MRB-CMC internal seminars

28 Jan. 2005 11h00

Atmospheric CO₂ retrieval from the AIRS and AMSU instruments onboard AQUA

Sylvain Heilliette, Cyril Crevoisier,

Alain Chédin, Soumia Serrar

Laboratoire de Météorologie Dynamique Palaiseau, France

PRESENTATION OUTLINE

- -Why is it interesting to measure CO₂ from space ?
- -Which instruments are available for this purpose ?
- -Presentation of the AIRS and AMSU instruments
- -Radiative transfer, principles of atmospheric sounding
- -Description of the retrieval method
- -First results
- -Conclusion, perspectives

-Why is it interesting to measure CO₂ from space ?

-Which instruments are available for this purpose ?

-Presentation of the AIRS and AMSU instruments

-Radiative transfer, principles of atmospheric sounding

-Description of the retrieval method

-First results

-Conclusion, perspectives

IDIG.

It is essential to model the future evolution of CO_2 .

Necessity of understanding the processes which governs its evolution.

 CO_2 is cyclically exchanged between several reservoirs.

Carbon cycle

Anthropic CO₂ sources :

 CO_2 is cyclically exchanged between several reservoirs.

Human activities perturbs the natural carbon cycle.

In order to model the future evolution of atmospheric CO_2 , it is essential to understand CO_2 sources and sinks.

Motivation of the study

Top down approach :

LMDIGIRS

PRESENTATION OUTLINE

-Why is it interesting to measure CO₂ from space ?

-Which instruments are available for this purpose ?

-Presentation of the AIRS and AMSU instruments

-Radiative transfer, principles of atmospheric sounding

-Description of the retrieval method

-First results

-Conclusion, perspectives

CO₂ from space

Many instruments become available to study CO_2 from space.

Flying			
TOVS (HIRS+MSU)	Vertical sounder	thermal IR+ MW	1978
AIRS + AMSU	Vertical sounder	thermal IR + MW	2002
SCIAMACHY	Differential absorption	NIR	2002
Scheduled			
IASI + AMSU	Vertical sounder	thermal IR + MW	2005
OCO	Differential absorption	NIR	2007
Under study			
	A stime mostly a da		

Active methods

CO₂ from space

Many instruments become available to study CO_2 from space.

Flying			
TOVS (HIRS+MSU)	Vertical sounder	thermal IR+ MW	1978
AIRS + AMSU	Vertical sounder	thermal IR + MW	2002
SCIAMACHY	Differential absorption	NIR	2002
Scheduled			
IASI + AMSU	Vertical sounder	thermal IR + MW	2005
OCO	Differential absorption	NIR	2007
Under study			
	Active methods		

The feasability of measuring CO_2 from space has been proven with the low spectral resolution instruments TOVS flying onboard the NOAA polar satellites since 1978 [*Chédin et al.* 1999, 2002, 2003].

Four years of observations (Juillet 1987-Juin 1991) of tropospheric CO_2 have been retrieved in the tropics, with an estimated precision of 3 ppmv and a spatial resolution of $15^{\circ} \times 15^{\circ}$.

à Extension to the second generation AIRS instrument.

PRESENTATION OUTLINE

- -Why is it interesting to measure CO₂ from space ?
- -Which instruments are available for this purpose?
- -Presentation of the AIRS and AMSU instruments
- -Radiative transfer, principles of atmospheric sounding
- -Description of the retrieval method
- -First results
- -Conclusion, perspectives

The Aqua satellite

In this study, we use two vertical sounders flying onboard the Aqua spacecraft.

Polar satellite afternoon (13H30).

Date of launch: 4 May 2002.

First component of A-train constellation.

Six instruments dedicated to the atmosphere : AMSR-E MODIS CERES AIRS AMSU HSB

Atmospheric Infrared Sounder 2378 IR channels Advanced Microwave Sounding Unit 15 MW channels

LMD stores AIRS/AMSU data since April 2003 with the highest spatial resolution available.

The AIRS archive at LMD

AIRS data are distributed on a daily basis by NOAA/NESDIS.

AIRS and AMSU sounders

2378 channels (324 distributed).

three IR bands (from 650 to 2800 cm⁻¹).

