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*’W Outline

" |Introduction: The motivation for verification
research

= New methods in “pointwise” verification

= Spatial and scale-sensitive methods
= Types
= Examples

= Promoting “best practice” in verification

= This is a survey of methods: Is there something in
here that can be used to advantage at CMC/RPN?



Status and motivation for verification
research

+

“Verification activity has value only if the
iInformation generated leads to a decision about
the forecast orsystem being verified” (Murphy)

New emphasis on “User-oriented” verification
= Modelers

= Forecasters

= Hydrological community

= Specific users such as VANOC

Extremes (Rare events) (High Impact Weather)
For Ensemble Forecasts



“Traditional” methods

= Point-by-point matching of forecast and
observation

= Summary scores:

Continuous variable: (R)MSE, MAE, scatter plot, linear
bias
Categorical variable: Contingency tables and a whole

lot of related scores: ETS, POD, FAR, TS(CSI), HSS,
PSS(H-K)...

Probability forecast of a categorical variable
= BS, BSS and reliability, resolution components.
= Reliability diagram and the ROC

(Discrete) Probability distribution
= RPS, RPSS



Extensions to “traditional” verification

= For ensembles: The CRPS (Herzbach, 2000)
= Continuous form of the RPS

" |n practice is also discrete, with categories defined
by the ensemble member forecasts

= Measures the difference between the forecast cdf
and the observation, represented as a cdf —example

" For extremes:

= The extreme dependency score (EDS) and symmetric
EDS (SEDS)

= New score “SEEPS”



Probability Density

CRPS and CRPSS
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Extensions to “traditional” verification

= For ensembles: The CRPS (Herzbach, 2000)
= Continuous form of the RPS

" |n practice is also discrete, with categories defined
by the ensemble member forecasts

= Measures the difference between the forecast cdf
and the observation, represented as a cdf —example

" For extremes:

= The extreme dependency score (EDS) and symmetric
EDS (SEDS)

= New score “SEEPS”



High impact (severe) weather

EDS, EDI, SEDS, SEDI & Novelty measures!

Event observed

Event
forecast Yes No Marginal total
Yes a b a+b
"""" No | ¢ | d | c+d |
Marginal total a+c b+d a+b+c+d=n

EDS

_ logp—logH

~ logp+log H

SEDS

H =a/ (a+c), hit rate
F =b/(b+d), false alarm rate
p =(a+c)/n, base rate

q = (a+b) / n, relative frequency of
forecasted events

~ logg —log H
 logp+log H

Ferro & Stephenson, 2010: Improved verification measures for deterministic forecasts of

rare, binary events. Wea. and Forecasting (submitted)

Base rate independence <> Functions of H and F
~ log F' —log H
~log F +log H
_log F —log H —log(1 — F) +1log(1 — H)
~ log F +log H +log(l — F) + log(l — H)

EDI

SEDI

Extremal Dependency Index - EDI
Symmetric Extremal Dependency Index - SEDI




High impact (severe) weather

ECMWEF, 2003 - 2009: +42 hr (~ 100 stations)

1,0
=== PSS +42 hr eee ETS+42 hr
0,9 —eo— EDS +42 hr =0O= EDI +42 hr
0.8 — —e— SEDS +42 hr —e— SEDI +42 hr
._

>=0,3mm >=4,5mm >=10,0mm >=20,0mm >=30,0mm >=50,0mm

~ 70000 ~ 20000 ~ 6200 ~ 1200 ~ 280 ~ 20 cases



New score: SEEPS <~ Stable Equitable Error in
Probability Space

M.J. Rodwell et al., 2010: QJRMS, 136, 1344-1363.

- Derived from LEPS score < Linear Error in Probability Space

" Forecast error is measured in probability space using the climatological
cumulative distribution function

- At each observation location, the weather is partitioned into 3 categories: (i)
“dry” (ii) “light precipitation” (iii) “heavy precipitation”

= Long-term climatological precipitation categories at given SYNOP stations are
derived & Accounts for climate differences between stations

- Evaluates forecast performance across all 3 categories

- Stable to sample variations and observation error
< Good for detecting trends

- Gives daily scores < ldentifies a range of forecast errors, e.g.

- Failure to predict heavy large-scale precipitation; Incorrect location of
convective cells; Over-prediction of drizzle...

- Negatively oriented error measure < Perfect score =0 => 1 - SEEPS



Why spatial verification methods?

= Pointwise method specifies an exact match between forecasts
and observations at every point

" Problem of "double penalty" - \
event predicted where it did not )
occur, no event predicted where

it did occur 7
. BUtr more people. relceive d Hi res forecast Low res forecast
wrong forecast - is it really RMS ~ 4.7 RMS ~2.7
double POD=0, FAR=1 POD~1, FAR~0.7
TS=0 TS~0.3

= |dea is to diagnose patterns
predicted by models, especially
high res models, which may be
hindered by small scale noise




Spatial Method Intercomparison Project (ICP)

Weather and Forecasting special collection WAF, 2009 and 2010
= 13 papers on specific methods

= 2 overview papers

Methods applied by researchers to same datasets (precipitation; perturbed cases;
idealized cases)

Subjective forecast evaluations

Future variables and datasets
=  Wind
= Cloud
=  Timing errors

http://www.rap.ucar.edu/projects/icp/index.html


http://www.rap.ucar.edu/projects/icp/index.html

Spatial methods

= Types:

Neighbourhood: Look for feature in
vicinity rather than at specific
points (High resolution models
and ensembles)

Scale separation: Keep track of
scales represented by obs and
fcsts; partition scores according to
scale (“Seamless” verification?)

