Discontinuous Galerkin Methods for Atmospheric Numerical Modeling

Ramachandran D Nair

(rnair@ucar.edu)

Institute for Mathematics Applied to Geosciences (IMAGe)

National Center for Atmospheric Research Boulder, CO 80305, USA.

June 18th, RPN, Montréal, Canada.

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

AQ (A

Motivation

Ram Nair (IMAGe/NCAR) DG Methods for Atmospheric Modeling 5990

・ロト ・ 同ト ・ モト ・ モト

- Motivation ۵.
- The Discontinuous Galerkin Method (DGM)
 - 2D Cartesian Geometry
 - 2 Results
 - Monotonic Limiting & Positivity Preservation **(3)**

 $\langle \Box \rangle \rightarrow \langle \langle A \rangle$

÷,

- Motivation
- The Discontinuous Galerkin Method (DGM)
 - 2D Cartesian Geometry
 - 2 Results
 - Monotonic Limiting & Positivity Preservation
- DGM in Spherical Geometry
 - Cubed-Sphere Geometry (HOMME grid system)
 - Shallow Water Model
 - I Test Results

Ram Nair (IMAGe/NCAR)

< □ ▶

- Motivation
- The Discontinuous Galerkin Method (DGM)
 - 2D Cartesian Geometry
 - 2 Results
 - Monotonic Limiting & Positivity Preservation
- DGM in Spherical Geometry
 - Cubed-Sphere Geometry (HOMME grid system)
 - Shallow Water Model
 - Test Results
- The DG Baroclinic Model (HOMME)
 - Vertical aspects (Lagrangian Dynamics, Remapping)
 - 2 Horizontal Aspects (DGM, Discretization)
 - 8 Results

- Motivation
- The Discontinuous Galerkin Method (DGM)
 - 2D Cartesian Geometry
 - 2 Results
 - Monotonic Limiting & Positivity Preservation
- DGM in Spherical Geometry
 - Cubed-Sphere Geometry (HOMME grid system)
 - Shallow Water Model
 - Test Results
- The DG Baroclinic Model (HOMME)
 - Vertical aspects (Lagrangian Dynamics, Remapping)
 - 2 Horizontal Aspects (DGM, Discretization)
 - 8 Results
- Summary

Motivation

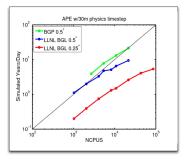
- Why do we need a new numerical method for discretization?
- Because, the existing methods have serious limitations to satisfy all of the following properties:
 - Local and global conservation
 - 2 High-order accuracy
 - Omputational efficiency
 - Geometric flexibility ("Local" method, AMR)
 - Son-oscillatory advection (monotonic, positivity preservation)
 - High parallel efficiency (Petascale capability)
- Discontinuous Galerkin Method (DGM) is a potential candidate to address all of the above issues.

AQ (A

Motivation

Motivation: Scalability of the HOMME Framework

- HOMME: High-Order Method Modeling Environment relies on element-based method (spectral element (SE) or DG) and developed at CISL
- Recently, Taylor et al. (2008) have shown that the CAM/HOMME SE dynamical core scales up to 86,200 processors on an IBM BG/L (LLNL).



- DGM is inherently conservative, and a hybrid approach combining the best of the SE and finite-volume (FV) methods.
- DGM can handle a wide range of equations of fluid motion (compressible Euler and Navier-Stokes system [Cockburn & Shu, 2001])

Ram Nair (IMAGe/NCAR)

< n >

June 18, 2009 4 / 52

Flux-Form Atmospheric Equations (Conservation Laws)

- A large class of atmospheric equations of motion for compressible and incompressible flows can be written in flux (conservation) form.
- Conservation laws are systems of nonlinear partial differential equations (PDEs) in flux form and can be written:

$$\frac{\partial}{\partial t}U(\mathbf{x},t)+\sum_{j=1}^{3}\frac{\partial}{\partial x_{j}}F_{j}(U,\mathbf{x},t)=S(U),$$

where

- x is the 3D space coordinate and time t > 0. U(x, t) is the state vector represents mass, momentum and energy etc.
- $F_i(U)$ are given flux vectors and include diffusive and convective effects
- $\tilde{S}(U)$ is the source term
- Scalar conservation law (e.g., mass continuity equation):

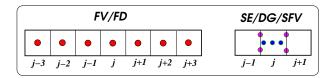
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$$

Ram Nair (IMAGe/NCAR)

AQ C

5 / 52

Numerical Methods for Solving Conservation Laws: Local & Compact Methods



• Finite-Volume methods are traditionally used for solving conservation laws

- E.g.: MUSCL, MPDATA, PPM, WENO, etc.
- Computational stencil widens with order of accuracy (>3)
- Staggering is required for many applications
- Computationally cheaper compared to the high-order methods on serial computers
- Parallel communication "bottleneck" with high-order (petascale capable?)
- Local and Compact high-order methods
 - E.g: SE, DG, spectral finite-volume (SFV), SFD, etc..
 - Truly local, computational stencil remains the same with increasing order
 - Expensive methods on serial computers (more d.o.f per element)
 - No staggering. Cost-effective with moderate order $(3^{rd} \text{ or } 4^{th})$
 - Excellent Parallel efficiency

500

6 / 52

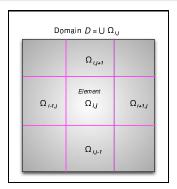
< □ > < 同 >

Discontinuous Galerkin (DG) Methods in 2D Cartesian Geometry

2D Scalar conservation law:

$$rac{\partial U}{\partial t} +
abla \cdot \mathbf{F}(U) = S(U), \quad ext{in} \quad (0,T) imes \mathcal{D}; \quad orall \left(x^1, x^2
ight) \in \mathcal{D},$$

where $U = U(x^1, x^2, t)$, $\nabla \equiv (\partial/\partial x^1, \partial/\partial x^2)$, $\mathbf{F} = (F, G)$ is the flux function, and S is the source term.



