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Outline

 Introduction: The motivation for verification 
research

 New methods in “pointwise” verification
 Spatial and scale-sensitive methods

 Types
 Examples

 Promoting “best practice” in verification

 This is a survey of methods: Is there something in 
here that can be used to advantage at CMC/RPN?



Status and motivation for verification 
research

 “Verification activity has value only if the 
information generated leads to a decision about 
the forecast or system being verified” (Murphy)

 New emphasis on “User-oriented” verification
 Modelers
 Forecasters
 Hydrological community
 Specific users such as VANOC

 Extremes (Rare events) (High Impact Weather)
 For Ensemble Forecasts



“Traditional” methods

 Point-by-point matching of forecast and 
observation

 Summary scores:
 Continuous variable: (R)MSE, MAE, scatter plot, linear 

bias
 Categorical variable: Contingency tables and a whole 

lot of related scores: ETS, POD, FAR, TS(CSI), HSS, 
PSS(H-K)…

 Probability forecast of a categorical variable
 BS, BSS and reliability, resolution components.
 Reliability diagram and the ROC

 (Discrete) Probability distribution
 RPS, RPSS



Extensions to “traditional” verification

 For ensembles: The CRPS (Herzbach, 2000)
 Continuous form of the RPS
 In practice is also discrete, with categories defined 

by the ensemble member forecasts
 Measures the difference between the forecast cdf 

and the observation, represented as a cdf –example
 For extremes: 

 The extreme dependency score (EDS) and symmetric 
EDS (SEDS)

 New score “SEEPS”



CRPS and CRPSS

CRPSS=
CRPS STD−CRPSFCST 

CRPSSTD

CRPS=∫
−∞

∞

P fcst  x −Pobs x 
2
dx
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Final Report - TAC Subgroup on Verification Measures - 7 Oct 2010

High impact (severe) weather

 EDS,  EDI,  SEDS, SEDI   Novelty measures!

Extremal Dependency Index ­ EDI
Symmetric Extremal Dependency Index ­ SEDI

Ferro & Stephenson, 2010:  Improved verification measures for deterministic forecasts of 
rare, binary events. Wea. and Forecasting (submitted)
Base rate independence  Functions of H and F
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High impact (severe) weather
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-    M.J. Rodwell et al., 2010: QJRMS, 136, 1344-1363.

- Derived from LEPS score  Linear Error in Probability Space
 Forecast error is measured in probability space using the climatological 

cumulative distribution function

- At each observation location, the weather is partitioned into 3 categories: (i) 
“dry”  (ii) “light precipitation”  (iii) “heavy precipitation”
 Long-term climatological precipitation categories at given SYNOP stations are 

derived  Accounts for climate differences between stations

- Evaluates forecast performance across all 3 categories

- Stable to sample variations and observation error
 Good for detecting trends

- Gives daily scores  Identifies a range of forecast errors, e.g.
- Failure to predict heavy large-scale precipitation;  Incorrect location of 

convective cells;  Over-prediction of drizzle...

- Negatively oriented error measure  Perfect score =0  => 1 - SEEPS

New score: SEEPS  Stable Equitable Error in 
Probability Space



Why spatial verification methods?

 Pointwise method specifies an exact match between forecasts 
and observations at every point

Hi res forecast
RMS ~ 4.7
POD=0, FAR=1
TS=0

Low res forecast
RMS ~ 2.7
POD~1, FAR~0.7
TS~0.3

10 10 103
fcst obs fcst obs

 Problem of "double penalty" - 
event predicted where it did not 
occur, no event predicted where 
it did occur

 But, more people receive a 
wrong forecast – is it really 
double

 Idea is to diagnose patterns 
predicted by models, especially 
high res models, which may be 
hindered by small scale noise

10 10
fcst obs



Spatial Method Intercomparison Project (ICP)

 Weather and Forecasting special collection WAF, 2009 and 2010

 13 papers on specific methods 

 2 overview papers

 Methods applied by researchers to same datasets (precipitation; perturbed cases; 
idealized cases)

 Subjective forecast evaluations
 Future variables and datasets

 Wind

 Cloud

 Timing errors

http://www.rap.ucar.edu/projects/icp/index.html 

http://www.rap.ucar.edu/projects/icp/index.html


Spatial methods

 Types:
 Neighbourhood: Look for feature in 

vicinity rather than at specific 
points (High resolution models 
and ensembles)

 Scale separation: Keep track of 
scales represented by obs and 
fcsts; partition scores according to 
scale (“Seamless” verification?)

