
Data and data assimilation at 
MRO
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Present use of radar information is qualitative

Example: mesocyclone detection is based on the measurement of a 
single velocity component and consequently inherently ambiguous
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Acknowledgements: an alternative approach to radar data 
interpretation was suggested long ago 
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The idea as outlined in 1994:
(Laroche PhD Thesis)

Zawadzki et al., 2005

Fabry&Szyrmer, 1999 Szyrmer&Zawadzki, 1999

Heyraud et al., 2002Laroche et al., 2005Szyrmer et al., 2005

Protat & Zawadzki, 2000

Montmerle et al., 2001, 2002

Lee&Zawadzki, 2006

Kaoshen, 2008
Caya et al., 2002

Polarimetry
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Outline

Extensive effort in microphysics description 
compatible with radar observations

Development of retrieval and radar data assimilation 
methods based on model as week constraint

Study of model errors

Study of structure of errors of radar measurements

Expanding our operational radar capability

Nowcasting techniques as standart of performance
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Improving Microphysics
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Moment representation of PSDs and of microphysical processes

€ 

Μ p = Cp
i, j{ }Μi

j− p( ) j−i( )Μ j
p−i( ) j−i( )

€ 

Μ p = Cp
i, j,k{ }Μi

1−x p( ) j− p( ) j−i( )
Μ j
1−x p( ) p−i( ) j−i( )+x p k− p( ) k− j( )

Μk
x p p− j( ) k− j( )

0 1 2 3 4 5
D [mm]

10-2

100

102

104
n(

D
) [

m
-3

m
m

-1
]

29 July 1998
01:30-01:51

0 2 4 6 8
Moment order, p

102

103

104

105

106

M
p 

[m
m

p m
-3

]

0 2 4 6 8
Moment order, p

0.92

1.04

1.16

1.29

1.41

C p

(4, 2, 6)

0 2 4 6 8
Moment order, p

C
p

(2, 6)

0.52

0.79

1.07

1.35

1.62

1.90

Szyrmer, W., S. Laroche and I. Zawadzki, 2005: A Microphysical Bulk Formulation
Based on Scaling Normalization. Part I: Description. J. Atmos. Sci. 62, 4206-4221.
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Electromagnetic and microphysical modeling of the melting snow
bright band intensity as a function of snow density (of degree of riming)

Initial snow
density

Change in fall velocity with density Change in BB intensity with density 

From: Zawadzki, Szyrmer and Fabry: Super-cooled cloud, 
riming of snow and bright band intensity. JAM, 2001.
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V = aDb               expressed in terms of depth 
of precipitation and surface temperature:

From HVSD and VertiX measurements at CARE 

Observed fall velocities:
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On the growth of snow

A year average of vertical gradients of snow reflectivity and Doppler velocity
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Relationship between fall velocity and density of snow 

Calculations:

 From HVSD measurements we get:                       

Using mean bu= 0.15 and the Re-X relationship

power-law fitting to the calculation gives€ 

Ar D( ) =ar exp(−brD)−1[ ]and

Relation derived from the boundary layer theory between Reynolds 
number Re and Best/Davies number X (Böhm 1989; Mitchell 1996, …)
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         : particle’s terminal velocity and mass

           : characteristic dimension of the particle
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Relationship between fall velocity and density of snow 

Retrieved relation between am and au

for fixed exponents: bm=2, bu=0.15

VALIDATION:
Two examples of time series of 5-min averages 
of Ze measured by POSS and VertiX at ~250m, 
and computed from HVSD for retrieved mass

VertiX
POSS

HVSD: 
HVSD: 
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Retrievals, etc
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3-D wind fields from BINET (“dual Doppler”)

Protat & Zawadzki, 2000
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ObservationsDual Doppler Assim. Single Doppler Assim.

EVALUATION:

First attempt at assimilation with BINET (model as weak constraint)
Montmerle et al., 2001, 2002
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Initial background field is derived 
from single Doppler data over a 
time period (10 - 20 min) assuming 
frozen turbulence (synthetic dual-
Doppler) and linear wind.

Background wind for single Dopple radar

Convective regions
are eliminated by an 
iterative method in which
data far from linearity
are not considered.