Feature-based methods:
Characterize features and verify the
characteristics (Forecaster-
oriented verification)

Deformation methods:
systematically deform and translate
features to get best match; track
statistics of differences. (Model
diagnostics?)

filtering
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Neighbourhood methods: Fractions skill score
(Roberts and Lean, 2008, MWR)

= We want to know
= How forecast skill varies with neighborhood size

= The smallest neighborhood size that can be can be used to
give sufficiently accurate forecasts

= Does higher resolution NWP provide more accurate
forecasts on scales of interest (e.qg., river catchments)

Compare forecast fractions
with observed fractions (radar)
In a probabilistic way over
different sized neighbourhoods

1 Fraction = 6/25 = 0.24 Fraction = 6/25 = 0.24
~ 2
NZ st NS obs? observed forecast



Fractions skill score (roberts and Lean, MWR, 2008)
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Presenting the results from the FSS

" Fractions skill score

Fraction=s skill score

FSS

0.20

0.as

.04

Spatial scale {km)

. DG 0.02

BRLY) 0,81

G.05 0.01

1 2 o 14 20 Sl
Thrashold ¢rmim)



Scale-separation methods
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Wavelet decomposition of the Brier Skill Score

Thanks to Barbara Casati



. <+ sparse obs
B. Casati’s Wavelet Analysis

hanks also to Vincent fortin and Marco Carrera +

[ g
ML)

Use 2D Harr Wavelets to represent e.g. {,- ++
Precipitation field from network of gauges : S

precipitation
signal

Main advantage: Keeps track of resolved +
Scales; for better matching of forecast and obs =

+—

— scale 1
1. Compute wavelet coefficients +
from sparse gauge obs scale 2
2. Reconstruct field as sum of +
components on different scales scale 3
. +
NOTE: no gauges = missing obs, . . scale 4

no dense gauge network = no
information on small scales, +

large scales only !

]
largest scale



Example: 6h acc (mm)
/" Aug 2003, 6:00 UTC
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| 3. Representativeness and forecast filtering

44.4
Izs.o
10.0

5.0

FORECAST T+6h

WAV REC OBS
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1.0 1.0

0.1 0.1

-0.0 0.0

No gauges = missing obs,
but forecast has features!

254
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2. Decompose forecast with
wavelets

3. Set to NA wavelet
coefficients where no obs

4. Reconstruct forecast field
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Confidence (uncertainty) mask
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skill score
0.0

energy squared

1
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5. Verification

on different scales, but only
where obs are available

-0.4

scale (km)

160 1280
scale (km)
.|
=== no skill
10 20 40 80 160 320 640 1280

1. Energy squared:
En?(X)=<X?>

Measures the quantity of
events and their intensity
at each scale => BIAS,
scale structure

2. MSE Skill Score:
~ MSE(Y,X)
En?(X)+En?(Y)

(related to correlation)




Feature-based approach (CRA)

Ebert and McBride, J. Hydrol., 2000

= Define entities using threshold (Contiguous Rain Areas)
= Horizontally translate the forecast until a pattern
matching criterion is met;

"= minimum total squared error between forecast and
observations

= maximum correlation
= maximum overlap

= The displacement is the vector difference between the
original and final locations of the forecast.

Observed Forecast



A error decomposition

al mean squared error (MSE)
MSE, .., = MSE

+ MSE + MSE

displacement volume pattern

The displacement error is the difference between the mean square error
before and after translation

MSE = MSE,,.,, — MSE,, .q

displacement

The volume error is the bias in mean intensity
MSE =(F-X)?

volume

F X "
where and are the mean forecast and observed values after shifting.

The pattern error, computed as a residual, accounts for differences in the
fine structure,

MSE

pattern

= MSE,t.q - MSE

volume



CRA verification of precipitation forecast over
USA

ST2mi_2005060100.g240.ixt  precip. vel. 1.2757 km® wri2cops_2005053100.9240.124.txt  precip. vel. 1.5230 km?*
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Analyzed rainfall

wrfd 24h fost 20050801 n=11007
(37.52°,—101.29°) to (45.29%,—94.65%)
Yerif, grid=0.042" CRA threshald=1.0 mm/h

Analysed  Ferecost

# gridpoints 21 mm/h 4540 5839
Avarage rainrate {mmfh] 1.52 2.68
bMaximurm rain (mmfhj 21.08 Z7.69
Rain velume (km?) 0.28 046

Displacement (E,M} = [0.52°,—0.84%] moaox.corr matching

Original Shifted
RS error (mm/d) 5,11 4,65
Carrelation cosfficient —0.040 2,193

Error Decomposition:
Oisplacernent error 18.7%
Yolume error 4.9%
Pattern error TH.4%




Sensitivity to rain threshold

wrfZ2 fost ZO0E0801 hour O0—24

~100 _

Analysis 20050601
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SAL (Wernli et al, MWR, 2008)

= 3 parameter characterization of field of objects
= Structure - Amplitude - Location
= Applied to precipitation

" (a) b) Als = o
0 A=0
mall L large

S>0 ¢ 4 _ Is=o

A>0 A=0

L medium L large
(e)

S>>0
A>>0
L medium

~r>W0n
@ o

Fic. 1. A schematic example of various forecast and observation combinations, modified from Davis et al.