- The domain *D* is partitioned into non-overlapping elements Ω_{ij}
- Element edges are discontinuous
- Problem is locally solved on each element Ω_{ij}

< □ ►

Sac

7 / 52

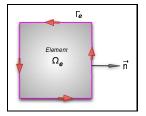
DG-2D Spatial Discretization for an Element Ω_e in \mathcal{D}

- Approximate solution U_h belongs to a vector space \mathcal{V}_h of polynomials $\mathcal{P}_N(\Omega_e)$.
- The Galerkin formulation: Multiplication of the basic equation by a test function φ_h ∈ V_h and integration over an element Ω_e with boundary Γ_e,

$$\int_{\Omega_e} \left[\frac{\partial U_h}{\partial t} + \nabla \cdot \mathbf{F}(U_h) - S(U_h) \right] \varphi_h d\Omega = 0$$

• Weak Galerkin formulation : Integration by parts (Green's theorem) yields:

$$\frac{\partial}{\partial t} \int_{\Omega_e} U_h \varphi_h \, d\Omega - \int_{\Omega_e} \mathbf{F}(U_h) \cdot \nabla \varphi_h \, d\Omega \quad + \int_{\Gamma_e} \mathbf{F}(U_h) \cdot \vec{n} \, \varphi_h \, d\Gamma = \int_{\Omega_e} S(U_h) \, \varphi_h \, d\Omega$$



- Orthogonal polynomials (basis functions) are employed for approximating U_h and φ_h on Ω_e .
- Surface and line integrals are evaluated with high-order Gaussian quadrature rule
- Exact Integration: The flux (line) integral should be an order higher than the surface integral (*Cockburn & Shu*, 1989).

nac

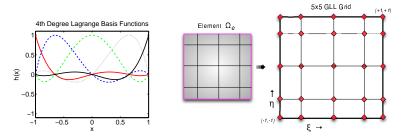
DG-2D Discretization

DG-2D: High-Order Nodal Spatial Discretization

The nodal basis set is constructed using a tensor-product of Lagrange polynomials h_i(ξ), with roots at Gauss-Lobatto-Legendre (GLL) quadrature points {ξ_i}.

$$h_i(\xi) = \frac{(\xi^2 - 1) P'_N(\xi)}{N(N+1) P_N(\xi_i) (\xi - \xi_i)}; \quad \int_{-1}^1 h_i(\xi) h_j(\xi) \simeq w_i \delta_{ij}.$$

• $P_N(\xi)$ is the Nth degree Legendre polynomial; and w_i are Gauss quadrature weights



The approximate solution U_h and test function are represented in terms of nodal basis set.

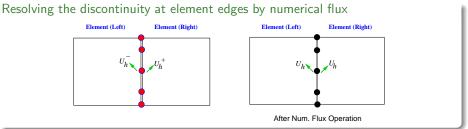
$$U_{ij}(\xi,\eta) = \sum_{i=0}^{N} \sum_{j=0}^{N} U_{ij} h_i(\xi) h_j(\eta) \quad \text{for} \quad -1 \leq \xi, \eta \leq 1,$$

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

June 18, 2009 9 / 52

DG-2D: The Flux Term



- Along the boundaries (Γ_e) of the element Ω_e the solution U_h is discontinuous (U_h^- and • U_{μ}^{+} are the left and right limits).
- Therefore, the analytic flux $\mathbf{F}(U_h) \cdot \vec{n}$ must be replaced by a numerical flux such as the Lax-Friedrichs Flux:

$$\mathbf{F}(U_h) \cdot \vec{n} = \frac{1}{2} \left[(\mathbf{F}(U_h^-) + \mathbf{F}(U_h^+)) \cdot \vec{n} - \alpha (U_h^+ - U_h^-) \right].$$

• Note: For scalar problem $\alpha = \max |F'(U)|$, and for a system α is the upper bound on the absolute value of eigenvalues of the flux Jacobian F'(U).

