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“Snow and Climate

~|* 46% of the northern hemisphere land
surface

* Water for one-six of the world’s
~ population

Temperature: 18~52% in Europe

Annual precipitation: 20£25% in semi-
arid Great Plains of North America

August

evelopment of anticyclonic conditions

elerating local atmospheric heating
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Impact of climate change on the Arctic
b snow/ice

ydrology

Runoff from western U.S. snowfall
peaks several weeks earlier in spring
than it did in the 1950’s

Carbon dioxide and methane uptake
of surface water from the ice

Ocean circulation and acidification

ncreases of volatile contaminants
vaporated during melting period

y
Seasonal phytoplankton growth

smatch between the availability of
ant and hatching date of snow

TI

, *+II erability of arctic predators like
3 AR snow owls and polar bears

5




Motivation

~~ * Snow processes over sea 3“ \

I
ice are currently represented ﬂ
with a simple one-layer snow
model in the Meteorological
Service of Canada (MSC)
operational forecasting
systems

(a) Photograph of “Pittsburgh” site taken in spring (Perovich et
al., 1999)
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' .. CRREL SNTHERM Model
(Jordan, 1991)

— One dimensional
— Unlimited snow layers

— Mass:
retention/percolation,
refreezing, snowfall,
rainfall, compaction, vapor
diffusion & grain
metamorphism

Heat: thermal conduction,
~vapor diffusion, water
~convection & precipitation
~ advection

I

One-layer snow in the sea

F":u' model
- “snowfall only
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* . Improving understanding of the Arctic’s
climate in the present day and future

*| Station on a multi-year ice floe, drifted
!- more than 1400 km in the Beaufort and |

ChUKChI Seas Fig 2 Drifted course of SHEBA (Perovich
*. Measurements at “Pittsburgh” site from etal., 1999).
tober, 1997 to October 1998

o

SHEBA experiment sites in May, 1998 ('Perssen et al., 2002) ;

/
Atlanta
Main line
‘—i
Seattle
S Albedo line
The Ridge Tuk
ASFG Towel Doghouse \

Ship J \ : = Fig 3 Location of SHEBA in the Arctic

. Fig 4 SHEBA campaign site. (Perovich et al., 1999). . ,
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y Snow depth

* Results from RPN better during the frozen period
. — an unrealistic calibration of the density of fresh snow (274 kg m=)

1% 20 to 200 kg m= (Jordan 1991), or from 10 to 257 kg m= (Judson
~ and Doesken 2000)

verestimation from New-RPN (by ~17 cm) in late winter
overestimation by 15 cm (Jordan et al. 1999)

Ing snow sublimation

t of wind transport incorporated (Jordan et al. 1999)
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v lce thickness

b : :
'-';-Shallower snowpack leads to a thicker ice pack

¥ ﬁ;— NEW-RPN’s onset of melt later than observations (by about 6 days)
— RPN-estimations improved if a value (100 kg m) of density used

verestimation after July occurs because of
inaccuracies in the sea ice model and a constant ocean heat flux forcing

al ocean heat flux is crucial for ice evolution (especially summer)
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.{g Vertical structure: Grain size
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. Vertical structure: Conductivity

‘Many snow modules incorporated in atmospheric models use a
pvalue of 0.31 W m'K-

There is considerable vertical variability

l‘-‘%, depth hoars (0.07 W m-'K-' ) and wind slabs (1 W m-'K-") near the surface
(Sturm et al. 2002)

b no depth hoar in the base (all greater than 0.25 W m-'K-' before April)
but ice layers simulated (about 2.3 W m-'K-") at the base on May 7

spatlial variability (Huwald et al. 2005a), difficulty of measuring fluxes
(Huwald et al. 2005b), and variations of air fraction & natural convection
in snow (Akitaya 1974; Jordan 1991)
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* Timing of snow depletion simulated by
NEW-RPN is more accurate than that
simulated by RPN

= WBW RN oo deperiian Conclusion
* NEW-RPN is able to more realistically

simulate ice thickness, with a slower
ice growth rate related to increased

insulation by the deeper snowpack SHEBA: A year on the ice

* NEW-RPN may catch the formation of Winter Spring
ice slabs in the bottom of snowpacks in |
spring but does not simulate full depth
hoar conditions yet

— Limited change of the snow density

profiles during the winter (Sturm et al.
2002)

— The averaged snow thermal
conductivity (0.39 W m-1K-') within the
range of values of 0.14 W m-K-" R ——
(Sturm et al. 2002) and 0.5 W m-'K-! == - e rocmme
(Huwald et al. 2005a, 2005b) and f— o
larger than the typical value of 0.31 W ' T —"
m-'K-" used in single-layer snow | i
models

5 Spring snow evolution is highly Perovich, D.K., T.C. Grenfell, B. Light, J.A. Richter-Menge,

it sy : M. Sturm, W.B. Tucker lll, H. Eicken, G.A. Maykut, B.
sensitive to uncertainties in the surface Elder, SHEBA: Snow and Ice Studies CD-ROM, October,

albedo whereas the winter snow 1999
evolution is significantly affected by
uncertainties in wind speed and new

snow density

e

Summer Fall
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Background

*' Introduction

— Strong low-level winds
- _can occur very
frequently in the Arctic
Ocean & Antarctica

