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Introduction Motivation

Motivation

Why do we need a new numerical method for discretization?

Because, the existing methods have serious limitations to satisfy all of
the following properties:

1 Local and global conservation
2 High-order accuracy
3 Computational efficiency
4 Geometric flexibility (“Local” method, AMR)
5 Non-oscillatory advection (monotonic, positivity preservation)
6 High parallel efficiency (Petascale capability)

Discontinuous Galerkin Method (DGM) is a potential candidate to
address all of the above issues.
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Introduction Motivation

Motivation: Scalability of the HOMME Framework

HOMME: High-Order Method Modeling Environment relies on element-based method
(spectral element (SE) or DG) and developed at CISL

Recently, Taylor et al. (2008) have shown that the CAM/HOMME SE dynamical core
scales up to 86,200 processors on an IBM BG/L (LLNL).

DGM is inherently conservative, and a hybrid approach combining the best of the SE and
finite-volume (FV) methods.

DGM can handle a wide range of equations of fluid motion (compressible Euler and
Navier-Stokes system [Cockburn & Shu, 2001])
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Conservtaion Laws

Flux-Form Atmospheric Equations (Conservation Laws)

A large class of atmospheric equations of motion for compressible and
incompressible flows can be written in flux (conservation) form.

Conservation laws are systems of nonlinear partial differential equations
(PDEs) in flux form and can be written:

∂

∂t
U(x, t) +

3
∑

j=1

∂

∂xj
Fj(U, x, t) = S(U),

where

x is the 3D space coordinate and time t > 0. U(x, t) is the state vector represents
mass, momentum and energy etc.
Fj (U) are given flux vectors and include diffusive and convective effects
S(U) is the source term

Scalar conservation law (e.g., mass continuity equation):

∂ρ

∂t
+ ∇ · (ρV) = 0
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Conservtaion Laws Tools

Numerical Methods for Solving Conservation Laws: Local & Compact Methods

j j+1 j+2j−3 j−1 j+3 j j+1

FV/FD SE/DG/SFV

j−2 j−1

Finite-Volume methods are traditionally used for solving conservation laws
E.g.: MUSCL, MPDATA, PPM, WENO, etc.
Computational stencil widens with order of accuracy (≥ 3)
Staggering is required for many applications
Computationally cheaper compared to the high-order methods on serial computers
Parallel communication “bottleneck” with high-order (petascale capable?)

Local and Compact high-order methods
E.g: SE, DG, spectral finite-volume (SFV), SFD, etc..
Truly local, computational stencil remains the same with increasing order
Expensive methods on serial computers (more d.o.f per element)
No staggering. Cost-effective with moderate order (3rd or 4th)
Excellent Parallel efficiency
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DG-2D Discretization

Discontinuous Galerkin (DG) Methods in 2D Cartesian Geometry

2D Scalar conservation law:

∂U

∂t
+ ∇ · F(U) = S(U), in (0, T ) ×D; ∀ (x1, x2) ∈ D,

where U = U(x1, x2, t), ∇ ≡ (∂/∂x1, ∂/∂x2), F = (F , G) is the flux function, and S is the
source term.

��� �� i , j i + 1 , ji 	 1 , j i , j + 1
i , j 	 1

D o m a i n D = � i , jE l e m e n t The domain D is partitioned into
non-overlapping elements Ωij

Element edges are discontinuous

Problem is locally solved on each
element Ωij
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DG-2D Discretization

DG-2D Spatial Discretization for an Element Ωe in D

Approximate solution Uh belongs to a vector space Vh of polynomials PN (Ωe ).

The Galerkin formulation: Multiplication of the basic equation by a test function ϕh ∈ Vh

and integration over an element Ωe with boundary Γe ,

Z

Ωe

»
∂Uh

∂t
+ ∇ · F(Uh) − S(Uh)

–
ϕhdΩ = 0

Weak Galerkin formulation : Integration by parts (Green’s theorem) yields:

∂

∂t

Z

Ωe

Uh ϕh dΩ −
Z

Ωe

F(Uh) · ∇ϕh dΩ +

Z

Γe

F(Uh) · ~n ϕh dΓ =

Z

Ωe

S(Uh) ϕhdΩΓ� n→eeE l e m e n t Orthogonal polynomials (basis functions) are
employed for approximating Uh and ϕh on Ωe .

