Dynamical Constraints for Global 3D-Var Assimilation Using GEM-Strato

Matt Reszka⁽¹⁾ Saroja Polavarapu⁽¹⁾

November 28, 2008

Acknowledgments: Yves Rochon⁽²⁾, Luc Fillion⁽¹⁾, Mark Buehner⁽¹⁾, Cécilien Charette⁽¹⁾

⁽¹⁾ARMA, ⁽²⁾ARQX

Dynamical Constraints: Overview

- Constraints between mass and wind \circ e.g. Temperature T and streamfunction Ψ • Constraints between rotational and irrotational wind \circ e.g. Streamfunction Ψ and velocity potential χ
- Dynamical constraints help to
 - spread information from observed to unobserved variables
 - minimize imbalance (supress spurious gravity waves)

CMC 3D-Var formulation

- is incremental (as most major NWP centres)
- balanced temperature and velocity potential increments δT_B, δχ_B derived from streamfunction increment δΨ

 minimization involves *unbalanced* increments

 δΨ, δT_U, δχ_U, etc. are uncorrelated with each other

Motivation 1: Flow dependence of increments

One-obs increments using Charney and QG omega balances

Fisher (ECMWF Tech Note, 2003)

Motivation 2: Anomalous dispersion

Schoeberl et al (JGR, 2003)

- 3D back-trajectory calculations after 50 days
 - \circ Diabatic: w estimated using heating rates
 - \circ Kinematic: w derived from divergence
- Excessive mixing in analyses compared with free model

Motivation 3: Age of air

• Age of air too low in most analysis-driven CTMs

- CTM age of air closest to obs using EXP471 winds
- Improvement partially attributed to better balance

Monge-Sanz et al (GRL, 2007)

Project Outline

• Goal of study:

To implement Charney and QG omega balances in CMC 3D-Var scheme

- Step 1: Code and test solvers for full equations
- Step 2: Code and test solvers for TLM equations

 Can utilize model 6-hour differences
 Issues with dynamics in incremental context
- Step 3: Code and test adjoint models
- Step 4: Run 3D-Var with control and new balance constraints

Experimental Setup

- Forecast model: GEM-Strato (240x120, L80, lid at 0.1 hPa)
- Assimilation scheme: CMC 3D-Var FGAT
- Variances and correlations: similar to operations

Traditional constraints (i.e. control)

- $\delta T_{\rm B}$ and $\delta \chi_{\rm B}$ obtained from $\delta \Psi$
- Both constraints based on statistical regression
- Both constraints time-averaged \longrightarrow *no flow-dependence*
- $\delta \Psi \delta \chi_{\rm B}$ constraint only active in lowest 8 levels

Schematic of new constraints

$$\delta \Psi \rightarrow \begin{bmatrix} \text{Linear or} \\ \text{Charney} \end{bmatrix} \rightarrow \delta \Phi_{\mathsf{B}} \rightarrow \begin{bmatrix} \text{Hydrostatic} \end{bmatrix} \rightarrow \delta T_{\mathsf{B}}$$
$$(\delta \Psi, \delta T_{\mathsf{B}}) \rightarrow \begin{bmatrix} \text{QG } \omega \end{bmatrix} \rightarrow \delta \omega_{\mathsf{B}} \rightarrow \begin{bmatrix} \text{Continuity} \end{bmatrix} \rightarrow \delta \chi_{\mathsf{B}}$$

Acronyms to keep in mind

- SB Statistical Balance (i.e. control)
- LB Linear Balance + Hydrostatic Balance
- **CB Charney Balance + Hydrostatic Balance**
- **QG QG omega balance + Continuity Equation**

Calculation of $T_{\rm B}$ and $\chi_{\rm B}$ from Ψ

• Charney (or linear) balance and hydrostatic balance yield T_{B}

$$\nabla^2 \Phi_{\mathbf{B}} = f \nabla^2 \Psi - \beta u + 2J(u, v)$$

• QG ω equation and continuity equation yield $\chi_{\rm B}$

$$\left(\nabla^2 + \frac{f^2}{\sigma} \frac{\partial^2}{\partial p^2} \right) \omega_{\mathbf{B}} = \frac{f}{\sigma} \frac{\partial}{\partial p} [\mathbf{u}_{\psi} \cdot \nabla (f + \zeta)] + \frac{R}{\sigma p} \nabla^2 (\mathbf{u}_{\psi} \cdot \nabla T_{\mathbf{B}})$$
$$\nabla^2 \chi_{\mathbf{B}} + \frac{\partial \omega_{\mathbf{B}}}{\partial p} = 0$$

- Equations are linearized about reference state in η coordinates
- Linearized equations are solved at every analysis time $\circ \delta \Psi$ assumed balanced, compute δT_{B} and $\delta \chi_{B}$

Free model vs. Charney balance (full fields)

Latitude (degrees) -30 -60-90 -180-120-60 Longitude (degrees)

