

nt Environnement Canada

UMOS-AQ

Updatable Model Output Statistics – Air Quality

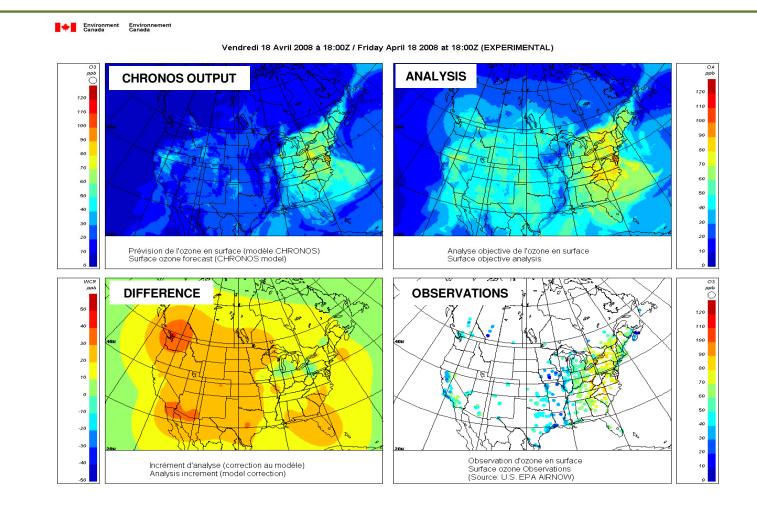
Description, Verifications and Future developments

Stavros Antonopoulos, Pierre Bourgouin, Gérard Croteau, Jacques Montpetit CMC, Weather Elements Section

April 2010

Overview

- Introduction
 - Motivation _
 - Why Statistical Post Processing ?
 - Why UMOS ?
- Predictands
- Predictors
- Observations
 - Sites, Dataflow
- Project history •
- Air Quality Model
 - CHRONOS vs. GEM-MACH15
- Verifications •


Canada

- Scores
- Contingency tables
- Special cases Emissions update ۲
- Conclusions & Future work

Motivation: Models have errors

Environment Environnement Canada Canada Canada

Why Statistical post-processing?

- Can compensate for models' inherent systematic errors
- Take into account scales and phenomena not yet resolved by dynamical models
- Possibility of probabilistic forecasts
- Generate output (predictands) that may not exist directly in model's output (e.g. 8hrs avg. [O3], AQHI index, etc.)
- Can be used for Quality Control of direct model output
- Possibility of combining different sources of information (e.g. chemistry model, meteorological model, physical variables, etc.)

Why UMOS ?

- UMOS is a post-processing system that utilizes the model's predictors and can follow its evolution (Updatable MOS)
- In operational status at CMC since 1995 for meteorological predictands
- Presently forecasting: TT, POP6, POP12, Wind speed and direction, Cloud Opacity

UMOS-AQ overview

- Based on the UMOS system used for weather elements but using different driving models, predictors, predictands and observation sets
- Equations are recalculated four times a month
- Model dependent: Equations must be recalculated for every model change
- Two types of statistical techniques can be used: MLR (Multivariate Linear Regression) and MDA (Multiple Discriminant Analysis)
- Has two seasons (summer/winter) with a transitional period of approximately six weeks

Caveats

Canada

- Not very easy to modify in order to perform various experiments
- Can be time consuming to add a new predictand ۲
- May require retraining for significant model change ۲
- Uses linear statistics and therefore may not be ideal at forecasting • extreme events (air quality episodes)

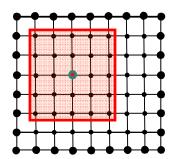
Predictands: What are we forecasting ?

Hourly concentrations of O₃, PM₂₅ and NO₂

Reasons:

- Availability of observations
- Required for Air Quality Health Index (AQHI) calculations

$$AQHI_{2.5} = \frac{10}{10.4} * \left[100 * \left(\left(e^{0.000871*NO_2} - 1 \right) + \left(e^{0.000537*O_3} - 1 \right) + \left(e^{0.000487*PM 2.5} - 1 \right) \right) \right]$$


Predictors: What do we use to forecast?

Persistence plus a total of 84 predictors in 3 main categories:

Meteorological: UU, VV, HR, GZ, ES, Calculated Mixing Height, etc., at various levels.

Chemical:

O3, NO2, PM25 at SFC, Max and Avg values over the lower vertical levels (~500m) and "neighbor sampling" (n=2)

Physical parameters: Solar flux, Sine of Julian Day, etc.

Canada

 \succ

Predictors: equations

- UMOS generates one equation per station, per pollutant, per season, per forecast hour, per run.
- In order to have stable equations we need to accumulate a minimum of 250+ cases.
- System has been calibrated so that <u>on average</u> there are 2-5 predictors per equation in order to avoid "over-fitting".

Predictor selection example: Ozone Summer 2009

17843 equations with and without persistence (~180 stations x 2 sets x 49 hrs)

Total	Element	Description
7042	015192	OZONE IN BOUNDARY LAYER (PPB)
5067	059053	DEW POINT DEPRESSION, SIGMA/ETA=1
4564	048206	O3: SPATIAL SFC SIGMA/ETA=1 (PPB)
2788	059055	DEW POINT DEPRESSION 925 HPA
2757	059124	WIND SPEED (SS(SIGMA/ETA=1))
2616	059126	WIND SPEED (SS(925))
2414	048192	O3: SFC SIGMA/ETA=1 (PPB)
2370	059183	MODEL BOUNDARY LAYER HEIGHT
2013	004211	SINE OF JULIAN DAY [(2piXJD/365)]
1629	012237	DEW POINT TEMPERATURE, SIGMA/ETA=1
1275	048208	O3: SPATIAL MAX LWR LVLS LAST 6H (PPB)
1201	059127	WIND SPEED (SS(850))
1172	059018	GEOPOTENTIAL HEIGHT, 700 HPA
1111	059045	NORTH-SOUTH WIND COMPONENT, VV700
1068	014222	DOWNWARD SOLAR FLUX

...etc.

