

MeteoAG

Outline

Grid -

The Grid workflow

Testing the

Testing the

Grid computing with - and standard test cases for - a meteorological limited area model

Felix Schüller

Institute of Meteorology and Geophysics Innsbruck, Austria

7th May 2008, CMC, Montreal

Diploma thesis - Funded by the Austrian BMBWK (Federal Ministry for Education, Science and Culture) Funder Office on track of the 1003 / 24 George of

MeteoAG

Outline

Introduction

The Grid workflow MeteoAG

Testing the

Testing the

- Grid Introduction
- 2 The Grid workflow MeteoAG
- Testing the Grid
- 4 Testing the model

Starting point

MeteoAG

Motivation:

- The need for finer scale analyses of heavy precipitation cases in the Alps ($\Delta x = 500$ m)
- Use meteorological model of the atmosphere
- Computationally expensive and many similar model runs

Starting point

MeteoAG

Motivation:

- The need for finer scale analyses of heavy precipitation cases in the Alps ($\Delta x = 500$ m)
- Use meteorological model of the atmosphere
- Computationally expensive and many similar model runs

GRID

Aims:

Create heavy precipitation database

Outline

MeteoAG

Outline

Grid -Introduction Definition Definition II Types of Grid Structure AustrianGrid

The Grid workflow MeteoAG

Testing the Grid

Testing the model

- Grid Introduction
 - Definition
 - Definition II
 - Types of Grid
 - Structure
 - AustrianGrid
- 2 The Grid workflow MeteoAG
- Testing the Grid
- Testing the model

What is Grid Computing - Idea power grid

Ask 5 experts - get 5 answers...

MeteoAG

Definition

What is Grid Computing - Idea power grid

MeteoAG

Definition

Ask 5 experts - get 5 answers...

Power supply system:

- uniform access outlet
- supplies product on demand
- always available
- origin of the product doesn't matter
- payment by usage

MeteoAG

Definition II

A Grid:

- connects dynamically different computing resources, databases and people
- provides hardware and software

MeteoAG

Outline

Introduction
Definition
Definition II
Types of Grid
Structure
AustrianGrid

The Grid workflow Meteo A C

Testing the Grid

Testing the model

A Grid:

- connects dynamically different computing resources, databases and people
- provides hardware and software

keyword:

Sharing of resources

MeteoAG

Types of Grid

3 aspects:

- "Desktop PC's" Grid
 - Seti@Home student PC at Uni Innsbruck
 - cheap
 - usage of idle times

MeteoAG

Types of Grid

3 aspects:

- "Desktop PC's" Grid
 - Seti@Home student PC at Uni Innsbruck
 - cheap
 - usage of idle times
- Data-Grid
 - managing huge amounts of distributed data
 - cooperation of different organizations

MeteoAG

Outline

Introduction
Definition
Definition II
Types of Grid
Structure
AustrianGrid

The Grid workflow MeteoAG

Testing the Grid

esting the

3 aspects:

- "Desktop PC's" Grid
 - Seti@Home student PC at Uni Innsbruck
 - cheap
 - usage of idle times
- Data-Grid
 - managing huge amounts of distributed data
 - cooperation of different organizations
- Distributed high-performance computers:
 - cooperation of supercomputers
 - better load-levelling and usage-rate
 - more than the sum of each

Structure of a Grid

MeteoAG

Structure

AustrianGrid

- currently gives access to 700 2500 Cpus
- 25 Partners
- various groups:
 - astrophysics
 - medicine
 - business research
 - ...
- second phase just started

MeteoAG

Outline

Grid Introduction
Definition
Definition II
Types of Grid
Structure
AustrianGrid

The Grid workflow

Testing the

Testing the model

Outline

The Grid

- Grid Introduction
- The Grid workflow MeteoAG
 - Motivation
 - Software
 - Modelsetup
 - Workflow
 - Gridapplication
- Testing the Grid
- Testing the model

MeteoAG

Motivation

Motivation

Benefits for us

- many compute cluster available
- huge data transfer possibilites
- fast parameter/sensitivity studies
- many cases needed for database can be run parallel