Surface and line integrals are evaluated with
high-order Gaussian quadrature rule

Exact Integration: The flux (line) integral
should be an order higher than the surface
integral (Cockburn & Shu, 1989).
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DG-2D Discretization

DG-2D: High-Order Nodal Spatial Discretization

The nodal basis set is constructed using a tensor-product of Lagrange polynomials hi (ξ),
with roots at Gauss-Lobatto-Legendre (GLL) quadrature points {ξi}.

hi (ξ) =
(ξ2 − 1) P′

N(ξ)

N(N + 1) PN(ξi ) (ξ − ξi )
;

Z 1

−1
hi (ξ)hj (ξ) ≃ wi δij .

PN(ξ) is the Nth degree Legendre polynomial; and wi are Gauss quadrature weights

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

4th Degree Lagrange Basis Functions

x

h(
x)

E l e m e n t )
η+ ξ →↑( 0 1 , 0 1 )

( + 1 , + 1 )e 5 x 5 G L L G r i d
The approximate solution Uh and test function are represented in terms of nodal basis set.

Uij (ξ, η) =
NX

i=0

NX

j=0

Uij hi (ξ) hj (η) for − 1 ≤ ξ, η ≤ 1,
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DG-2D Discretization

DG-2D: The Flux Term

Resolving the discontinuity at element edges by numerical flux

U +
hU
_

Uh Uhh

After Num. Flux Operation

Element (Left) Element (Right)Element (Right)Element (Left)

Along the boundaries (Γe ) of the element Ωe the solution Uh is discontinuous (U−

h and

U+
h are the left and right limits).

Therefore, the analytic flux F(Uh) · ~n must be replaced by a numerical flux such as the
Lax-Friedrichs Flux:

F(Uh) · ~n =
1

2

h
(F(U−

h ) + F(U+
h )) · ~n − α(U+

h − U−

h )
i

.

Note: For scalar problem α = max |F ′(U)|, and for a system α is the upper bound on the
absolute value of eigenvalues of the flux Jacobian F′(U).
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DG-2D Time integration

DGM: Explicit Time Integration Method

Final form for the discretization leads to an ODE for each Uij (t);

d

dt
Uij (t) =

4

∆x1
i ∆x2

j wiwj
[IGrad + IFlux + ISource ]

For a system of conservation laws, solve the decoupled ODE system:

d

dt
Uh(t) = L(Uh) ⇒ d

dt
Uh = L(Uh) in (0, T )

Strong Stability Preserving third-order Runge-Kutta (SSP-RK) scheme (Gottlieb et al.,
SIAM Review, 2001)

U(1) = Un + ∆tL(Un)

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tL(U(1))

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
∆tL(U(2)).

where the superscripts n and n + 1 denote time levels t and t + ∆t, respectively
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DG-2D Time integration

The DG, SE & FV Methods

C

DG SE

FV
Boundary Discontinuity   Continuous 0

For DGM degrees of freedom (d.o.f) to evolve per element is N2, where N is the order of
accuracy.

For FV method the d.o.f is 1 (cell-average), irrespective of order of accuracy.

DGM is based on conservation laws but exploits the spectral expansion of SE method and
treats the element boundaries using FV “tricks.”
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DG-2D Results

DG-2D Advection Test: Solid-Body Rotation of a Gaussian-Hill

h-error: Keep the degree of the
polynomial fixed, change number
of elements

p-error: Keep the number of
elements fixed, change degree of
polynomial

Spectral convergence

400 1600 6400 25600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

2D h−error (rotation)

E
rr

or
 (

lo
g 

sc
al

e)

N

k=1
k=2
k=3
k=4

1 2 3 4 5 6 7 8
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

2D p−error (rotation)

E
rr

or
 (

lo
g 

sc
al

e)