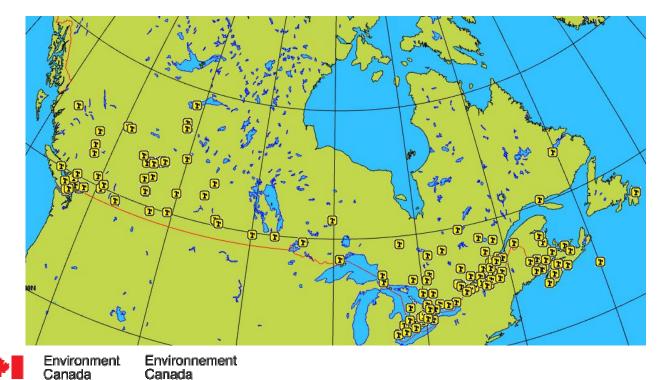
Canada

Observations

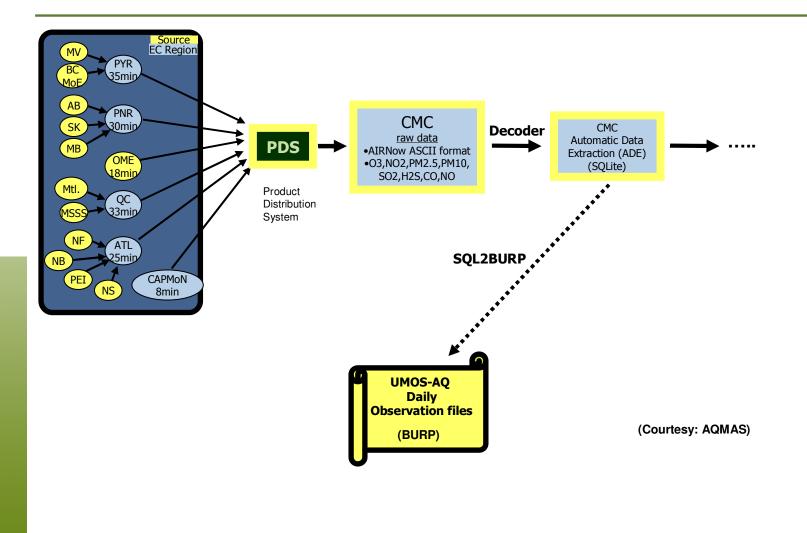
- Observations network still in its infancy
- Difficulties collecting initial training data
- Missing observations occur often
- No rigorous quality control in place

Since July 2007:

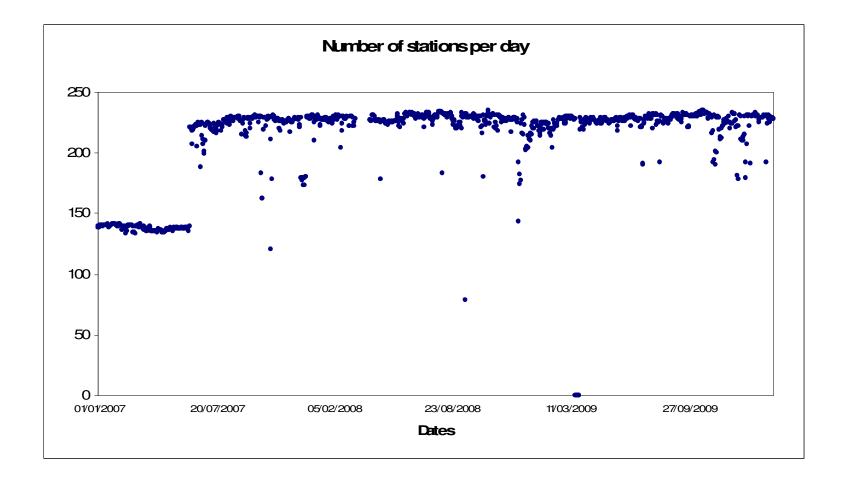
- National database
- All measuring stations are members of the National Air Pollution Surveillance Network (NAPS)
- Not all measuring stations report all predictand values
- Quality control of observations from near real-time to yearly

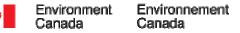


Observations: sites


Total stations in UMOS-AQ Dictionary: 231

- O3 is reported hourly by ~ 180 stations
- PM25 is reported hourly by ~ 170 stations
- NO2 is reported hourly by ~ 130 stations
- All three pollutants: ~ 85 stations


Canada


Observations: Dataflow

Observations: Daily distribution

Project history

Phase 1 - 2008

- Two predictands: [O3], [PM25]
- 3-hourly forecasts
- Two different models: CHRONOS + GEM Regional
- Two daily runs (00Z and 12Z)
- 48hrs forecast
- Database: Approx. 3 years (2007 2009)

Phase 2 - spring 2009

- Added [NO2] as a predictand
- Model: GEM-MACH15
- Cloned the 3-hourly SSCP matrices to produce hourly forecasts
- Performed a model switchover on July 2009 with approximately 100 hindcast cases from the new model (GEM-MACH15)

CHRONOS vs GEM-MACH15

	CHRONOS	GEM-MACH15			
Resolution:	21Km 15km (45% of GEM's grid points)				
Time step	3600s (Chemistry)	900s (Chemistry) and 450s (Meteorology)			
Chemical Processes					
Vertical Levels	24 Gal-Chen levels up to 6km	58 Hybrid levels up to ~60km (0.1hPa)			
Meteorology	Interpolated from GEM15	Own Physics and Dynamic packages – almost identical to GEM15			
Emission fields	2000 (Can) – 2001 (US) (corrected for 2005 regulations)	2005 (US) and 2006(Can)			

- In general GEM-MACH15 performs slightly better
- From a statistical point of view, the two models have different characteristics!

