 27-9-3 km, 27 levels, 20 members, initialized from GFS analysis + GFS ensemble perturbations
- WRF deterministic: 27-9-3-1 km, initialized from GFS analysis

High-Resolution Simulation

Radar Obs, 2009/08/21/00Z

1km Deterministic 24-h f/c

High-Resolution Simulation

1km Deterministic 24-h f/c

Precipitation Rate (mm/hr) - Original Data 1km Grid

3km Deterministic 24-h f/c

Precipitation Rate (mm/hr) - Original Data 3km Grid 47N 100 46N 90 80 45N -70 44N 60 50 43N 40 42N-30 20 41N-10 α

BÓW

79W

78%

Grades: Collay/IBES

2010-08-01-0 GrADS: COLA/IEES

4DN-

39N

BÁW

830

ażw

2010-05-31-07:02

Ensemble members

Ensemble Mean

Precipitation Rate (mm/hr) - Original Data 1km Grid

GRADS: COLAVISES

2010-08-01-06:31 GrADS: COLA/ISES

2010-05-31-06:40

Summary

- EnKF can be used to build an effective convective weather initialization scheme to potentially improve the prediction
- Ensemble analysis and forecast can provide more information, not just in forecast, but also in dynamics
- Available tool is suitable for research and experimental real-time forecast