 Feature-based methods: 
Characterize features and verify the 
characteristics (Forecaster-
oriented verification)

 Deformation methods: 
systematically deform and translate 
features to get best match; track 
statistics of differences. (Model 
diagnostics?)



Neighbourhood methods: Fractions skill score 
(Roberts and Lean, 2008, MWR)

 We want to know
 How forecast skill varies with neighborhood size
 The smallest neighborhood size that can be can be used to 

give sufficiently accurate forecasts
 Does higher resolution NWP provide more accurate 

forecasts on scales of interest (e.g., river catchments)

Compare forecast fractions 
with observed fractions (radar) 
in a probabilistic way over 
different sized neighbourhoods

FSS=1−

1
N∑

i=1

N

P fcst−Pobs
2

1
N∑

i=1

N

P
fcst2

1
N∑

i=1

N

P
obs2 observed forecast



Fractions skill score  (Roberts and Lean, MWR, 2008)

fo=domain obs fraction



Presenting the results from the FSS

 Fractions skill score

FSS



Scale-separation methods

Wavelet decomposition of the Brier Skill Score

Thanks to Barbara Casati



  

1. Compute wavelet coefficients 
from sparse gauge obs

2. Reconstruct field as sum of 
components on different scales

NOTE: no gauges = missing obs, 
no dense gauge network = no 
information on small scales, 
large scales only !

scale 1

scale 3

scale 2

scale 4

largest scale

precipitation 
signal

     sparse obs

=

+

+

+

+

B. Casati’s Wavelet Analysis
Thanks also to Vincent fortin and Marco Carrera

Use 2D Harr Wavelets to represent e.g.
Precipitation field from network of gauges

Main advantage:  Keeps track of resolved 
Scales; for better matching of forecast and obs



  

Example: 6h acc (mm)
27th Aug 2003, 6:00 UTC 

WAV RECONSTRUCTED OBS

GAUGES OBSERVATIONS

ANALYSIS

 Account for existence spatial 
structures on different scales

 Account for gauge network 
density

 Value at station location is 
equal to gauge value 



  

FORECAST   T+6hWAV REC OBS

No gauges = missing obs, 
but forecast has features!

2. Decompose forecast with 
wavelets 

3. Set to NA wavelet 
coefficients where no obs 

4. Reconstruct forecast field

WAV REC FORECAST

3. Representativeness and forecast filtering



  

Confidence (uncertainty) mask

For each scale (e.g. 160 km resolution scale) provide 
confidence/uncertainty associated to reconstructed fields

large number of gauges  confidence
small number of gauges  uncertainty



  

5. Verification
on different scales, but only 
where obs are available

1. Energy squared:

       En2(X)=<X2>

Measures the quantity of 
events and their intensity 
at each scale => BIAS, 
scale structure

2. MSE Skill Score:

(related to correlation)

1−
MSE Y,X 

En2X +En2Y 



Feature-based approach (CRA)
Ebert and McBride, J. Hydrol., 2000

 Define entities using threshold (Contiguous Rain Areas)

 Horizontally translate the forecast until a pattern 
matching criterion is met:
 minimum total squared error between forecast and 

observations 

 maximum correlation

 maximum overlap

 The displacement is the vector difference between the 
original and final locations of the forecast.