Model switchover

- During the transition period towards a full GEM-MACH15 equation set (250 cases per season), UMOS-AQ utilizes the old model's (CHRONOS) accumulated cases in addition to the newly developed matrices (SSCP.1) from the new model.
- The total number of accumulated cases varies and depends on the station, season, predictand and forecast hour.
- On <u>average</u>, for the previous model statistics, over a 2 year period and all forecast hours we have the following:

CHRONOS Accumulated cases (SSCP.2)										
	Summer Winter									
03	505	408								
PM25	470	380								
NO2	432	325								

Verifications: Hourly forecasts of O3, PM25 and NO2

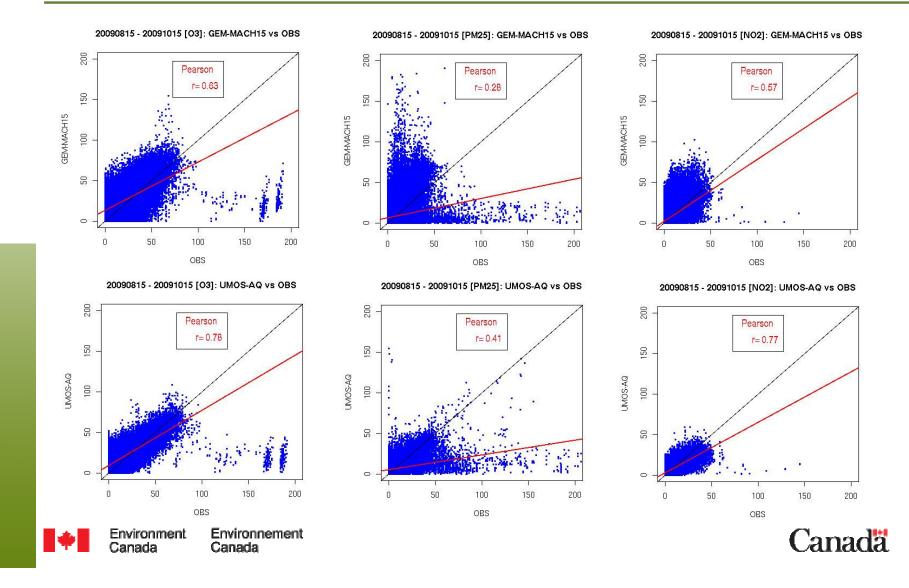
Periods:

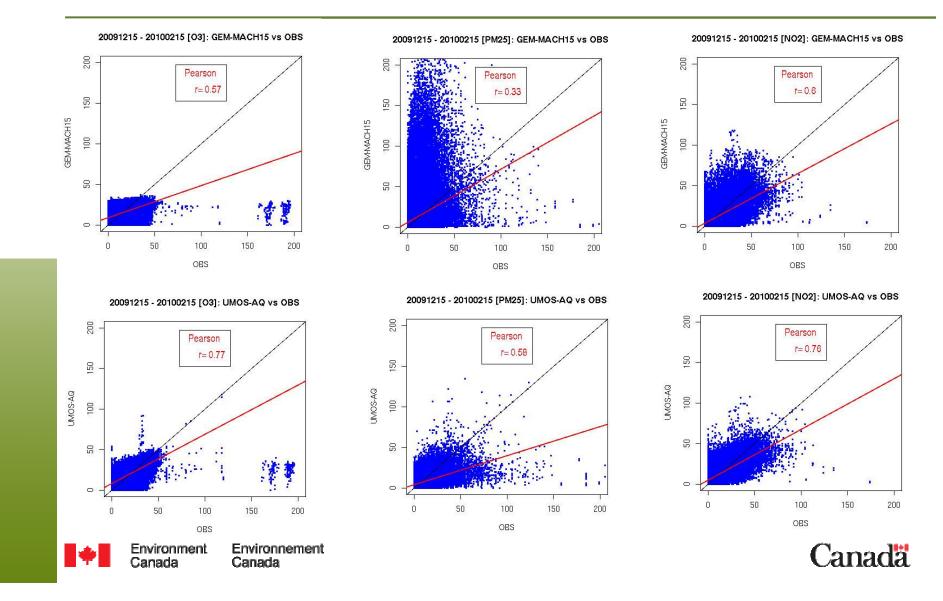
Summer (60 days): 15th August 2009 – 15th October 2009, 00Z and 12Z

Winter (60 days):

15th December 2009 – 15th February 2010, 00Z and 12Z

- \succ Verification data are based on independent samples generated on a pseudo-operational setting
- \geq Scores are generated for all stations together and some individual representative ones:


Vancouver International Airport Edmonton Central **Toronto Downtown** Aeroport de Montreal 1 Winnipeg Halifax - Lake Major


Canada

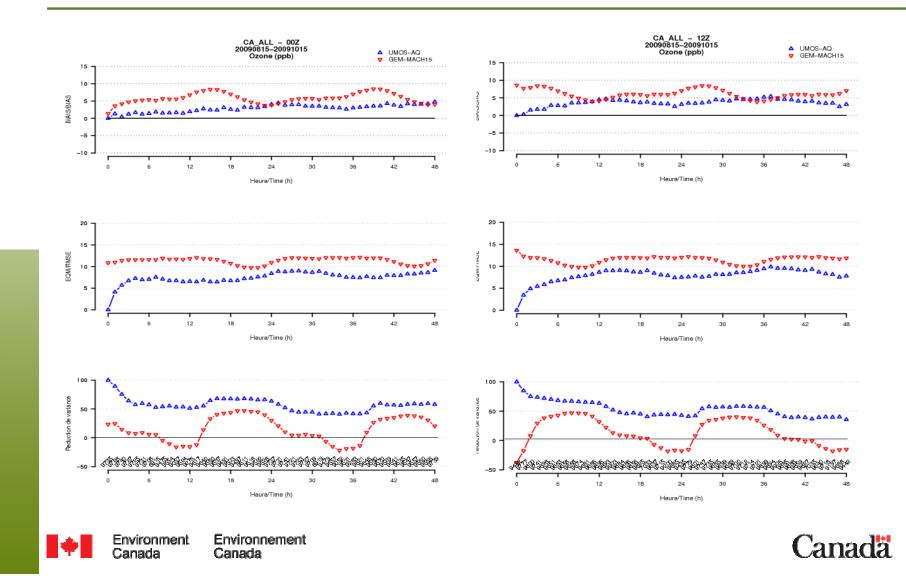
Verifications: Scatter plots – Summer 2009 (~460K cases)

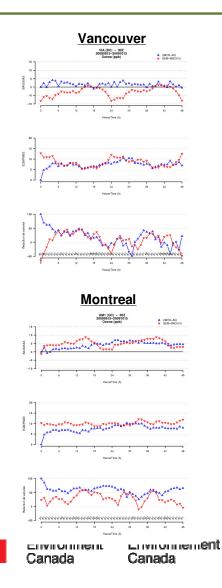
Verifications: Scatter plots – Winter 2009-2010 (~430K cases)