∍

소ロト 소聞ト 소문ト 소문ト

AQ C

DGM: Explicit Time Integration Method

• Final form for the discretization leads to an ODE for each $U_{ij}(t)$;

$$rac{d}{dt}U_{ij}(t)=rac{4}{\Delta x_i^1\Delta x_j^2\,w_iw_j}\left[I_{Grad}+I_{Flux}+I_{Source}
ight]$$

• For a system of conservation laws, solve the decoupled ODE system:

$$\frac{d}{dt}U_h(t) = \mathcal{L}(U_h) \quad \Rightarrow \quad \frac{d}{dt}\mathbf{U}_h = L(\mathbf{U}_h) \quad \text{in} \quad (0, T)$$

• Strong Stability Preserving third-order Runge-Kutta (SSP-RK) scheme (*Gottlieb et al.*, *SIAM Review*, 2001)

$$\begin{array}{rcl} U^{(1)} & = & U^n + \Delta t \mathcal{L}(U^n) \\ U^{(2)} & = & \frac{3}{4} U^n + \frac{1}{4} U^{(1)} + \frac{1}{4} \Delta t \mathcal{L}(U^{(1)}) \\ U^{n+1} & = & \frac{1}{3} U^n + \frac{2}{3} U^{(2)} + \frac{2}{3} \Delta t \mathcal{L}(U^{(2)}). \end{array}$$

where the superscripts *n* and n + 1 denote time levels *t* and $t + \Delta t$, respectively

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

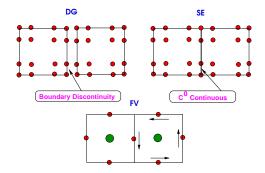
June 18, 2009 11 / 52

∍

Sac

イロト イポト イヨト

The DG, SE & FV Methods

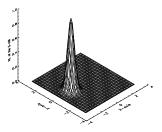


- For DGM degrees of freedom (*d.o.f*) to evolve per element is N², where N is the order of accuracy.
- For FV method the *d.o.f* is 1 (cell-average), irrespective of order of accuracy.
- DGM is based on conservation laws but exploits the spectral expansion of SE method and treats the element boundaries using FV "tricks."

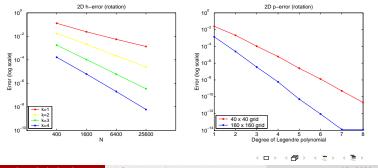
< <p>I >

DG-2D Results

DG-2D Advection Test: Solid-Body Rotation of a Gaussian-Hill



- *h*-error: Keep the degree of the polynomial fixed, change number of elements
- *p*-error: Keep the number of elements fixed, change degree of polynomial
- Spectral convergence

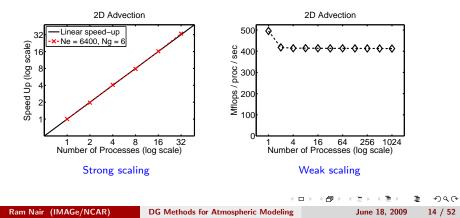


DG Methods for Atmospheric Modeling

DQ CV

DG-2D: Scaling Results (Levy, Nair & Tufo, 2007)

- Problem: Advection of a Gaussin-hill, 80×80 elements with 6×6 GLL grid
- Strong scaling is measured by increase the number processes running while keeping the problem size constant
- Weak scaling is measured by scaling the problem along with the number of processors, so that work per process is constant



DG Explicit time integration: CFL Stability

- High-order Galerkin methods have stringent explicit time-stepping limitation
- The Courant number (CFL) for the DG scheme is estimated to be 1/(2k+1), where k is the degree of the polynomial (Cockburn and Shu, 1989).
- For a third-order Runge-Kutta time stepping estimated CFL (Cockburn & Shu, 2001):

Degree (k):	1	2	3
CFL:	0.409	0.209	0.130

- Remedy: Use low-order polynomials ($k \leq 3$) or efficient semi-implicit / implicit time integrators
- Efficient time integration schemes for DG methods are under investigation (on going research under DOE SciDAC project)

A CA

< ロ > < 同 > < 글 > < 글 >

Monotonic Limiter for DG transport

Importance:

- In atmospheric models, mixing ratios of the advecting chemical species and humidity should be non-negative and free from spurious oscillation.
- The model should avoid creating unphysical negative mass
- Challenges:
 - Godunov theorem (1959): "Monotone scheme can be at most first-order accurate"
 - There is a "conflict of interest" between the high-order methods and monotonicity preservation!
 - In principle, a limiter should eliminate spurious oscillation and preserve high-order nature of the solution to a maximum possible extent
- Existing Limiters for DGM:
 - Minmod limiter (Cockburm & Shu, 1989): Based on van Leer's slope limiting, but too diffusive
 - Limiters based on WENO (Qui & Shu 2005), Moments (Krivonodova, 2008): Expensive and no positivity preservation

∍

A CA

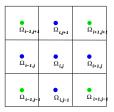
イロト イポト イヨト イヨト

DG-2D: A New Limiter for Transport Problems

• The minmod limiter can be applied in x and y-direction sequentially, however it is very diffusive.

$$U_{h}(x, y, t) = \overline{U}_{h}(t) + U_{x}(t)x + U_{y}(t)y + U_{xy}(t)xy + U_{xx}(t)x^{2} + U_{yy}(t)y^{2} + HOT$$

• First, check for the positivity violation of $U_{xy}(t)$, $U_{xx}(t)$ and $U_{yy}(t)$. If necessary, limit the low-order terms $U_x(t)$ and $U_y(t)$.



• Limiter selectively applies slope limiting employs a 3 × 3 element stencil and positivity as a constraint. The resulting method is up to third-order accurate.