T(model), 500 hPa

$T_{\rm B}({\rm CB}),$ 500 hPa

T(model), zonal mean

$T_{\rm B}({\rm CB})$, zonal mean

Free model vs. Charney balance (6-hour differences)

Source of problem and a potential solution

Small horizontal scales (large vertical scales)

- $\circ \delta \Psi$ evolution determines δT evolution
- \circ also appropriate in tropics
- Large horizontal scales (small vertical scales)

 $\circ \delta T$ evolution determines $\delta \Psi$ evolution

Lorenc et al 2003

- $\Longrightarrow \delta \Psi$ contains no useful information about δT on planetary scales
- Solution: Filter out first 5 wavenumbers from $\delta\Psi$ before calculation

Free model vs. filtered Charney balance (6-hour differences)

Linear vs. Charney Balance: 6-hour differences

January-mean Std. Dev. of

 $\delta T_{\rm U} = \delta T - \delta T_{\rm B}$

where

 δT = model 6-hour difference $\delta T_{\rm B}$ = Linear Balance (LB) $\delta T_{\rm B}$ = Charney Balance (CB) $\delta T_{\rm B}$ = Charney Balance + sphericity terms

Note, for full fields,

$$\nabla^2 \Phi = \nabla \cdot (f \nabla \Psi) + 2J(u, v)$$
$$-\frac{1}{a} \left(1 + \tan \phi \frac{\partial}{\partial \phi}\right) (u^2 + v^2)$$

Linear vs. Charney Balance, continued...

• Colors:Linear (LB), Charney (CB), Charney + spherical terms

- CB better than LB in midlatitudes, troposphere
- Not much difference elsewhere
- Spherical terms (Houghton 1968) make no significant contribution

Implementation of Constraints in 3D-Var

- Tangent-linear code tested and validated offline
- Adjoint code tested offline using Adjoint Test

$$(Lx)^T y = x^T (L^T y)$$
 for all (x, y)

Tangent-linear and Adjoint codes imported into 3D-Var
 Scheme tested using Gradient Test

$$J(x_0 + \delta x) = J(x_0) + \delta x^T \nabla_x J(x_0) + O(\delta x^2)$$
 Let

$$\delta x = -\alpha \nabla_x J(x_0)$$

Then as $\alpha \longrightarrow 0$

$$\frac{J(x_0 + \delta x) - J(x_0)}{-\alpha ||\nabla_x J(x_0)||^2} \longrightarrow 1 \quad \text{from below}$$

IT CAME FROM PLANET ADJOINT...

One-obs experiment (obs in GZ at 80°W, 50°N, 300hPa)

- Flow-dependent δT response for CB constraint (not SB or LB)
- Color shading shows background flow (geopotential)

One-obs: Increment vertical structure

Response somewhat larger and more focused with LB, CB constraint

One-obs experiment (obs in TT at 80°W, 50°N, 300hPa)

Flow-dependent \(\delta U\) response for CBQG constraint (not SB or LB)
 Color shading shows background flow (geopotential)

Snapshots of δT increments from 3D-Var (500 hPa and zonal mean)

δT(CB)−500hPa

Snapshots of $\delta \chi$ increments from 3D-Var (500 hPa and 50 hPa)

$\delta \chi$ (CBQG)-500hPa

January-mean $\delta \Psi$, δT_{U} correlations in 3 latitude bands

- **BLUE:** SB (control) operator
- RED: CB (Charney) operator
- GREEN: CBQG (Charney + QG omega)
- CB and CBQG very similar
- Some improvement (less correlation) with CB than with SB

January-mean $\delta \Psi$, $\delta \chi_{u}$ correlations in 3 latitude bands

- BLUE: SB (control) operator
- RED: CB (Charney) operator
- GREEN: CBQG (Charney + QG omega)
- CB and CBQG significantly different
- Some improvement (less correlation) with CB than with SB

January-mean scores (tropics) for control and new balances

- **BLUE:** SB (control) operator
- RED: CB (Charney) operator
- Some improvement with CB both in O-A and O-P

January-mean scores (global) for control and new balances

• **BLUE:** SB (control) operator

• RED: CB (Charney) operator

- Significant improvement in O-A TT std. dev. at all levels
- Deterioration in O-P TT std. dev. above 200, no change below.