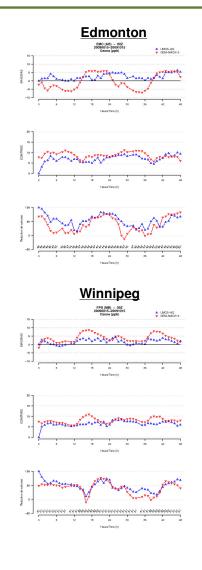
Verifications: Scores

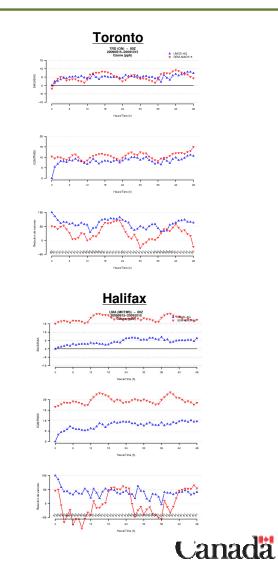
$$BIAS = \frac{1}{N} \left[\sum_{i=1}^{N} \left(F_i - O_i \right) \right]$$

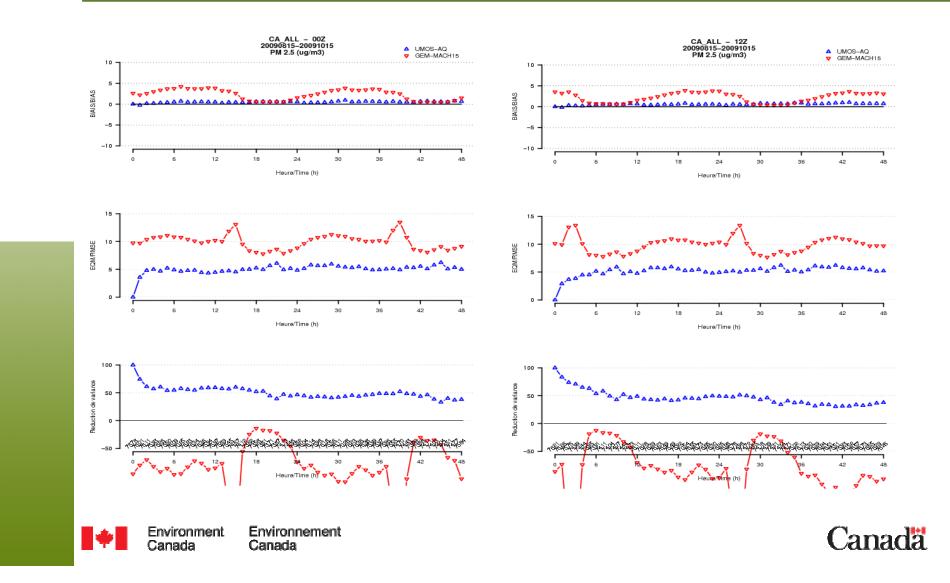
$$RMSE = \left[\frac{1}{N}\sum_{i=1}^{N} (F_i - O_i)^2\right]^{1/2}$$

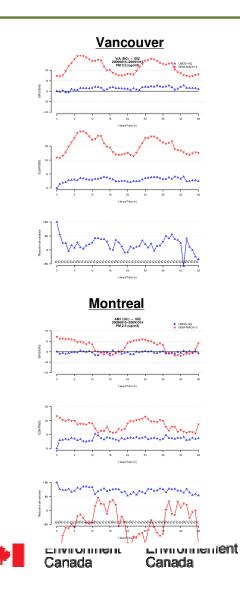

$$RV_{cmc} = (1 - \left[\frac{\sum_{i=1}^{N} (F_i - BIAS - O_i)^2}{\sum_{i=1}^{N} (\overline{O} - O_i)^2}\right]) * 100\%$$

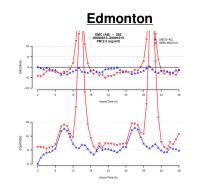

Environment Environnement Canada Canada

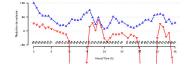


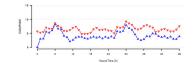

Verifications [O3], All stations Summer, 60 days [2009-08-15, 2009-10-15] 00Z and 12Z, Pseudo-operational mode

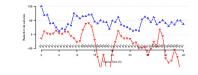

Verifications [O3] – Various stations Summer, 60 days [2009-08-15, 2009-10-15] <u>Pseudo-operational mode</u>

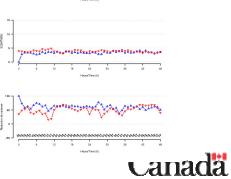


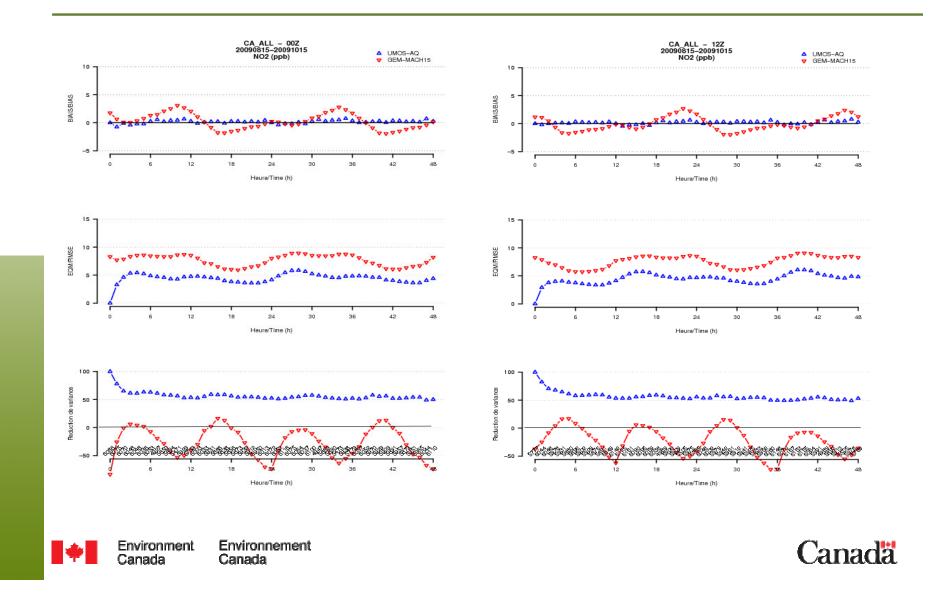



Verifications [PM25], All stations Summer, 60 days [2009-08-15, 2009-10-15] 00Z and 12Z, Pseudo-operational mode