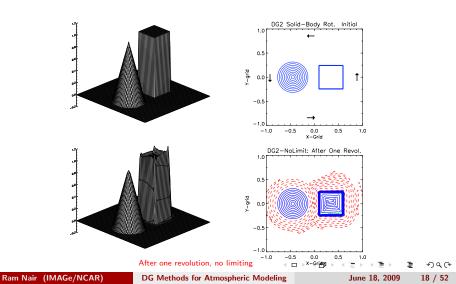
∍

Sac

イロト イヨト イヨト

DG-2D \mathcal{P}^2 (Third-Order): Solid-Body Rotation (Leveque, 2004)

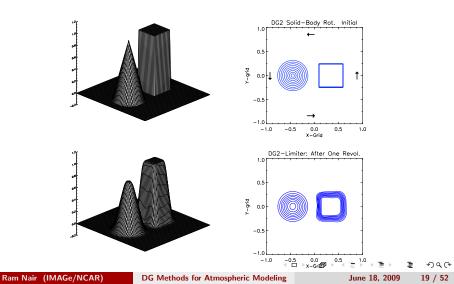
Solid-Body rotation of a cosine-cone and a square block (80×80 elements, 3×3 GLL points)



Limiter

DG2D: Monotonic limiting (with positivity preservation)

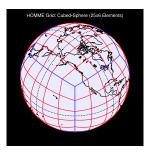
Solid-Body rotation after one revolution with constrained limiting



Extending DG Methods to Spherical Geometry

The Cubed-Sphere Topology [Sadourny, MWR 1972]

- Free of polar singularities
- Quasi-uniform rectangular mesh
- Non-orthogonal grid lines, discontinuous edges
- Well suited for the element-based methods such as DG or SE



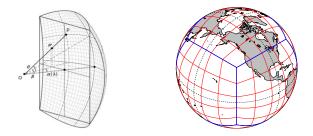
Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

June 18, 2009 20 / 52

SQ (P

Cubed-Sphere: Central (Gnomonic) Projection



- The sphere is decomposed into 6 identical regions, using the central (gnomonic) projection of an inscribed cube with side 2*a*:
 - Equiangular projection using central angles $\alpha, \beta \in [-\pi/4, \pi/4], (\Delta \alpha = \Delta \beta)$
 - Equiangular projection generates more uniform mesh on the sphere as opposed to equidistant projection [*Rancic et al., 1996; Nair et al. 2005*]
 - All the grid lines are great-circle arcs

500

21 / 52

Cubed-Sphere

Non-Orhogonal Cubed-Sphere Grid System

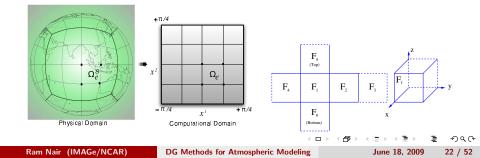
Metric Tensor G_{ij} , [Cubed-Sphere \rightleftharpoons Sphere] Transform

Central angles $(\alpha, \beta) = (x^1, x^2)$ are the independent variables such that $x^1, x^2 \in [-\pi/4, \pi/4]$.

$$G_{ij} = \frac{R^2}{\rho^4 \cos^2 x^1 \cos^2 x^2} \begin{bmatrix} 1 + \tan^2 x^1 & -\tan x^1 \tan x^2 \\ -\tan x^1 \tan x^2 & 1 + \tan^2 x^2 \end{bmatrix}$$

where $ho^2=1+ an^2x^1+ an^2x^2$, $i,j\in\{1,2\}$

Computational domain is the cube $[-\pi/4, +\pi/4]^3$



Cubed-Sphere Geometry in terms of Regular (λ, θ) Coordinates

Metric tensor in terms of longitude-latitude (λ, θ) :

$$G_{ij} = A^T A; \quad A = \begin{bmatrix} R \cos \theta \, \partial \lambda / \partial x^1 & R \cos \theta \, \partial \lambda / \partial x^2 \\ R \, \partial \theta / \partial x^1 & R \, \partial \theta / \partial x^2 \end{bmatrix}$$

• The Jacobian of the transformation (metric term) is

$$\sqrt{G} = [\det(G_{ij}]^{1/2}$$

• The matrix A is used for transforming spherical (physical) velocity (u, v) to the covariant (u_1, u_2) and contravariant (u^1, u^2) velocity.

$$\begin{bmatrix} u \\ v \end{bmatrix} = A \begin{bmatrix} u^1 \\ u^2 \end{bmatrix}; \quad G^{ij} = (G_{ij})^{-1} = \begin{bmatrix} G^{11} & G^{12} \\ G^{21} & G^{22} \end{bmatrix} = A^{-1}A^{-T}$$

• A matrices and G's are all analytical, and can be pre-computed.