Observed Forecast



CRA error decomposition
Total mean squared error (MSE)

 MSEtotal = MSEdisplacement + MSEvolume + MSEpattern

The displacement error is the difference between the mean square error 
before and after translation

MSEdisplacement  =  MSEtotal – MSEshifted

The volume error is the bias in mean intensity

where     and     are the mean forecast and observed values after shifting.

The pattern error, computed as a residual, accounts for differences in the 
fine structure,

MSEpattern = MSEshifted - MSEvolume

MSEvolume=F−X 2

XF



 CRA verification of precipitation forecast over 
USA
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2nd CRA



Sensitivity to rain threshold

1 mm h-1

10 mm h-1

5 mm h-1

1 mm h-1

5 mm h-1

10 mm h-1



SAL (Wernli et al, MWR, 2008)

 3 parameter characterization of field of objects
 Structure – Amplitude – Location
 Applied to precipitation



Diagnostic research using SAL – The Grey 
Zone

Courtesy Jeanette Onvlee



SAL for Midwest US precipitation case



Towards proper verification practice: When or not 
to use model-tainted observation data

 Data assimilation systems are designed to merge models and 
data

 Verification: Ideally need data that are from completely 
independent sources

 Verification against analysis
 Fine when only one model is involved, depending on user of 

verification
 For comparison

 Each own analysis (WMO method)
 Verification against observations

 Model dependent too if model used in qc (WMO method)
 Remotely sensed data

 More complicated when models or ensembles are combined
 Use ensemble of analyses
 Randomly select analysis from among models in multimodel 

ensemble
 Also for reanalysis data used as climatology



Verification results depend on analysis used

Park et al 2008



Verification and the goals of TIGGE

 Goals:
 Enhance collaborative research
 Enable evolution towards GIFS
 Develop ensemble combination methods; bias removal

 Essential question: If we are going to move towards a 
GIFS, then we must demonstrate that the benefits of 
combined ensembles are worth the effort with respect 
to single-center ensembles.  OR: Do we get a “better” 
pdf by merging ensembles?

 Verification – Relevant, user-oriented 



European Precipitation Verification

-Upscaled observations 
according to Cherubini 
et al (2002)

-OBS from gauges in 
Spain, Portugal, France, 
Italy, Switzerland, 
Netherlands, Romania, 
Czech Republic, Croatia, 
Austria, Denmark, UK, 
Ireland, Finland and 
Slovenia

-At least 9 stns needed 
per grid box to estimate 
average

-24h precip totals, 
thresholds 
1,3,5,10,15,20,25,30 mm

-one year (oct 07 to oct 
08



Reliability – Winter 07-08 – Europe – 114h



Reliability – Summer 08- Europe 114 h



Results – Canada – ROC curves – 24h
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Results – Canada – ROC Curves – 144h
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With Ensemble Combination



5th International Verification Methods Workshop
Melbourne, Australia, Dec 1-7 2011

View from break-out area

-Anticipate joint SERA 
participation, with overlap

-can accommodate 40 students

-similar format to previous: 3 
day tutorial, one day break, 
then 3 day scientific conference



Summary

 Verification is becoming more user-oriented
 Extensions of standard verification methods to 

ensembles and for extreme weather
 Lots of spatial verification methods proposed, 

some are beginning to catch on in the broader 
community

 Still striving for “best verification practices” in 
the international community (and here too!)
 Model-tainted data
 Confidence intervals on verification results



Thanks!



Workshop: New verification research

Spatial methods applied to:

http://www.space.fmi.fi/Verification2009/ 

Wind fields Ensemble forecasts

http://www.space.fmi.fi/Verification2009/


Verification across space and time scales (a.k.a. 
“seamless”)

Seamless verification
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Workshop: New verification research

http://www.space.fmi.fi/Verification2009/ 

ExtremesDiagnostics

False alarm ratio
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Continuous Variable Error Analysis for Relative Humidity at CYVR:
December 1, 2009 - March 31, 2010
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Verification

Continuous Variable Error Analysis for Max Wind Speed (Gust) at CYVR:
December 1, 2009 - March 31, 2010
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Aerosol Verification