Caya, A., S. Laroche, I. Zawadzki and T. Montmerle, 2002:  Using Single-Doppler Data to 
Obtain a Mesoscale Environmental Field. J. of Atmos. and Oceanic Tech, 19, 21–36.
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The Present Assimilation System

Chung, K-S., I. Zawadzki, M.K. Yau, and L. Fillion, 2009: Short-term forecasting of a midlatitude
convective storm by the assimilation of single Doppler radar observations. Mon. Wea. Rev., In print

Regional model (GEM-LAM) forecast as 
background for the initial cycle of assimilation
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Present state of the Model Governing Equations
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The cost function

x : control variables (ex: u,v,w, p, t )
y : observations           
H: observation operator   

Minimizing the cost function J  Analysis field

B : background error covariance matrix
R : observation error covariance matrix
Q : model error covariance matrix

Recursive filter
To be determined
To be determined

: model residuals

€ 

εq
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Element of Mesoscale Analysis System ( MAS )

1. Background field 
    ( from MC2 model previous forecasts ) 

Horizontal wind (u component ) Horizontal wind (v component )

The model did not forecast any precipitation in the region
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2. Radar observations 

Doppler Wind Reflectivity 
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Analysis field (after assimilation of radar data) 

Horizontal wind (u component ) Horizontal wind (v component )
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30-min forecastObservation at 30-min
after assimilation

Effectiveness of the analysis is measured by capacity of prediction

Observation at 
assimilation time
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Error Structure of Radar Data
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@120 km@ close range

... we obtain
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Error structure of radar surface precipitation

Thursday, June 18, 2009



@120 km@ close range

... we obtain

1

2

3

4

5

h
e
ig

h
t 
[k

m
]

-6

-6

-4

-4

-2

0

1

1

2

2
2

3

3

4

Mean !
r
 [dB]

BB height: 2.2-2.6 km

lo
w
es

t P
PI (

0.
5
o )

50 100 150 200
range [km]

& &

101 102 103 104 105

Z [mm6m-3 ]

0.1

1.0

10.0

100.0

R
 [m

m
h-1

]

20 min running mean of
13016 1-min observations

Z = 237 R1.55

σ
ZR

=1.37 dB(R)

εr structure due to 
extrapolation εZR structure εr - εZR CC

combining...

Error structure of radar surface precipitation

Thursday, June 18, 2009



Model Errors

Thursday, June 18, 2009



Models fail to correctly reproduce the diurnal cycle
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29

Observations

Simulation using data assimilation (model as strong constraint) into a simple 
model of freely falling rain-shaft with a 2-parameter DSD representation.  Note 
that 3 parameters are needed to correctly describe the DSDs of falling drops.

Note a second shaft 
due to model error

Effect of model erros on assimilation
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Simulation using data assimilation (model as strong constraint) into a simple 
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Encouraging signs

Our experience shows that, in spite of the uncertainties, 
assimilation leads to nowcast that can beat MAPLE 

Experiments at OU with radar data assimilation show 
significant improvements in the first 8 hours and 

marginal improvement thereafter
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Adaptation of Hardware to Data 
Assimilation
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Target ID by polarimetry
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Total scan

Volume scan

Vertical scan
Wind profiling scan
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MAS implementation
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from    RAdio Detection And Ranging 
to a        Mesoscale Analysis System

Full Volume Scan

Analysis

Severe weather and Hydrological 
algorithms

Display

Reflectivity
Dopler Velocity

Target ID

Error structure

Model Background

Error structure

Short term forecast

Radar Network

Heuristic Algorithms
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from    RADAR
to        M A S

TASKS

• Determine error structure of the radar volume scans

• Determine forecast error structure to improve the recursive filter

• Correct model time-space phase errors to obtain better initial background

• Use Lagrangian persistence of ANALYSIS for updating the background

• Put the microphysics into the model; expand microphysics

• Use the 15 min forecast for updating the background

ETC.

• Use ANALYSIS as initial conditions for the model
and use the forecast for assessing effectiveness of MAS

• Study the most effective way of sampling the atmosphere adaptively
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from    RAdio Detection And Ranging 
to a        Mesoscale Analysis System

AND I NEED $200K/Y FOR THREE 

YEARS TO COMPLETE THE PROJECT
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