2D System: Shallow Water Model on the Cubed-Sphere

Flux-form SW equations (Vector invariant form):

[Nair, Thomas & Loft (MWR, 2005a,b)]

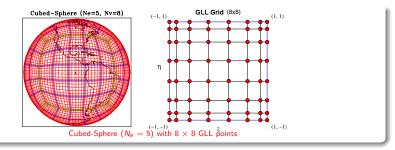
$$\frac{\partial u_1}{\partial t} + \frac{\partial}{\partial x^1} E = \sqrt{G} u^2 (f + \zeta)$$
$$\frac{\partial u_2}{\partial t} + \frac{\partial}{\partial x^2} E = -\sqrt{G} u^1 (f + \zeta)$$
$$\frac{\partial}{\partial t} (\sqrt{G} h) + \frac{\partial}{\partial x^1} (\sqrt{G} u^1 h) + \frac{\partial}{\partial x^2} (\sqrt{G} u^2 h) = 0$$

where $G = \det(G_{ij})$, *h* is the height, *f* Coriolis term; energy term and vorticity are defined as

$$E = \Phi + \frac{1}{2} (u_1 u^1 + u_2 u^2), \zeta = \frac{1}{\sqrt{G}} \left[\frac{\partial u_2}{\partial x^1} - \frac{\partial u_1}{\partial x^2} \right].$$

500

HOMME (DG) SW Model Discretization

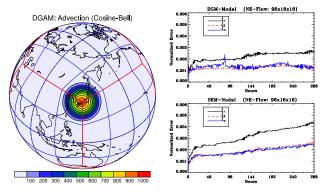


- Each face of the cubed-sphere is partitioned into $N_e \times N_e$ rectangular non-overlapping elements (i.e., total $6 \times N_e^2$ spans the entire sphere).
- Each element is mapped onto the Gauss-Lobatto-Legendre (GLL) grid defined by $-1 \le \xi, \eta \le 1$, for integration.
- Flux is the only "communicator" at the element edges. Nearest neighbor communication is ideal for parallel implementation.

500

SW Model: Advection of a Cosine-bell [Williamson et al., 1992]

• The DG transport is more accurate than the SE transport [Nair et al. 2005]



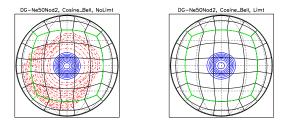
DGM Vs SEM run: Time traces for the normalized ℓ_1, ℓ_2 and ℓ_∞ errors ($\Delta t = 30s$)

Cosine-Bell Movie

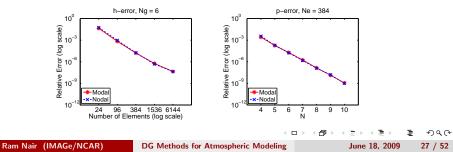
- クへへ 26 / 52

DG SW Model: Advection Tests

Global Transport with the monotonic limiter

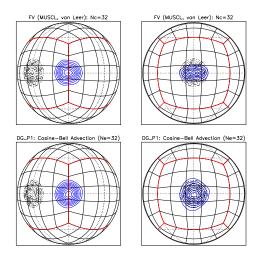


• Spectral convergence with a Gaussian-hill advection on the sphere



Low-Order Tests: Second-Order DG Vs FV-MUSCL

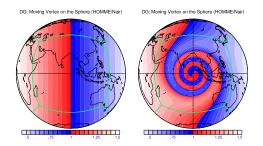
• Strong curvature terms associated with cubed-sphere geometry creates difficulty for the regular FV transport schemes



Cosine-Bell advection along the equator

DG Methods for Atmospheric Modeling

Advection: Deformational Flow (Moving Vortices on the Sphere)



Initial field and DG solution after 12 days. Max error is $\mathcal{O}(10^{-5})$

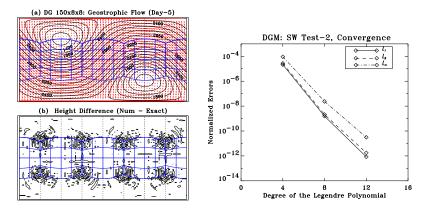
A New Deformational Flow Test [Nair & Jablonowski (MWR, 2008)]

- The vortices are located at diametrically opposite sides of the sphere, the vortices deform as they move along a prescribed trajectory.
- Analytical solution is known and the trajectory is chosen to be a great circle along the NE direction (α = π/4).

AQ (A

SW Test-2: Geostrophic Flow [Nair, Thomas & Loft, MWR 2005]

• High-order accuracy and spectral convergence



Steady state geostrophic flow ($\alpha = \pi/4$). Max height error is $\mathcal{O}(10^{-6})$ m.

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

June 18, 2009

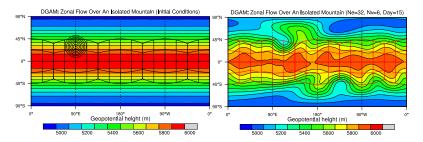
・ クへで 30 / 52

SW Test-5: Flow over a Mountain [Dennis et al. 2006]

- "Spectral ringing" (spurious oscillation) is associated with the high-order spectral methods (Jacob-Chien et al., 1995)
- No spectral ringing for the height fields in DG simulations

< n >

P



Flow over a mountain ($\approx 0.5^{\circ}$). Initial height field (left) initial and after 15 days of integration (right)

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

June 18, 2009 31 / 52

DQ CV

Viscous Shallow Water Model on the Cubed-Sphere

Local Discontinuous Galerkin (LDG) method: [Bassi and Rebay (JCP, 1997]

 Element-wise localized diffusion (ELD) leads to inconsistent formation of diffusion (viscous flux) terms in DG discretization.