Software

MeteoAG

Software

RAMS Regional Atmospheric Modeling System

- nonhydrostatic Limited Area Model (gridpoint)
- maintained by Colorado State University (CSU)

Software

RAMS Regional Atmospheric Modeling System

- nonhydrostatic Limited Area Model (gridpoint)
- maintained by Colorado State University (CSU)

REVU

postprocessing tool for RAMS

RAVER

• tool for decision making

MeteoAG

Grid -

The Grid workflow MeteoAG

Software
Modelsetup
Workflow
Gridapplication

Testing the Grid

Testing the nodel

Domain locations

MeteoAG

Modelsetup

Do	Pts	Δx
1	90×90	40.5km
2	150×130	13.5km
3	240×190	4.5km
4	350×270	1.5km
5	260×260	500m

Domain locations

MeteoAG

Modelsetup

Pts	Δx
90×90	40.5km
150×130	13.5km
240×190	4.5km
350×270	1.5km
260×260	500m
	90×90 150×130 240×190 350×270

each 60 levels

initialized with ECMWF

Topography

T511 topography ECMWF

RAMS domain 2 topography

Topography 2

Domain 4

Domain 5 (based on SRTM 3s)

MeteoAG Workflow

universität Innsbruck

MeteoAG

Workflow

AGWL

MeteoAG

Dutline

Introduction
The Grid

Motivation Software Modelsetup

Gridapplication

Testing the model

Workflow has to be ported (as simple as possible) to GRID...

Description with Abstract Grid Workflow Language (AGWL)

```
<agwl name=''MeteoAG''> <agwlInput>
<dataIn name=''geodata'' type=''file'' source=''...''/>
<dataIn name=''casedata'' type=''collection'' source=''...''/>
</agwlInput>
<agwlBody>
<activity name=''initialize'' type=''meteoag:initialize''>
<dataIns>
<dataIn name=''geo'' type=''file'' sour collection=''MeteoAG/casedata''</pre>
<loopBo</pre>
```


MeteoAG

Gridapplication

AGWL

Workflow has to be ported (as simple as possible) to GRID...

Description with Abstract Grid Workflow Language (AGWL)

```
<agwl name=''MeteoAG''> <agwlInput>
<dataIn name=''geodata'' type=''file'' source=''...''/>
<dataIn name=''casedata'' type=''collection'' source=''...''/>
</agwlInput>
<agwlBody>
<activity name=''initialize'' type=''meteoag:initialize''>
<dataIns>
<dataIn name=''geo'' type=''file'' sour collection=''MeteoAG/casedata''</pre>
<loopBo</pre>
```

Representation WITHOUT any reference to hardware!!! Felix Schüller Institute of Meteorology and Geophysics Innsbruck. Austria 17 / 45

Teuta

universität innsbruck

MeteoAG

Outline

Grid -Introductio

The Grid workflow MeteoAG

Software Modelsetu

Workflow Gridapplication

Testing the

Testing the model

Outline

MeteoAG

Grid -

The Grid workflow

Testing the Grid

Motivation Strategy Results Conclusions

Testing the nodel

- Grid Introduction
- The Grid workflow MeteoAG
- Testing the Grid
 - Motivation
 - Strategy
 - Results
 - Conclusions
- Testing the model

Idea / Motivation

MeteoAG

Motivation

Quality: correct setup of computing environment

Question / Problem

Does the GRID influence my model results?

Idea / Motivation

Quality: correct setup of computing environment

Question / Problem

Does the GRID influence my model results?

Full blown meteorological simulations are too complex to verify

- Error sources abundant and not separable:
 - meteorological origin
 - computational origin

MeteoAG

Motivation

Strategy

MeteoAG

Outline

Grid -Introduction

The Grid workflow

Testing the

Strategy

Conclusion

Testing the

Simplified **meteorological** test:

- idealized flow over hill
- linear, dry, 2 dimensional
 - **⇒ Analytical Solution**

Strategy

MeteoAG

Outline

Introduction

The Grid workflow MeteoAG

Testing the Grid

Strategy Results Conclusions

Testing the model

Simplified **meteorological** test:

- idealized flow over hill
- linear, dry, 2 dimensional

⇒ Analytical Solution

Computational setup:

- 3 static executables on single CPU
 - ia64 Intel type 64bit CPU
 - x86-64 i686 (Opteron) type 64bit CPU
 - x86-32 i386 32bit CPU

Surface pressure pertubation - Comparison

Surface pressure pertubation - Comparison

The analytical solutions are identical.