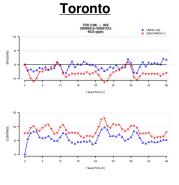

Verifications [PM25] – Various stations Summer, 60 days [2009-08-15, 2009-10-15] <u>Pseudo-operational mode</u>

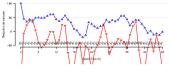


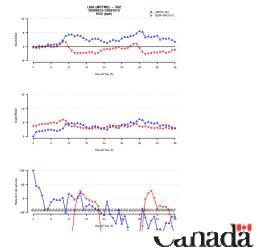


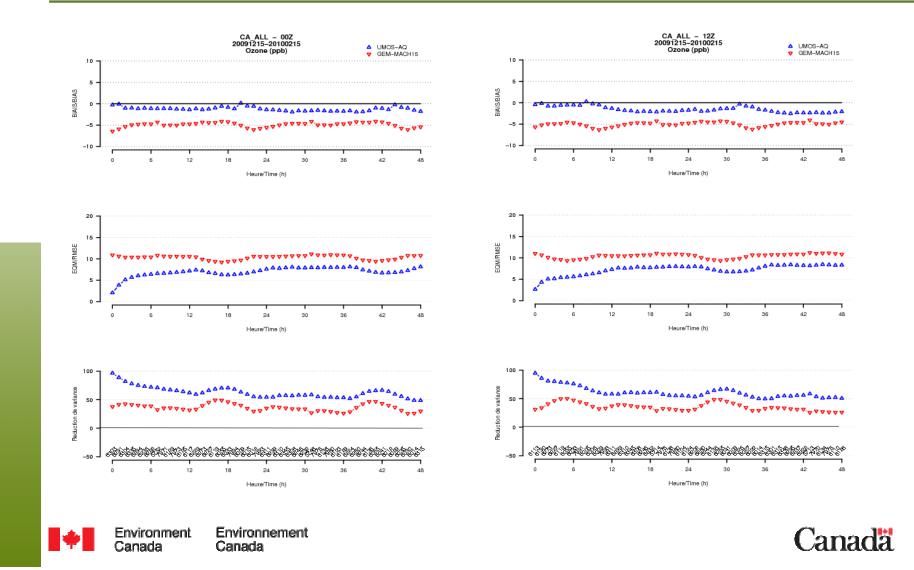




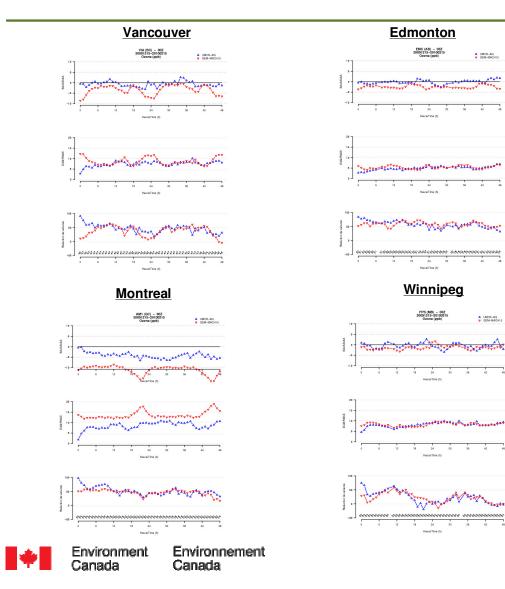


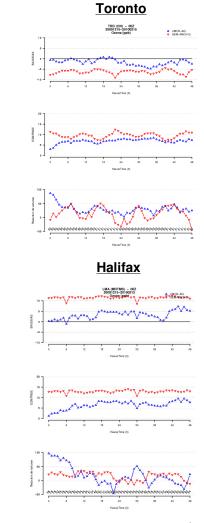

Verifications [NO2], All stations Summer, 60 days [2009-08-15, 2009-10-15] 00Z and 12Z, Pseudo-operational mode


Verifications [NO2] – Various stations Summer, 60 days [2009-08-15, 2009-10-15] <u>Pseudo-operational mode</u>