Momentum equations for viscous SW model can be written in the following general form:

$$\frac{\partial}{\partial t}U + \nabla_c \cdot \mathbf{F}(U) = \nu \sqrt{G} \nabla_s^2 U + S(U), \quad \text{in} \quad \mathcal{C} \times (0, T],$$

where ν is the diffusion coefficient, $\mathbf{F} = (F_1, F_2)$ is the flux function, and $\nabla_c \equiv (\partial/\partial x^1, \partial/\partial x^2)$.

$$\begin{split} \sqrt{G} \, \nabla_s^2 U &\equiv \sqrt{G} \operatorname{div}(\operatorname{grad}(U)) \\ &= \frac{\partial}{\partial x^1} \left[\sqrt{G} G^{11} \frac{\partial U}{\partial x^1} + \sqrt{G} G^{12} \frac{\partial U}{\partial x^2} \right] + \frac{\partial}{\partial x^2} \left[\sqrt{G} G^{21} \frac{\partial U}{\partial x^1} + \sqrt{G} G^{22} \frac{\partial U}{\partial x^2} \right]. \end{split}$$

A CA

< ロト < 同ト < 三ト

Viscous Shallow Water Model on the Cubed-Sphere

• The key idea of LDG approach is the introduction of a local auxiliary variable $\mathbf{q} = \nabla_c U$, and rewrite the momentum equation as a first-order system:

$$\mathbf{q} - \nabla_c U = 0,$$

$$\mathbf{\widetilde{q}} = \mathbf{q} \mathbf{M}^T,$$

$$\frac{\partial U}{\partial t} + \nabla_c \cdot \mathbf{F}(U) - \nu \nabla_c \cdot \mathbf{\widetilde{q}} = S(U).$$

Where

$$\mathbf{q} = \begin{bmatrix} \frac{\partial U}{\partial x^1}, \frac{\partial U}{\partial x^2} \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} \sqrt{G}G^{11} & \sqrt{G}G^{12} \\ \sqrt{G}G^{21} & \sqrt{G}G^{22} \end{bmatrix} \quad \text{and} \quad \widetilde{\mathbf{q}} = \mathbf{q} \mathbf{M}^{\mathsf{T}}.$$

• On each element Ω_e with boundary Γ_e on C, the weak form results in

$$\int_{\Omega_e} \mathbf{q}_h \cdot \mathbf{w} \, d\Omega = \int_{\Gamma_e} \frac{U_h}{U_h} \, \mathbf{w} \cdot \mathbf{n} \, d\Gamma - \int_{\Omega_e} U_h \nabla_c \cdot \mathbf{w} \, d\Omega$$

• The flux associated with U_h along the boundary Γ_e is approximated with the central flux

∍

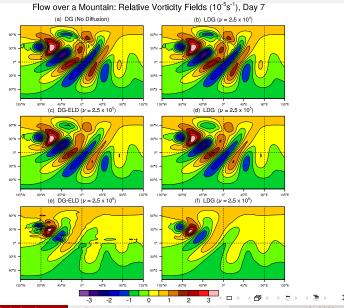
Sac

소리가 소리가 소문가 소문가

SW model

LDG

Diffusion Experiments: ELD Vs LDG [Nair, MWR 2009]

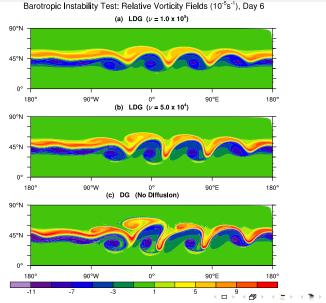


Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

June 18, 2009 34 / 52

Diffusion Experiments: Barotropic Instability Test [Galewsky, Tellus 2004]



Ram Nair (IMAGe/NCAR) DG Methods for Atmospheric Modeling

June 18, 2009 35 / 52

3D DG Hydrostatic Model in HOMME

• Extending the DG SW model to a hydrostatic dynamical core:

- The DG hydrostatic model is a conservative option in the HOMME (High-Order Method Modeling Environment) framework
- Vertical coordinates are Lagrangian and based on 'evolve and remap' strategy
- The 3D hydrostatic atmosphere can be treated as a vertically stacked shallow water systems
- Periodic remapping is performed with a conservative method

AQ (A

Hydrostatic Prognostic Equations in Flux Form (Curvilinear coordinates)

$$\frac{\partial u_1}{\partial t} + \nabla_c \cdot \mathbf{E}_1 + \dot{\eta} \frac{\partial u_1}{\partial \eta} = \sqrt{G} u^2 (f + \zeta) - R T \frac{\partial}{\partial x^1} (\ln p)$$

$$\frac{\partial u_2}{\partial t} + \nabla_c \cdot \mathbf{E}_2 + \dot{\eta} \frac{\partial u_2}{\partial \eta} = -\sqrt{G} u^1 (f + \zeta) - R T \frac{\partial}{\partial x^2} (\ln p)$$

$$\frac{\partial}{\partial t} (m) + \nabla_c \cdot (\mathbf{U}^i m) + \frac{\partial (m\dot{\eta})}{\partial \eta} = 0$$

$$\frac{\partial}{\partial t} (m\Theta) + \nabla_c \cdot (\mathbf{U}^i \Theta m) + \frac{\partial (m\dot{\eta}\Theta)}{\partial \eta} = 0$$

$$\frac{\partial}{\partial t} (mq) + \nabla_c \cdot (\mathbf{U}^i q m) + \frac{\partial (m\dot{\eta}q)}{\partial \eta} = 0$$

$$m \equiv \sqrt{G} \frac{\partial p}{\partial \eta}, \nabla_c \equiv \left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}\right), \ \eta = \eta(p, p_s), \ G = \det(G_{ij}), \ \frac{\partial \Phi}{\partial \eta} = -\frac{R T}{p} \frac{\partial p}{\partial \eta}.$$