Degree of Legendre polynomial

40 x 40 grid
160 x 160 grid

Ram Nair (IMAGe/NCAR) DG Methods for Atmospheric Modeling June 18, 2009 13 / 52



DG-2D Results

DG-2D: Scaling Results (Levy, Nair & Tufo, 2007)

Problem: Advection of a Gaussin-hill, 80 × 80 elements with 6 × 6 GLL grid

Strong scaling is measured by increase the number processes running while keeping the
problem size constant

Weak scaling is measured by scaling the problem along with the number of processors, so
that work per process is constant
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DG-2D Results

DG Explicit time integration: CFL Stability

High-order Galerkin methods have stringent explicit time-stepping limitation

The Courant number (CFL) for the DG scheme is estimated to be 1/(2k + 1), where k is
the degree of the polynomial (Cockburn and Shu, 1989).

For a third-order Runge-Kutta time stepping estimated CFL (Cockburn & Shu, 2001):

Degree (k): 1 2 3
CFL: 0.409 0.209 0.130

Remedy: Use low-order polynomials (k ≤ 3) or efficient semi-implicit / implicit time
integrators

Efficient time integration schemes for DG methods are under investigation (on going
research under DOE SciDAC project)
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DG-2D Limiter

Monotonic Limiter for DG transport

Importance:

In atmospheric models, mixing ratios of the advecting chemical species and
humidity should be non-negative and free from spurious oscillation.
The model should avoid creating unphysical negative mass

Challenges:

Godunov theorem (1959): “Monotone scheme can be at most first-order accurate”
There is a “conflict of interest” between the high-order methods and monotonicity
preservation!
In principle, a limiter should eliminate spurious oscillation and preserve high-order
nature of the solution to a maximum possible extent

Existing Limiters for DGM:

Minmod limiter (Cockburm & Shu, 1989): Based on van Leer’s slope limiting, but
too diffusive
Limiters based on WENO (Qui & Shu 2005), Moments (Krivonodova, 2008):
Expensive and no positivity preservation
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DG-2D Limiter

DG-2D: A New Limiter for Transport Problems

The minmod limiter can be applied in x and y -direction sequentially, however it is very
diffusive.

Uh(x , y , t) = Uh(t) + Ux (t) x + Uy (t) y + Uxy (t)xy + Uxx (t)x
2 + Uyy (t)y2 + HOT

First, check for the positivity violation of Uxy (t) , Uxx (t) and Uyy (t). If necessary, limit
the low-order terms Ux (t) and Uy (t).

i−1,j+1

Ω ΩΩ

Ω

Ω

ΩΩ

ΩΩ

i−1,j i+1,ji,j

i+1,j−1

i+1,j+1

i−1,j−1 i,j−1

i,j+1

Limiter selectively applies slope limiting employs a 3× 3 element stencil and positivity as a
constraint. The resulting method is up to third-order accurate.
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DG-2D Limiter

DG-2D P2 (Third-Order): Solid-Body Rotation (Leveque, 2004)

Solid-Body rotation of a cosine-cone and a square block (80 × 80 elements, 3 × 3 GLL points)

→ ↑←↓

After one revolution, no limiting
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DG-2D Limiter

DG2D: Monotonic limiting (with positivity preservation)

Solid-Body rotation after one revolution with constrained limiting

→ ↑←↓
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SW model Cubed-Sphere

Extending DG Methods to Spherical Geometry

The Cubed-Sphere Topology [Sadourny, MWR 1972]

Free of polar singularities

Quasi-uniform rectangular mesh

Non-orthogonal grid lines, discontinuous edges

Well suited for the element-based methods such as DG or SE
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SW model Cubed-Sphere

Cubed-Sphere: Central (Gnomonic) Projection

The sphere is decomposed into 6 identical regions, using the central (gnomonic)

projection of an inscribed cube with side 2a:

Equiangular projection using central angles
α, β ∈ [−π/4, π/4], (∆α = ∆β)
Equiangular projection generates more uniform mesh on the sphere as opposed to
equidistant projection [Rancic et al., 1996; Nair et al. 2005]
All the grid lines are great-circle arcs
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SW model Cubed-Sphere

Non-Orhogonal Cubed-Sphere Grid System

Metric Tensor Gij , [Cubed-Sphere ⇋ Sphere] Transform

Central angles (α, β) = (x1, x2) are the independent variables such that x1, x2 ∈ [−π/4, π/4].