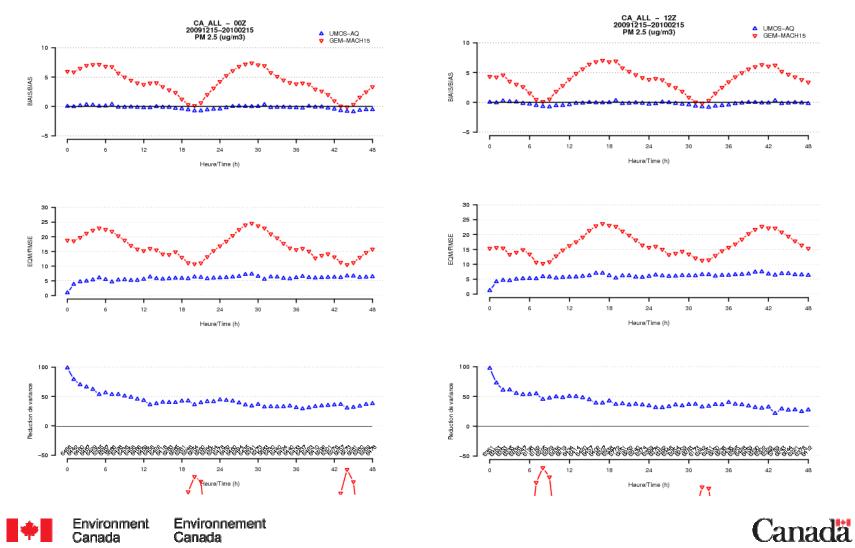
<u>Halifax</u>

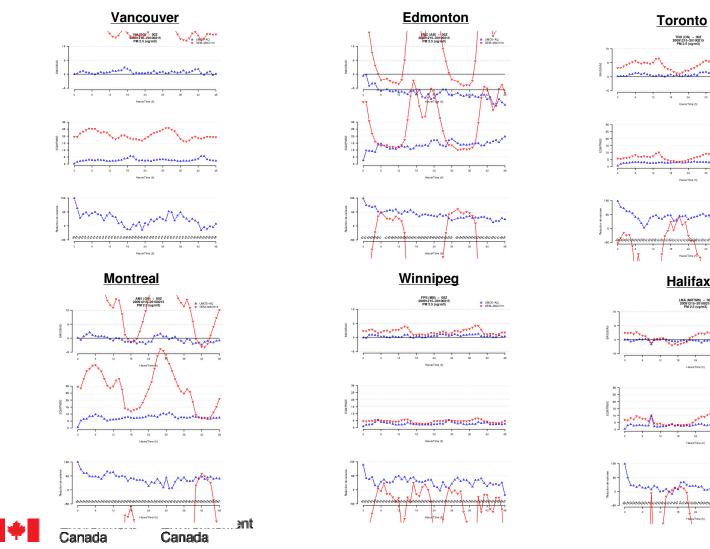

Verifications [O3], All stations Winter, 60 days [2009-12-15, 2010-02-15] 00Z and 12Z, Pseudo-operational mode

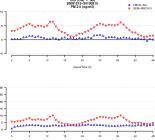


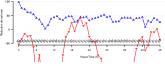
Verifications [O3] – Various stations Winter, 60 days [2009-12-15, 2010-02-15] 00Z and 12Z, Pseudo-operational mode

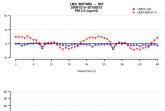
CIMOS-AQ

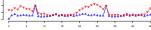

UMOS-AQ
GEM-MACH15

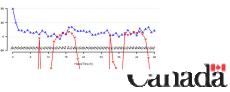


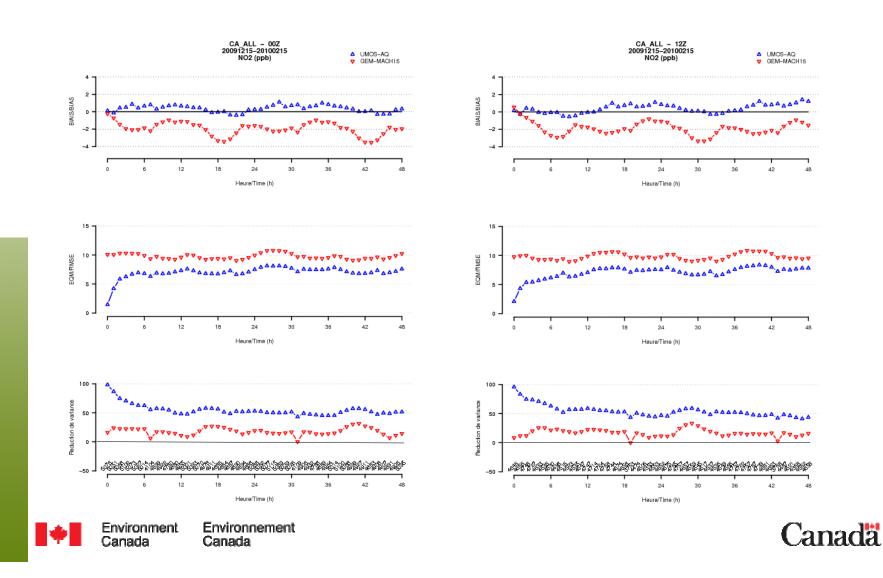


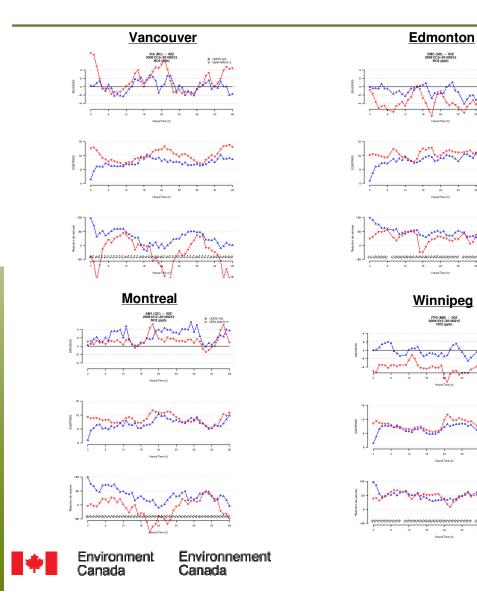

Verifications [PM25], All stations Winter, 60 days [2009-12-15, 2010-02-15] 00Z and 12Z, Pseudo-operational mode

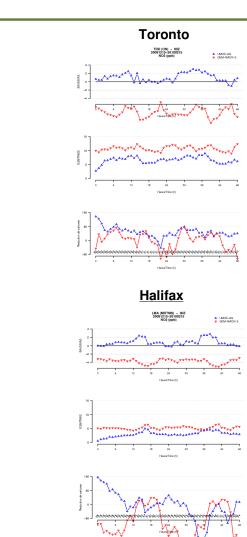

Verifications [PM25], Various stations Winter, 60 days [2009-12-15, 2010-02-15] 00Z and 12Z, Pseudo-operational mode






Halifax


Verifications [NO2], All stations Winter, 60 days [2009-12-15, 2010-02-15] 00Z and 12Z, Pseudo-operational mode



Verifications [NO2] – Various stations Winter, 60 days [2009-12-15, 2010-02-15] 00Z and 12Z, Pseudo-operational mode

LMOS-AQ
 GEM-MACH15

UMOS-AQ
 GEM-MACH15

Canadä

Contingency tables

Three categories used in order to evaluate performance in "low", "medium" and "high" values.

O3 : [0, 40] (40, 80] (> 80) PM25: [0, 15] (15, 30] (> 30) NO2 : [0, 15] (15, 30] (> 30)

The scores used are:

- ✓ Hit Rate
- ✓ False Alarm Ratio (FAR)
- ✓ Critical Success Index (CSI)
- ✓ Percent Correct (PC)
- ✓ Heidke Skill Score (HSS)
- All scores are almost identical between the 00Z and 12Z runs, therefore we only show the 00Z in the following tables.