Where m is the mass function, Θ is the potential temperature and q is the moisture variable. $\mathbf{U}^{i} = (u^{1}, u^{2}), \ \mathbf{E}_{1} = (E, 0), \ \mathbf{E}_{2} = (0, E); \ E = \Phi + \frac{1}{2} \left(u_{1}u^{1} + u_{2}u^{2} \right)$ is the energy term. Φ is the geopotential, ζ is the relative vorticity, and f is the Coriolis term.

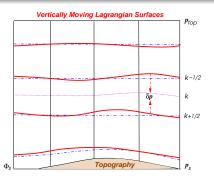
Sac

3

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vertical Lagrangian Coordinates [Starr, 1945; Lin 2004; Nair & Tufo 2007]

- A "vanishing trick" for vertical advection terms
 - Terrain-following Eulerian surfaces are treated as material surfaces.
 - The resulting Lagrangian surfaces are free to move up or down direction.



3D Prognostic Equations with Vertical Lagrangian Coordinates

- Lagrangian treatment of the Vertical coordinates results in $\dot{\eta} = 0$ and the mass function $m = \sqrt{G}\delta p = \Delta p$ (pressure thickness).
- Contravariant formulation preserves the familiar "vector invariant" form for the momentum equations.

Momentum Equations: No explicit vertical advection terms

$$\frac{\partial u_1}{\partial t} + \nabla_c \cdot \mathbf{E}_1 = \sqrt{G} u^2 (f + \zeta) - R T \frac{\partial}{\partial x^1} (\ln p)$$
$$\frac{\partial u_2}{\partial t} + \nabla_c \cdot \mathbf{E}_2 = -\sqrt{G} u^1 (f + \zeta) - R T \frac{\partial}{\partial x^2} (\ln p)$$

$$\nabla_{c} \equiv \left(\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}\right), \quad \mathbf{E}_{1} = (E, 0), \, \mathbf{E}_{2} = (0, E),$$
$$E = \Phi + \frac{1}{2} \left(u_{1}u^{1} + u_{2}u^{2}\right)$$

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

3D Prognostic Equations: Flux-Form Continuity Equations

Temperature field is advected with the mass variable Δp

$$\frac{\partial}{\partial t} (\Delta p) + \nabla_c \cdot (\mathbf{U}^i \Delta p) = 0$$
$$\frac{\partial}{\partial t} (\Theta \Delta p) + \nabla_c \cdot (\mathbf{U}^i \Theta \Delta p) = 0$$
$$\frac{\partial}{\partial t} (q \Delta p) + \nabla_c \cdot (\mathbf{U}^i q \Delta p) = 0$$

where $\mathbf{U}^{i} = (u^{1}, u^{2})$, $\Delta p = \sqrt{G} \delta p$, δp is the pressure thickness, and Θ is the potential temperature.

Vertical layers are coupled with the hydrostatic relations:

$$\Delta \Phi = -C_p \Theta \Delta \Pi, \quad \Delta \Phi = -RT \Delta \ln p$$

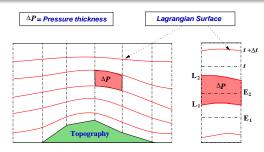
where $\Pi = (p/p_0)^{\kappa}$ and T Denotes the layer mean temperature.

nac

The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

- Over time, Lagrangian surfaces deform and thus must be remapped.
- The velocity fields (u₁, u₂), and total energy (Γ_E) are remapped onto the reference coordinates using the 1-D conservative cell-integrated semi-Lagrangian (CISL) method (*Nair & Machenhauer, 2002*)



Terrain-following Lagrangian control-volume coordinates

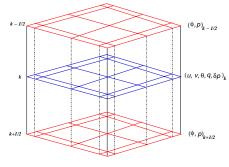
Remapping: Lauritzen & Nair, MWR, 2008; Norman & Nair, MWR, 2008)

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

June 18, 2009 41 / 52

Computational Grid Structure for DG Model

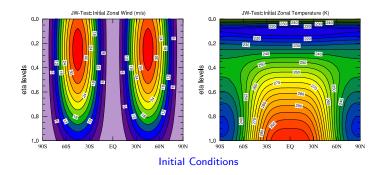


- The remapping frequency is $\mathcal{O}(10) imes \Delta t$
- Potential temperature Θ is retrieved from the remapped total energy $\Gamma_E = c_p T + \frac{\delta(p\phi)}{\delta p} + K_E$

DG-3D: Baroclinic Instability Test

JW-Test [Jablonowski & Williamson (QJRMS, 2006)]

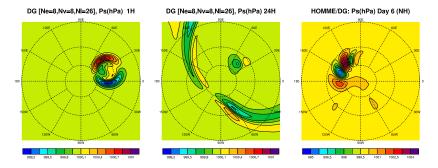
- A standard benchmark test for atmospheric dynamical cores
- To assess the evolution of an idealized baroclinic wave in the Northern Hemisphere.
- The initial conditions are quasi-realistic and defined by analytic expressions. Analytic solutions do not exist.



nac

JW-Test: Evolution of Surface Pressure over the NH

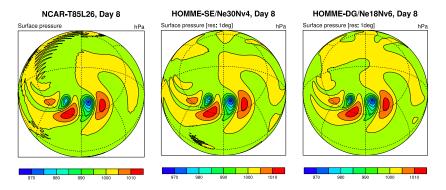
- Baroclinic waves are triggered by perturbing the velocity field at (20°E, 40°N)
- This test case recommends up to 30 days of model simulation
- Ne = Nv = 8 (approx. 1.6°) with 26 vertical levels and $\Delta t = 30$ Sec.