Gij =
R2

ρ4 cos2 x1 cos2 x2

»
1 + tan2 x1 − tan x1 tan x2

− tan x1 tan x2 1 + tan2 x2

–

where ρ2 = 1 + tan2 x1 + tan2 x2, i , j ∈ {1, 2}

Computational domain is the cube [−π/4, +π/4]3

EE S / 4π π / 4− +xe ex 12P h y s i c a l D o m a i n C o m p u t a t i o n a l D o m a i n
+ π / 4`a bb b baa a z

 4 F 2 F 3F 1

F 6

F 5
(Top)

F 1

(Bottom)

x

yF
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SW model Cubed-Sphere

Cubed-Sphere Geometry in terms of Regular (λ, θ) Coordinates

Metric tensor in terms of longitude-latitude (λ, θ):

Gij = AT A; A =

»
R cos θ ∂λ/∂x1 R cos θ ∂λ/∂x2

R ∂θ/∂x1 R ∂θ/∂x2

–

The Jacobian of the transformation (metric term) is

√
G = [det(Gij ]

1/2

The matrix A is used for transforming spherical (physical) velocity (u, v) to the covariant
(u1, u2) and contravariant (u1, u2) velocity.

»
u
v

–
= A

»
u1

u2

–
; G ij = (Gij )

−1 =

»
G 11 G 12

G 21 G 22

–
= A−1A−T

A matrices and G ’s are all analytical, and can be pre-computed.
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SW model SW-Model

2D System: Shallow Water Model on the Cubed-Sphere

Flux-form SW equations (Vector invariant form):

[Nair, Thomas & Loft (MWR, 2005a,b)]

∂u1

∂t
+

∂

∂x1
E =

√
G u2(f + ζ)

∂u2

∂t
+

∂

∂x2
E = −

√
G u1(f + ζ)

∂

∂t
(
√

G h) +
∂

∂x1
(
√

G u1h) +
∂

∂x2
(
√

G u2h) = 0

where G = det(Gij), h is the height, f Coriolis term; energy term and vorticity are
defined as

E = Φ +
1

2
(u1 u1 + u2 u2), ζ =

1√
G

[

∂u2

∂x1
− ∂u1

∂x2

]

.
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SW model SW-Model

HOMME (DG) SW Model Discretization

(8x8)

(1, −1)

(1, 1)(−1, 1)

(−1, −1)

η

ξ

 GLL Grid 

Cubed-Sphere (Ne = 5) with 8 × 8 GLL points

Each face of the cubed-sphere is partitioned into Ne × Ne rectangular non-overlapping
elements (i.e., total 6 × N2

e spans the entire sphere).

Each element is mapped onto the Gauss-Lobatto-Legendre (GLL) grid defined by
−1 ≤ ξ, η ≤ 1, for integration.

Flux is the only “communicator” at the element edges. Nearest neighbor communication
is ideal for parallel implementation.
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SW model SW-Model

SW Model: Advection of a Cosine-bell [Williamson et al., 1992]

The DG transport is more accurate than the SE transport [Nair et al. 2005]

DGM Vs SEM run: Time traces for the normalized ℓ1,ℓ2 and ℓ∞ errors (∆t = 30s)

Cosine-Bell Movie
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SW model SW-Model

DG SW Model: Advection Tests

Global Transport with the monotonic limiter

Spectral convergence with a Gaussian-hill advection on the sphere
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SW model SW-Model

Low-Order Tests: Second-Order DG Vs FV-MUSCL

Strong curvature terms associated with cubed-sphere geometry creates difficulty for the
regular FV transport schemes

Cosine-Bell advection along the equator
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SW model SW-Model

Advection: Deformational Flow (Moving Vortices on the Sphere)

Initial field and DG solution after 12 days. Max error is O(10−5)

A New Deformational Flow Test [Nair & Jablonowski (MWR, 2008)]

The vortices are located at diametrically opposite sides of the sphere, the vortices deform
as they move along a prescribed trajectory.