Efficiency of Constraints within 3D-Var

January cycles

	Control	Charney	Charney + QG
Number of iterations	105	68	68
Number of simulations	112	74	73
3D-Var duration (minutes)	19	24	56

September cycles

	Control	Charney	Charney + QG
Number of iterations	88	60	60
Number of simulations	94	65	65
3D-Var duration (minutes)	18	22	52

• Note: New constraints not optimized yet

Deriving new background variances

- Derivation of consistent variances/correlations not trivial

 want stats to be consistent with each balance
 should respect scalings applied to control stats
 should use the same total variance in all cycles
- Idea: Use 24-48 hour forecast differences $d\Psi$, dT, etc.
- Compute total, balanced, unbalanced variance using SB $\circ \langle dT \rangle^2$, $\langle dT_B(SB) \rangle^2$, $\langle dT_U(SB) \rangle^2 = \langle dT \rangle^2 - \langle dT_B(SB) \rangle^2$
- Compute balanced, unbalanced variance using LB

$$> \langle dT_{\mathsf{B}}(\mathsf{LB}) \rangle^2$$
, $\langle dT_{\mathsf{U}}(\mathsf{LB}) \rangle^2 = \langle dT \rangle^2 - \langle dT_{\mathsf{B}}(\mathsf{LB}) \rangle^2$

• Produce new variances by scaling control variances

$$\circ \left\langle \delta T_{\mathbf{U}}(\mathbf{LB}) \right\rangle = \frac{\left\langle dT_{\mathbf{U}}(\mathbf{LB}) \right\rangle}{\left\langle dT_{\mathbf{U}}(\mathbf{SB}) \right\rangle} \left\langle \delta T_{\mathbf{U}}(\mathbf{SB}) \right\rangle$$

Conclusions

- New ΨT , $\Psi \chi$ constraints were implemented in 3D-Var \circ based on Charney Balance and QG ω equation
- New constraints provide *flow-dependent increments*
- Resulting increments are reasonable physically \circ Spurious vertical δT correlations still a concern
- New constraints improve O-A and O-P scores in tropics
- O-A scores improve in extra-tropics
 - O-P scores deteriorate above 200 hPa, no change below
- Number of iterations decreases but execution time increases
- In global problem Charney Balance makes dominant contribution \circ QG ω contribution relatively small *in adiabatic case*

Future directions

- Introduce new statistics consistent with each balance
- \bullet Introduce diabatic forcing into QG ω equation
- Consider scale-dependent or PV-based control variables?

Thank you!

Merci!

Incremental Formulation: Overview

• Analysis increment δx transformed *via*

$$\delta x = \begin{bmatrix} \delta \Psi \\ \delta \chi \\ \delta T, \delta p_s \\ \delta \ln q \end{bmatrix} = \begin{bmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{E} & \mathbf{I} & 0 & 0 \\ \mathbf{N} & 0 & \mathbf{I} & 0 \\ 0 & 0 & 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \delta \Psi_{\mathbf{U}} \\ \delta \chi_{\mathbf{U}} \\ \delta T_{\mathbf{U}}, (\delta p_s)_{\mathbf{U}} \\ (\delta \ln q)_{\mathbf{U}} \end{bmatrix} = \mathbf{K} \delta x_{\mathbf{U}}$$

• Then "background component" of cost function is

$$J_b(\delta x) = \delta x^T \mathbf{B}^{-1} \delta x := \delta \hat{x}^T \delta \hat{x}$$

where

$$\mathbf{B} = \mathbf{K} \boldsymbol{\Sigma}_{\mathsf{U}} \mathbf{S}^{-1} \mathbf{E}_{\mathsf{U}} \boldsymbol{\Lambda}_{\mathsf{U}} \mathbf{E}_{\mathsf{U}}^{T} \mathbf{S}^{-T} \boldsymbol{\Sigma}_{\mathsf{U}} \mathbf{K}^{T}$$

• After minimization, recover δx

$$\delta x = \mathbf{K} x_{\mathsf{U}} = \mathbf{K} \Sigma_{\mathsf{U}} \mathbf{S}^{-1} \mathbf{E}_{\mathsf{U}} \Lambda_{\mathsf{U}}^{\frac{1}{2}} \delta \hat{x}$$

One-obs experiment (obs in TT at 80°W, 50°N, 300hPa)

• Flow-dependent $\delta U, \delta V$ response for CBQG constraint (not SB)

Color shading shows background flow (geopotential)

September-mean $\delta \Psi$, δT_{u} correlations in 3 latitude bands

- **BLUE:** SB (control) operator
- RED: CB (Charney) operator
- GREEN: CBQG (Charney + QG omega)
- CB and CBQG very similar
- Some improvement (less correlation) with CB than with SB

September-mean $\delta \Psi$, $\delta \chi_{u}$ correlations in 3 latitude bands

- BLUE: SB (control) operator
- RED: CB (Charney) operator
- GREEN: CBQG (Charney + QG omega)
- CB and CBQG significantly different
- Some improvement (less correlation) with CB than with SB

September-mean scores (tropics) for control and new balances

- **BLUE:** SB (control) operator
- RED: CB (Charney) operator
- Some improvement with CB both in O-A and O-P

September-mean scores (global) for control and new balances

BLUE: SB (control) operator
 RED: CB (

• RED: CB (Charney) operator

- Significant improvement in O-A TT std. dev. at all levels
- Deterioration in O-P TT std. dev. above 200, no change below.