Root Mean Squared Error

universitä innsbruck

MeteoAG

Grid -

The Grid

Testing the

Motivation Strategy Results

Results Conclusion

model

04bit Haluwale – 04bit exercis 32bit Haluw

64bit Hardware - 32bit exe

Further tests

MeteoAG

Conclusions

MeteoAG

- performance behavior: does it always execute the same way? \rightarrow Yes \rightarrow necessary for load leveling
- \bullet scaleing: is there any benefit in distributing it? \rightarrow Yes
- parallel behavior: does parallel environment influcence results? \rightarrow No

Further tests

MeteoAG

Conclusions

MeteoAG

- performance behavior: does it always execute the same way? \rightarrow Yes \rightarrow necessary for load leveling
- scaleing: is there any benefit in distributing it? \rightarrow Yes
- parallel behavior: does parallel environment influcence results? \rightarrow No
- the low error levels are meteorologically acceptable
- BUT: significant differences between GRID sites!

Outline

universität innsbruck

MeteoAG

Testing the

- Grid Introduction
- The Grid workflow MeteoAG
- Testing the Grid
- Testing the model
 - Motivation
 - Reference solution
 - Interpretation
 - Examples of tests
 - Further tests

Idee / Motivation

MeteoAG

Motivation

- Often change of:
 - modelversion
 - hardware
 - software (Compiler. . .)
 - parametrizations

Idee / Motivation

MeteoAG

Motivation

- Often change of:
 - modelversion
 - hardware
 - software (Compiler. . .)
 - parametrizations

Question / Problem

Does my model still produce the "right" results?

Idee / Motivation

MeteoAG

Motivation

- Often change of:
 - modelversion
 - hardware
 - software (Compiler. . .)
 - parametrizations

Question / Problem

Does my model still produce the "right" results? OR: is another model better than mine (Evaluation)?

MeteoAG

Outline

Grid -Introducti

The Grid workflow

Testing the

Testing the

Motivation

Interpretation
Examples of tes

Standard tests, which

are easy to setup

MeteoAG

Motivation

Standard tests, which

- are easy to setup
- easy to verify (best: analytical solution). reference solution

MeteoAG

Outille

Introduction

The Grid workflow MeteoAG

Testing the Grid

Testing the

Motivation

Interpretation
Examples of tes

Standard tests, which

- are easy to setup
- easy to verify (best: analytical solution). reference solution
- test a specific aspect

MeteoAG

Motivation

Standard tests, which

- are easy to setup
- easy to verify (best: analytical solution). reference solution
- test a specific aspect
- have minimal requirements (Inputdata...)

MeteoAG

Motivation

Standard tests, which

- are easy to setup
- easy to verify (best: analytical solution). reference solution
- test a specific aspect
- have minimal requirements (Inputdata...)

Approach W. Skamarock und Jim Doyle

MeteoAG

Motivation

Standard tests, which

- are easy to setup
- easy to verify (best: analytical solution). reference solution
- test a specific aspect
- have minimal requirements (Inputdata...)

Approach W. Skamarock und Jim Doyle

in my case applied to RAMS

Reference solution

- - I

Either

Analytical solution

- linearization and variable reduction
- easy to reproduce
- deterministic
- very idealized and not available for complex problems

MeteoAG

Grid -

Introduction The Grid

Testing the

Grid

nodel

Reference solution

Interpretation Examples of test Further tests

"Grid converged solution"

Or

Grid converged solution

Lax-Richtmeyer theorem for linear systems

stable + consistent → convergenz

MeteoAG

Reference solution

"Grid converged solution"

Or

Grid converged solution

Lax-Richtmeyer theorem for linear systems

stable + consistent → convergenz

so a stable and consistent system with

- \bullet $\Delta x \rightarrow 0$
- $\Delta t \rightarrow 0$

produces a converging solution.