Analytical solution is known and the trajectory is chosen to be a great circle along the NE
direction (α = π/4).
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SW model SW-Model

SW Test-2: Geostrophic Flow [Nair,Thomas & Loft, MWR 2005]

High-order accuracy and spectral convergence

Steady state geostrophic flow (α = π/4). Max height error is O(10−6) m.
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SW model SW-Model

SW Test-5: Flow over a Mountain [Dennis et al. 2006]S p e c t r a l R i n g i n g ( T 2 1 3 )
“Spectral ringing” (spurious oscillation) is
associated with the high-order spectral
methods (Jacob-Chien et al., 1995)

No spectral ringing for the height fields in
DG simulations

Flow over a mountain (≈ 0.5o ). Initial height field (left) initial and after 15 days of integration (right)

SW5 Movie
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SW model LDG

Viscous Shallow Water Model on the Cubed-Sphere

Local Discontinuous Galerkin (LDG) method: [Bassi and Rebay (JCP, 1997]

Element-wise localized diffusion (ELD) leads to inconsistent formation of diffusion
(viscous flux) terms in DG discretization.

Momentum equations for viscous SW model can be written in the following general form:

∂

∂t
U + ∇c · F(U) = ν

√
G ∇2

s U + S(U), in C × (0, T ],

where ν is the diffusion coefficient, F = (F1,F2) is the flux function, and ∇c ≡ (∂/∂x1, ∂/∂x2).

√
G ∇2

s U ≡
√

G div(grad(U))

=
∂

∂x1

»√
GG 11 ∂U

∂x1
+

√
GG 12 ∂U

∂x2

–
+

∂

∂x2

»√
GG 21 ∂U

∂x1
+

√
GG 22 ∂U

∂x2

–
.
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SW model LDG

Viscous Shallow Water Model on the Cubed-Sphere

The key idea of LDG approach is the introduction of a local auxiliary variable q = ∇cU,
and rewrite the momentum equation as a first-order system:

q −∇cU = 0,

eq = qMT ,

∂U

∂t
+ ∇c · F(U) − ν ∇c · eq = S(U).

Where

q =

»
∂U

∂x1
,

∂U

∂x2

–
, M =

» √
GG 11

√
GG 12

√
GG 21

√
GG 22

–
and eq = qMT .

On each element Ωe with boundary Γe on C, the weak form results in

Z

Ωe

qh · w dΩ =

Z

Γe

Uh w · n dΓ −
Z

Ωe

Uh∇c · w dΩ

The flux associated with Uh along the boundary Γe is approximated with the central flux
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SW model LDG

Diffusion Experiments: ELD Vs LDG [Nair, MWR 2009]

Ram Nair (IMAGe/NCAR) DG Methods for Atmospheric Modeling June 18, 2009 34 / 52



SW model LDG

Diffusion Experiments: Barotropic Instability Test [Galewsky, Tellus 2004]
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DG-3D

3D DG Hydrostatic Model in HOMME

Extending the DG SW model to a hydrostatic dynamical core:

The DG hydrostatic model is a conservative option in the HOMME
(High-Order Method Modeling Environment) framework
Vertical coordinates are Lagrangian and based on ‘evolve and remap’
strategy
The 3D hydrostatic atmosphere can be treated as a vertically stacked
shallow water systems
Periodic remapping is performed with a conservative method
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DG-3D Baroclinic model

Hydrostatic Prognostic Equations in Flux Form (Curvilinear coordinates)

∂u1

∂t
+ ∇c · E1 + η̇

∂u1

∂η
=

√
Gu2 (f + ζ) − R T

∂

∂x1
(ln p)

∂u2

∂t
+ ∇c · E2 + η̇

∂u2

∂η
= −

√
Gu1 (f + ζ) − R T

∂

∂x2
(ln p)

∂

∂t
(m) + ∇c ·

(

Ui m
)

+
∂(mη̇)

∂η
= 0

∂

∂t
(mΘ) + ∇c ·

(

Ui Θ m
)

+
∂(mη̇ Θ)

∂η
= 0

∂

∂t
(mq) + ∇c ·

(

Ui q m
)

+
∂(mη̇ q)

∂η
= 0

m ≡
√

G
∂p

∂η
,∇c ≡

„
∂

∂x1
,

∂

∂x2

«
, η = η(p, ps ), G = det(Gij ),

∂Φ

∂η
= −R T

p

∂p

∂η
.