Contingency table: O3, Summer/Winter

(<u>UMOS-AQ</u> vs. <u>GEM-MACH15</u>)

O3 : 20090815-20091015 00Z, UMOS-AQ vs. GEM-MACH15							O3 : 20091215-20100215 00Z, UMOS-AQ vs. GEM-MAC						
		FCST						FCST					
ŀ		[0-40]	(40 - 80]	> 80	Totals			[0-40]	(40 – 80]	> 80	Totals		
	[0 – 40]	429037	10515	4	439556			383758	1163	3	38492		
		411435	28102	19	<mark>439556</mark>		[0-40]	384924	0	0	3849		
	[40 – 80]	6809	17222	54	24085			8068	1563	0	96		
OBS l	[40 - 80]	7165	16602	318	24085	OBS	[40 – 80]	9631	0	0	96		
	\$ 90	45	51	4	100			16	6	4			
	> 80	47	51	2	100		> 80	26	0	0			
	Totals(um)	435891	27788	62	463741		T - 4 - 1 - ()		0700	7			
	Totals(um) Totals(dm)	433891 418647	44755	62 339	403/41		Totals(um)	391842	2732	/	3945		
	Totals(ulli)	410047	44733	559			Totals(dm)	<u>394581</u>	U	0			
	Hit Rate	98%	72%	4%			Hit Rate	100%	16%	15%			
		94%	69%	2%				100%	0%	13 % 0%			
	FAR	2%	38%	94%			FAR	2%	43%	43%			
		2%	63%	<u>99%</u>				2% 2%	N/A	N/A			
	COL	0.6		2.00			COL	000	14.07	1407			
	CSI	96%	50%	3%			CSI	98%	14%	14%			
		<mark>92%</mark>	32%	0%				<mark>98%</mark>	0%	0%			
PC		0.0					PC	98%					
		96%					rt						
		<mark>92%</mark>						<mark>98%</mark>					
HSS		(10)				T	HSS	25%					
		64% 45%					1155	<u> </u>					

Contingency table: PM25, Summer/Winter

(<u>UMOS-AQ</u> vs. <u>GEM-MACH15</u>)

PM25 : 20090815-20091015 00Z, UMOS-AQ vs. GEM-MACH15							PM25 : 20091215-20100215 00Z, UMOS-AQ vs. GEM-MACH							
		FCST												
		[0-15]	(15-30]	> 30	Totals			[0-15]	(15 – 30]	> 30	Totals			
	[0 – 15]	332146	7537	191	339874		[0 15]	276610	6449	253	2833			
		296972	34062	8840	<u>339874</u>		[0 – 15]	245486	24195	13631	2833			
ODC	(15 – 30]	12974	9172	731	22877		(15 20)	14944	6956	634	225			
OBS	(10 00]	10890	6229	5758	22877	OBS	(15 – 30]	11900	4431	6203	225			
	> 30	945	2299	1904	5148		20	2193	2535	1006	57			
	200	1304	836	3008	5148		> 30	2212	1159	2363	57			
	Totals(um)	346065	19008	2826	367899		Totals(um)	293747	15940	1893	3115			
	Totals(dm)	Fotals(dm) 309166 41127 17606	Totals(dm)	259598	29785	22197								
		00%	100	07.01										
	Hit Rate	98% 87%	40% 27%	37% 58%			Hit Rate	98%		18%				
	FAR	4%	52%	33%			FAR	87%	20%	41%				
	FAK	4% 4%	32% 85%	53% 83%				6% <u>5%</u>	56% 85%	47% 89%				
		. , .		0070				570	0570	0770				
	CSI	94%	28%	31%			CSI	92%	22%	15%				
		84%	11%	15%				83%	9%	9%				
РС		93%					PC	91%						
		83%					IC	91 %						
	HSS	47%					HSS	38%						
		22%						19%						

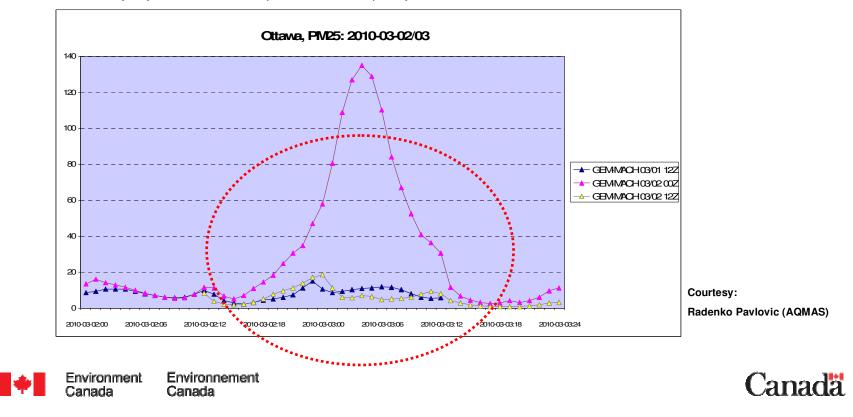
Contingency table: NO2, Summer/Winter

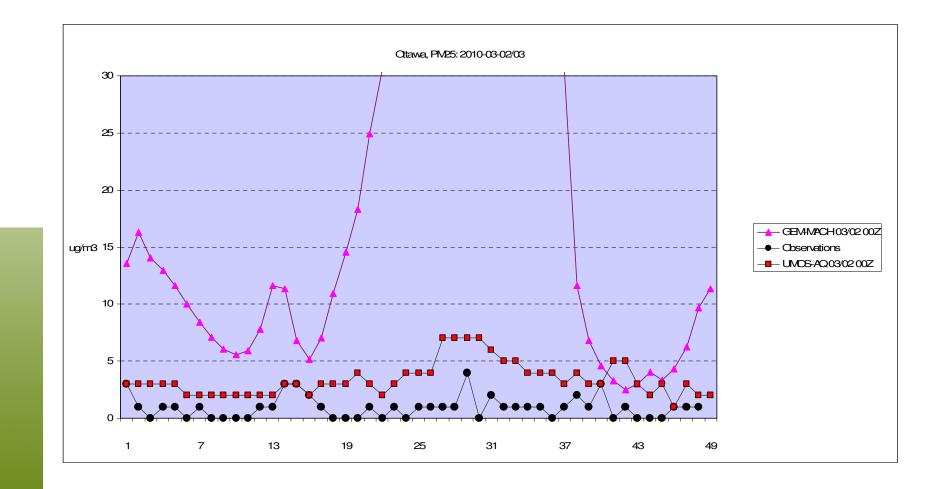
(<u>UMOS-AQ</u> vs. <u>GEM-MACH15</u>)