MeteoAG

Grid -

The Grid

MeteoAG

Testing the Grid

Testing the model

Reference solution Interpretation

Interpretation Examples of test Further tests

Interpretation of results

MeteoAG

Interpretation

- Mathematical approach
 - easy and automatically computable
 - but sometimes show no improvement even if there is some

Interpretation of results

MeteoAG

Interpretation

- Mathematical approach
 - easy and automatically computable
 - but sometimes show no improvement even if there is some
- Empirical intuitive approach
 - good overall picture
 - but subjective and hard to reproduce

Linear mountain flow

- 2D, dry isothermal atmosphere
- constant wind profile
- no radiation, no rotation, free-slip lower boundary
- bell shaped mountain (Witch of Agnesi) with h=1m
- analytical solution

Test for checking different hardware

MeteoAG

Grid -

The Grid

Testing the

Testing the model

Reference solution Interpretation Examples of tests Further tests

Reference solution

displacement of streamlines (600 time exagerated)

vertical velocity w[m/s]; u0=20m/s; hm=1m; a=10km

Interpretation
Examples of tests
Further tests

Results pressure pertubation

Examples of tests

Results vertical flux

MeteoAG

Outline

Grid -Introduction

The Grid workflow MeteoAG

Testing the

Testing the model
Motivation
Reference solution
Interpretation
Examples of tests

Zängl

MeteoAG

Examples of tests

- 3D
- dry, stable stratified atmosphere
- NO wind
- no radation, no rotation, free slip lower boundary
- bell shaped mountain

Zängl

MeteoAG

Examples of tests

3D

dry, stable stratified atmosphere

NO wind

• no radation, no rotation, free slip lower boundary

bell shaped mountain

Good test for parallel computing environment

Topography

MeteoAG

Outline

Grid -Introduction

The Grid workflow

Testing the

Testing the model

Reference solution Interpretation Examples of tests

IHOR1

MeteoAG

Examples of tests

Gradient along model levels

Horizontal gradient

universität Innsbruck

MeteoAG

Outline

Introduction

Workflow

Testing the

Testing the model

Motivation

Reference solut

Examples of tests
Further tests

IHOR2

MeteoAG

Examples of tests

true horizontal gradient

Schär 2

- MeteoAG

- Examples of tests

- 2D
- dry, stable stratified atmosphere
- no wind at bottom, constant wind aloft
- scalar anomaly (no explicit diffusion applied)
- bell shaped mountain with short wave pertubation
- no radation, no rotation, free slip lower boundary

Reference solution

universität Innsbruck

MeteoAG

lhor 1, dz=500 m

MeteoAG

Further tests

Stratocumulus

- 3D
- nighttime boundary layer topped with stratocumulus

MeteoAG

Further tests

Stratocumulus

- 3D
- nighttime boundary layer topped with stratocumulus

Convection

3D warm air bubble

MeteoAG

Further tests

Stratocumulus

- 3D
- nighttime boundary layer topped with stratocumulus

Convection

3D warm air bubble

Density current

2D cold air bubble

MeteoAG

Further tests

Stratocumulus

- 3D
- nighttime boundary layer topped with stratocumulus

Convection

3D warm air bubble

Density current

2D cold air bubble

Mountain flow

• 2D mountain flow with complex topography

Conclusions

MeteoAG

Further tests

Grids

- useful tool for research
- not mature enough for operational environments

Conclusions

MeteoAG

Further tests

Grids

- useful tool for research
- not mature enough for operational environments

- Standard tests
 - useful for finding model weaknesses/problems
 - make model intercomparison possible
 - good for checking hardware

Thanks

MeteoAG

Further tests

Final Words:

Thank you for your attention! Questions welcome!

More reading:

- Schüller, F., and J. Qin, 2006: Towards a workflow model for meteorological simulations on the Austrian Grid. Austrian Computer Society, 210, 179-190.
- Schüller, F. et al, 2007: Perfomance, Scalability and Quality of the Meteorological Grid Workflow MeteoAG. Austrian Computer Society, 221, 210-221
- Schüller, F. 2007: Grid computing with and standard test cases for a meteorological limited area model, Diploma Thesis, pp 128.