Where m is the mass function, Θ is the potential temperature and q is the moisture variable.

Ui = (u1, u2), E1 = (E , 0), E2 = (0, E); E = Φ + 1
2

`
u1u1 + u2u2

´
is the energy term. Φ is the

geopotential, ζ is the relative vorticity, and f is the Coriolis term.
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DG-3D Baroclinic model

Vertical Lagrangian Coordinates [Starr, 1945; Lin 2004; Nair & Tufo 2007]

A “vanishing trick” for vertical advection terms

Terrain-following Eulerian surfaces are treated as material surfaces.

The resulting Lagrangian surfaces are free to move up or down direction.

top

Topography

δp

k 

k

p
s

p
Vertically Moving Lagrangian Surfaces

Φs

−1/2

+1/2

k
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DG-3D Baroclinic model

3D Prognostic Equations with Vertical Lagrangian Coordinates

Lagrangian treatment of the Vertical coordinates results in η̇ = 0 and the
mass function m =

√
Gδp = ∆p (pressure thickness).

Contravariant formulation preserves the familiar “vector invariant” form for
the momentum equations.

Momentum Equations: No explicit vertical advection terms

∂u1

∂t
+ ∇c · E1 =

√
Gu2 (f + ζ) − R T

∂

∂x1
(ln p)

∂u2

∂t
+ ∇c · E2 = −

√
Gu1 (f + ζ) − R T

∂

∂x2
(ln p)

∇c ≡
(

∂

∂x1
,

∂

∂x2

)

, E1 = (E , 0), E2 = (0, E ),

E = Φ +
1

2

(

u1u
1 + u2u

2
)
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DG-3D Baroclinic model

3D Prognostic Equations: Flux-Form Continuity Equations

Temperature field is advected with the mass variable ∆p

∂

∂t
(∆p) + ∇c ·

(

Ui ∆p
)

= 0

∂

∂t
(Θ∆p) + ∇c ·

(

Ui Θ ∆p
)

= 0

∂

∂t
(q ∆p) + ∇c ·

(

Ui q ∆p
)

= 0

where Ui =
(

u1, u2
)

, ∆p =
√

Gδp, δp is the pressure thickness, and Θ is the
potential temperature.

Vertical layers are coupled with the hydrostatic relations:

∆Φ = −CpΘ∆Π, ∆Φ = −RT∆ ln p

where Π = (p/p0)
κ and T Denotes the layer mean temperature.
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DG-3D Baroclinic model

The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

Over time, Lagrangian surfaces deform and thus must be remapped.

The velocity fields (u1, u2), and total energy (ΓE ) are remapped onto the reference
coordinates using the 1-D conservative cell-integrated semi-Lagrangian (CISL) method
(Nair & Machenhauer, 2002)

E

E

∆P
∆P

t

= Pressure thicknessP∆ Lagrangian Surface

Terrain−following Lagrangian control−volume coordinates

L 2

L 1

1

2

t +∆t

Topography

Remapping: Lauritzen & Nair, MWR, 2008; Norman & Nair, MWR, 2008)
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DG-3D Baroclinic model

Computational Grid Structure for DG Model

k+1/2

k − 1/2

(  φ p

(  φ,p)

k (  u, v, θ, , δp )
k

GLL− Grid box

q

, )
k+1/2

k − 1/2

The remapping frequency is O(10) × ∆t

Potential temperature Θ is retrieved from the remapped total energy
ΓE = cpT + δ(pφ)

δp + KE
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DG-3D Baroclinic model

DG-3D: Baroclinic Instability Test

JW-Test [Jablonowski & Williamson (QJRMS, 2006)]

A standard benchmark test for atmospheric dynamical cores

To assess the evolution of an idealized baroclinic wave in the Northern Hemisphere.