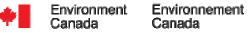
NO2	2 : 20090815-2	0091015 00Z	Z, UMOS-AQ	AACH15	NO2 : 20091215-20100215 00Z, UMOS-AQ vs. GEM-MACH15							
		FCST										
		[0-15]	(15-30]	> 30	Totals			[0-15]	(15-30]	> 30	Totals	
	[0 – 15]	237125	11877	45	249047		[0-15]	133086	25989	835	159910	
		220076	24829	4142	249047		[0-15]	134823	22511	2576	15991(
ODC	(15 – 30]	17602	19351	485	37438		(15-30]	19111	40729	3746	63586	
OBS	(15 - 50]	17814	14218	5406	<mark>37438</mark>	OBS	(13-30]	32433	24845	6308	63586	
	> 30	381	2296	420	3097		> 30	1380	9330		18530	
	> 30	526	1034	1537	3097		- 50	3572	7728	7230	18530	
	Totals(um)	255108	33524	950	289582		Totals(um)	153577	76048	12401	242026	
	Totals(dm)	238416	40081	11085			Totals(dm)	170828	55084	16114		
	Hit Rate	95%	52%	14%			Hit Rate FAR	83%	64%	42%		
	IIIt Nate	93 % 88%	32 //	50%				83% 84%	04% 39%	42% 39%		
	FAR	7%	42%	56%				13%	46%	37%		
		8%	65%	86%				21%	40% 55%	57%		
	CEL	90 <i>0</i> 7	27.01	1207								
	CSI	89%	37% 22%	12%			CSI	74%	41%			
	I	02%	22%	<u>12%</u>				<mark>69%</mark>	<mark>26%</mark>	26%		
	PC	89%					PC	75%				
		<mark>81%</mark>					10	<u>69%</u>				
	нсс	50%					HSS	50%				
	HSS	<u> </u>					1100	<u> </u>				

Verifications: Conclusions

- In the vast majority of forecast hours, over all stations, predictands and seasons:
 - The model's bias is reduced.
 - ✓ RMSE is reduced.
 - \checkmark More than the above, we explain better the observed variance.
- Contingency tables: Significant improvement in almost all categories over all pollutants. Better skill.
- UMOS-AQ significantly improves the model's forecast quality.

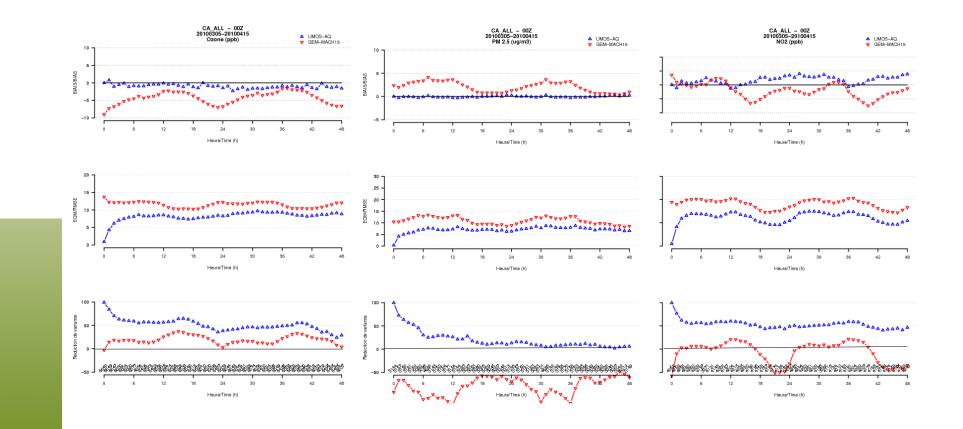



Special case: 2010-03-02 Ottawa (PM25)


Problem:

- Generally there is a general accordance and "continuity" between adjacent model runs.
- Occasionally relatively small differences in meteorology (sfc temperature, sfc wind direction, boundary layer height, etc.) can have a great impact in predicted pollutant values
- Problem occurs occasionally across Canada and is related to small changes in meteorology inside the boundary layer, which are important for air quality

Special case: 2010-03-02 Ottawa (PM25) (cont'd)


New Emissions (March 2nd 2010)

- In March 2nd 2010 (12Z) an operational implementation of a new Emissions inventory was applied to GEM-MACH15
- Due to a lack of appropriate (period and format) hindcast data we decided to not perform a switchover and let the system adapt
 - A performance study for the winter season has been generated that shows a smooth transition with no significant loss in the quality of the forecasts

New Emissions - Evaluation scores 40 days [2010-03-05, 2010-04-15]

Forecasting extreme events (episodes)

- MLR (linear) techniques tend to "push" the forecast towards a mean value therefore making extreme event forecasting more challenging.
- Difficult to acquire extensive training data: percentage of episodes compared to "average" values is small.
- \blacktriangleright MDA approach could be more skilful in episode forecasting.

Future

- In the next CPOP a proposal will be made for an <u>operational implementation</u>.
- Possibility to generalize the forecasts by using MIST (Optimal interpolation) in order to produce forecast fields from irregular forecast points.
- Reduce the number of predictors and simplify the system without loss in the forecast quality.
- MDA may also be evaluated to improve extreme events forecasting.

Conclusions

- Over the last 2 years <u>UMOS-AQ has shown a significant</u> <u>improvement over the direct model output</u> for all three pollutants in both seasons. This fact has been repeatedly shown over long and short term independent verification periods.
- An abrupt model switchover along with a matrix cloning operation did not noticeably affect the quality of the forecasts which demonstrates the <u>robustness of the system</u>.
- UMOS-AQ can provide a high quality national guidance in AQ forecasting.
- Future improvement is expected as more cases get accumulated and a full transition to GEM-MACH15 is completed.
- UMOS has shown great potential into a different field such as AQ.

Merci / Thank you !

Questions ? – Comments ?

For more info: stavros.antonopoulos@ec.gc.ca

Canada