A Q Q

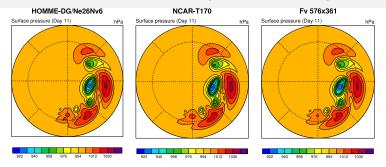
DG-3D Model Vs. NCAR Spectral Model

• The DG Solution is smooth and free from "spectral ringing".

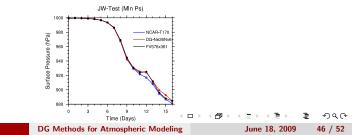


・ク < (~ 45 / 52

DG Model Vs. NCAR Climate Models [Nair, Choi & Tufo, 2009]

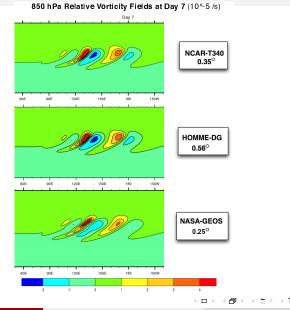


Simulated surface pressure at day 11 for a baroclinic instability test with DG model, NCAR spectral & FV models



Ram Nair (IMAGe/NCAR)

DG-3D Model Vs. Other Models



Ram Nair (IMAGe/NCAR)

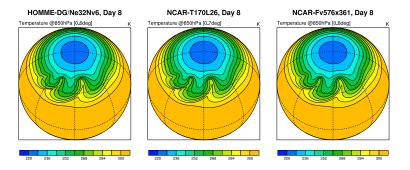
DG Methods for Atmospheric Modeling

June 18, 2009 47 / 52

∍

DG-3D Model Vs. NCAR Climate Models

Temperature fields at 850 hPa level, with HOMME-DG, NCAR Spectral & FV models.



• The DG-3D model successfully simulates the Baroclinic instability and the results are comparable with that of the NCAR models.

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

< □ ▶

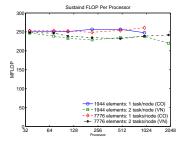
d P

June 18, 2009

シへで 48 / 52

Parallel Performance (3D) - Frost [IBM BG/L]

 DG-3D parallel performance: Sustained Mflops on IBM BG/L (1024 DP nodes, 700 MHz PPC 440s): Approx. 9% peak (preliminary results without code optimization)



- HOMME-DG dynamical core employs 6th order polynomials and about 50% slower than the HOMME-SE dynamical core (with 4th order polynomials).
- However, a third-order DG version in HOMME (CFL \approx 0.21) can compensate the integration rate deficiency

< □ ▶

 Idealized climate simulations (Held-Suarez, aqua planet) with CAM/HOMME-SE dynamical core (Taylor et al. 2008) is very promising. Integration of HOMME-DG with CAM physics is an ongoing effort.

AQ (A

49 / 52

Summary

- The DG method with moderate order (third or fourth) is an excellent choice for solving conservation laws as applied in atmospheric sciences. DGM addresses:
 - Local and global conservation
 - 4 High-order accuracy
 - Geometric flexibility
 - Non-oscillatory advection
 - 6 High parallel efficiency
- Non-oscillatory DG transport (positive definite option) is found to be accurate and effective up to third-order.
- The preliminary idealized test results and parallel scaling results are impressive and comparable to the SE version in HOMME.
- The LDG formulation is consistent and very effective for diffusion mechanism in HOMME/DG
- The explicit Runge-Kutta time integration scheme is robust for the DG-3D model, but very time-step restrictive.

< ロ > < 同 > < 글 > < 글 >

∍

Future Work

- Coupling HOMME-DG with the CAM/CCSM physics for the real climate simulations. Targeting for large-scale parallelism with O(100K) processors.
- Efficient time stepping
 - More efficient time integration schemes are required for practical application climate simulations.
 - Possible approaches: Semi-implicit, implicit, IMEX-RK, Rosenbrock with optimized Schwarz, etc.. (supported by the DOE SciDAC project)
- Extending HOMME further to a full Non-Hydrostatic model
 - Tools: Third-order DG combined with non-oscillatory H-WENO method; efficient FV methods

Sac

< □ ▶ < 🗇 ▶

THANK YOU!

Ram Nair Institute for Mathematics applied to Geosciences National Center for Atmospheric Research Table Mesa Drive, Boulder CO 80305, USA. rnair@ucar.edu http://www.image.ucar.edu/staff/rnair/

Ram Nair (IMAGe/NCAR)

DG Methods for Atmospheric Modeling

1

∍

 $\langle \Box \rangle \rightarrow \langle \langle A \rangle$

Sac

52 / 52