(2006a). For the qualitative application of SAL, it was assumed that precipitation rates are uniform and the same
in all objects.



Diagnostic research using SAL — The Grey
Zone
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SAL for Midwest US precipitation case
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F1G. 4. Precipitation fields on 1 Jun 2005: {a) The observations and forecasts from the (b) 2CAPS, (c) 4NCAR, and (d) 4NCEP models.
The rectangles show the three domains used for the SAL analysis, referred to as the large (black line), and northernand southern domains
iboth red lines), respectively. The black plus sign denotes the center of mass of the precipitation in the large domain.



Towards proper verification practice: When or not
to use model-tainted observation data

= Data assimilation systems are designed to merge models and
data

= Verification: Ideally need data that are from completely
independent sources
= Verification against analysis

= Fine when only one model is involved, depending on user of
verification

= For comparison
= Each own analysis (WMO method)
= Verification against observations
= Model dependent too if model used in gc (WMO method)
= Remotely sensed data
= More complicated when models or ensembles are combined

= Use ensemble of analyses

= Randomly select analysis from among models in multimodel
ensemble

= Also for reanalysis data used as climatology



Verification results depend on analysis used

Ranked Probakility Skill Score
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Verification and the goals of TIGGE

= Goals:
= Enhance collaborative research
= Enable evolution towards GIFS
= Develop ensemble combination methods; bias removal

= Essential question: If we are going to move towards a
GIFS, then we must demonstrate that the benefits of
combined ensembles are worth the effort with respect
to single-center ensembles. OR: Do we get a “better”
pdf by merging ensembles?

= Verification — Relevant, user-oriented



European Precipitation Verification

-Upscaled observations
according to Cherubini
et al (2002)

-OBS from gauges in
Spain, Portugal, France,
Italy, Switzerland,
Netherlands, Romania,
Czech Republic, Croatia,
Austria, Denmark, UK,
Ireland, Finland and
Slovenia

-At least 9 stns needed
per grid box to estimate
average

-24h precip totals,
thresholds
1,3,5,10,15,20,25,30 mm

-one year (oct 07 to oct
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Observed relative frequency, 0,
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Observed relative frequency, 9,
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Hit Rate

Results — Canada — ROC curves — 24h
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Hit Rate

Results — Canada - ROC Curves — 144h
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ROC Area

ROC Area

With Ensemble Combination
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5th International Verification Methods Workshop
Melbourne, Australia, Dec 1-7 2011

-Anticipate joint SERA
participation, with overlap

-can accommodate 40 students

-similar format to previous: 3
day tutorial, one day break,
then 3 day scientific conference

View from break-out area



Summary

= Verification is becoming more user-oriented

= Extensions of standard verification methods to
ensembles and for extreme weather

= |ots of spatial verification methods proposed,

some are beginning to catch on in the broader
community

= Still striving for “best verification practices” in
the international community (and here too!)
* Model-tainted data
= Confidence intervals on verification results



ﬂThanks!




Workshop: New verification research

Spatial methods applied to:

Wind fields Ensemble forecasts
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http://www.space.fmi.fi/Verification2009/

Verification across space and time scales (a.k.a.
“seamless”)

Seamless verification
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Workshop: New verification research

Diagnostics Extremes

SEps — log [(a+b)n] + log [(a+c)n)] _
log (a/n)

ECMWF PPT24 +42hr, Finland, 120 stations, 2003-09 —Eis
10 ——EDS +42h
0.9 EDS' +42h
SEDS +42h
—PSS=KSS
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False alarm ratio

http://www.space.fmi.fi/Verification2009/
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Verification

Continuous Variable Error Analysis for Max Wind Speed (Gust)
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— REG
- LAM
— LAM1K WGE
@ RUCG6h
+ PERSISTENCE

3 _|
2.5

2

“»
1 5 N " & Y LK d
&”‘ o’~ 0:
1 - ‘0, 0“’ ‘~‘
» * 0‘ ¢

05 n 'S 'S . *

0 * ‘ * ‘ * ‘ *

00 03 06 09 12 15 18 21 00

Time of Day [UTC]




Aerosol Verification

FC-OBS Bias. Model {f93i) AOT at 550nm against L1.5 Aeronet AQOT at 500nm.
Meaned over 64 sites globally. Period=1-28 Feb 2010. FC start hrs=0Z.
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