— Estimates in snow
depth may be
improved if including
wind blowing
h‘aarameterization
(Déry and Yau, 1999;
Chung et al., 2008)

- Ol ”(I;tﬂiiy‘es

Examine the effect of

b ":‘5 OWi snow on the Blowing snow on the ice shelf edge near Rampen (72S, 16W),
! ion of snow

Antarctica, from Dr. R. Bintanja
" L, Institute for Marine and Atmospheric research Utrecht (IMAU),
S d sea ice n the Utrecht University, The Netherlands

Arctic Ocean



* 1-D, blowing snow
model, PIEKTUK (Déry,

2001)
* 1-D, multi-layer snow

model SNTHERM

Mord_an, 1991)
* Multi-layer,

thermodynamic sea ice

sublimation

~windg > saltation

model from
Meteorological Service of
Canada (MSC)
operational forecasting
system run 1-D, offline

“model




10005

E=F = ¢ ¥ F & F @ J
| L} |
| | = Particle size for
800 | January 7] . .
L gql o+ Febmuny drifting snow
‘ i | ¢ The mean radius ranges
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* Layer of suspended blowing
snow extends to heights

N | . T between 400 m (April to
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.::é Sensitivity analysis

—‘yerestimation of snow depth reduced by blowing snow sublimation

ice thickness increasing more rapidly by bottom accretion
ér_temperature at the snow and ice interface
o
s do not depend much on the occurrence of blowing snow
hickness exhibits less temporal variability; opposite for temperature
peed threshold of 9 m s is chosen
n the values of 7.7 m - and 9.9 m s*' (Li and Pomeroy 1997)
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Thickness [cm]

150

»--x Observation: Pittsburgh site 3
e--» Observation: Main Line average .
— NEW-RPN T

fr\—\ /NO

— NEW-RPN-BS (w>9)
— NEW-RPN-BS (w>0)
W>9 —

ov Dec Jan Feb M’u Apr May Jun Jul AugSep Oct

— x-x Observation: Pittsburgh site
— NEW-RPN

L — NEW-RPN-BS (w>9) -
— NEW-RPN-BS (w>0)

| | | | | | | | | | | |

l()q\lov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Month of Year (1997~1998

Impact of blowing snow on thickness

Snow depth

— A significant reduction
(difference of 9 cm in average)
in snow depth

— Shortening of the snow cover
duration by 4 days

— Model performance greatly
improved during snow
accumulation

— Less affected by horizontal
wind transport from February
to June (Sturm et al. 2002)

Ice thickness

— A slight increase for ice
thickness, with a difference of
about 4 cm in average

— Accelerating the ice melt after
the snow ablation by 6 days




mpact of blowing snow at the snow/ice interface
*  Temperatures
- — Intense and prolonged cooling in February (7 K in two weeks)

3

" 3 Experiment with blowing snow exhibiting smaller errors

-&"—.-,Effect of Wind transport, termination of polar night, and dramatic
- variations of atmospheric pressure and of relative humidity in late winter,
~then frequent melt and freeze cycles in early spring

owing snow can decrease insulation of snow depth, leading to a
crease of temperatures at interface, forcing ice growth, and
han ing sensible heat fluxes from ocean (Huwald et al. 2005)
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Density evolution simulated by NEW-RPN-BS
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imulated internal snow structure

| peak for values of 200-300 kg m- (40% for
EW-RPN; 46% for NEW-RPN-BS)

NEW-RPN, 12% smaller than 200 kg m3; in
EW-RPN-BS, 15%
ess wind slab layers (48% for NEW-RPN; 38%
for NEW-RPN-BS for density greater than 300
g m3), especially near the surface of the
nowpack.
igh-density snow layers in the middle or bottom
e formations with densities as large as 900 kg
-3 at bottom in spring, with the same results

1%)
SIZeS

for values of 1-1.5 mm (30% for NEW-

34% for NEW-RPN-BS).

aller values (42% by NEW-RPN and
6% by NEW-RPN-BS for grain size between 1
2 mm) than the observed profiles of 10
ets observed by Sturm et al. (2002).

gh blowing snow increases snow
and decreases snow density,

a weaker snowpack, its impact on
owpack is small

-y



Conclusion

ng snow sublimation

uinmation loss ranging from 0.1 and
.26 SWE mm hr-" during strong winds
ith a total accumulated sublimation of
6.mm SWE

Radius of blowing snow particle
Jistribution between O um and 40 pm,
oxtending to heights of 400 m for spring
and 1000 m for winter

~ — Blowing snow potential of improving
odel performance in late winter and
eﬁ‘ly spring

ignificant reduction (9 cm) in snow
s:[h and for a shortening of the snow-

J
g ered period by 4 days
-

\

\

Jecrease of 04 K found for
e erature at snowl/ice interface

ght increase of about 4 cm on for

thickness  found, with an
'43 for the prediction of the
of ice melt (by ~6 days)




Future work

lution with snow hydrology




Questions?