The initial conditions are quasi-realistic and defined by analytic expressions. Analytic
solutions do not exist.

Initial Conditions
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DG-3D Baroclinic model

JW-Test: Evolution of Surface Pressure over the NH

Baroclinic waves are triggered by perturbing the velocity field at (20◦E, 40◦N)

This test case recommends up to 30 days of model simulation

Ne = Nv = 8 (approx. 1.6◦) with 26 vertical levels and ∆t = 30 Sec.
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DG-3D Baroclinic model

DG-3D Model Vs. NCAR Spectral Model

The DG Solution is smooth and free from “spectral ringing”.
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DG-3D Baroclinic model

DG Model Vs. NCAR Climate Models [Nair, Choi & Tufo, 2009]

Simulated surface pressure at day 11 for a baroclinic instability test with DG model, NCAR spectral & FV models
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DG-3D Baroclinic model

DG-3D Model Vs. Other Models N C A R y T 3 4 00 . 3 58 5 0 h P a R e l a t i v e V o r t i c i t y F i e l d s a t D a y 7 ( 1 0 ^ � 5 / s )
H O M M E y D G0 . 5 6

N A S A y G E O S0 . 2 5
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DG-3D Baroclinic model

DG-3D Model Vs. NCAR Climate Models

Temperature fields at 850 hPa level, with HOMME-DG, NCAR Spectral & FV models.

The DG-3D model successfully simulates the Baroclinic instability and the results are
comparable with that of the NCAR models.
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DG-3D Baroclinic model

Parallel Performance (3D) - Frost [IBM BG/L]

DG-3D parallel performance: Sustained Mflops on IBM BG/L (1024 DP nodes, 700 MHz
PPC 440s): Approx. 9% peak (preliminary results without code optimization)
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1944 elements: 1 task/node (CO)
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7776 elements: 1 tasks/node (CO)
7776 elements: 2 tasks/node (VN)

HOMME-DG dynamical core employs 6th
order polynomials and about 50% slower
than the HOMME-SE dynamical core
(with 4th order polynomials).

However, a third-order DG version in
HOMME (CFL ≈ 0.21) can compensate
the integration rate deficiency

Idealized climate simulations (Held-Suarez, aqua planet) with CAM/HOMME-SE
dynamical core (Taylor et al. 2008) is very promising. Integration of HOMME-DG with
CAM physics is an ongoing effort.
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summary

Summary

The DG method with moderate order (third or fourth) is an excellent choice for solving

conservation laws as applied in atmospheric sciences. DGM addresses:

1 Local and global conservation
2 High-order accuracy
3 Geometric flexibility
4 Non-oscillatory advection
5 High parallel efficiency

Non-oscillatory DG transport (positive definite option) is found to be accurate and
effective up to third-order.

The preliminary idealized test results and parallel scaling results are impressive and
comparable to the SE version in HOMME.

The LDG formulation is consistent and very effective for diffusion mechanism in
HOMME/DG

The explicit Runge-Kutta time integration scheme is robust for the DG-3D model, but
very time-step restrictive.
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summary

Future Work

Coupling HOMME-DG with the CAM/CCSM physics for the real climate
simulations. Targeting for large-scale parallelism with O(100K ) processors.

Efficient time stepping
More efficient time integration schemes are required for practical application climate
simulations.
Possible approaches: Semi-implicit, implicit, IMEX-RK, Rosenbrock with optimized
Schwarz, etc.. (supported by the DOE SciDAC project)

Extending HOMME further to a full Non-Hydrostatic model
Tools: Third-order DG combined with non-oscillatory H-WENO method; efficient
FV methods
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THANK YOU!

Ram Nair
Institute for Mathematics applied to Geosciences

National Center for Atmospheric Research
Table Mesa Drive, Boulder CO 80305, USA.
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http://www.image.ucar.edu/staff/rnair/
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