Spectral resolution: $\lambda/\Delta\lambda=1200$

Instrumental noise: 0,2-0,3 K at 250 K.

AMSU-A Spectral characteristics :

15 channels between 15 and 90 GHz.

Instrumental noise: 0,25 K for the 55 GHz channels

PRESENTATION OUTLINE

- -Why is it interesting to measure CO₂ from space ?
- -Which instruments are available for this purpose?
- -Presentation of the AIRS and AMSU instruments
- -Radiative transfer, principles of atmospheric sounding
- -Description of the retrieval method
- -First results
- -Conclusion, perspectives

Basic radiative transfer theory

Vertical sounders measure the radiation (in terms of brightness temperature) emitted by the system Earth/atmosphere at different frequencies with a near-nadir viewing angle

 $I(\nu) =$

Р

Basic radiative transfer theory

Vertical sounders measure the radiation (in terms of brightness temperature) emitted by the system Earth/atmosphere at different frequencies with a near-nadir viewing angle

Vertical sounders measure the radiation (in terms of brightness temperature) emitted by the system Earth/atmosphere at different frequencies with a near-nadir viewing angle

 $I(v) = \varepsilon_s \tau_s B(v, T_s)$

Vertical sounders measure the radiation (in terms of brightness temperature) emitted by the system Earth/atmosphere at different frequencies with a near-nadir viewing angle

(equations valid for a plane parallel atmosphere, scattering free, local thermodynamical equilibrium)

Vertical sounders measure the radiation (in terms of brightness temperature) emitted by the system Earth/atmosphere at different frequencies with a near-nadir viewing angle

(equations valid for a plane parallel atmosphere, scattering free, local thermodynamical equilibrium)

Restriction to channels who don't see the surface

If v is chosen in the absorption band of a well mixed gas of known mixing-ratio, it can provide information on the temperature profile. Infrared instruments CO_2 absorption bands Microwave instruments O_2 absorption bands

PRESENTATION OUTLINE

- -Why is it interesting to measure CO₂ from space ?
- -Which instruments are available for this purpose?
- -Presentation of the AIRS and AMSU instruments
- -Radiative transfer, principles of atmospheric sounding
- -Description of the retrieval method
- -First results
- -Conclusion, perspectives

No sensitivity to CO₂ variations in the tropopause/boudary layer.

AIRS may be used to retrieve other trace gases.

AIRS and CO₂

AIRS channels are selected using the OSP (Optimum Sensitivity Profile) method which is based on 3 criteria:

- CO_2 signal must be maximum.
- interferences must have the lowest influence.
- altitude of the sounding.

\blacksquare 8 AIRS channels for CO₂

+

```
16 channels for CH_4, N_2O and CO.
```

These channels have been chosen to be distributed by NOAA/NESDIS.

Study of CO_2 in the mid-upper troposphere.

Crevoisier et al., QJRMS, 2003

AIRS and CO₂

A change of 1% of the CO_2 concentration induces a change of 0.04% of the signal observed on the channels.

The signal is of the same level as instrumental noise.

Non-linearities makes it difficult to solve this inverse problem.

Use is made of a non-linear inference scheme based on neural networks.

The retrieval is limited to the tropical zone:

- ^a greater tropospheric temperature stability.
- stronger convective vertical mixing from surface to mid-troposphere.
- need of observations in this part of the globe.

Neural network

Purpose : approximation of complex function given a set of input and outputs (X^i, Y^i) , the learning dataset

Training of the network : determination of the weights using a gradient descent algorithm called «backprogation» (Rumelhart)

Crevoisier et al., GRL, 2004

Description of the method

Three kind of tests are used : $T_B^1 - T_B^2 < \xi$

 $_{\circ} 5 T_{B}(AIRS) - T_{B}^{reg}$

Regressions from T_B(AMSU)

α 2 Τ_B(AIRS) – Τ_B(AIRS)

Windows channels

Si $T_B^1 - T_B^2 < \xi$, then clear sky else cloudy

> These clear sky tests have been successfuly validated against MODIS cloud detection for P \leq 750 hPa

Description of the method

Before applying the neural networks to observed AIRS and AMSU radiances it is necessary to correct for possible biases linked to calibration and radiative transfer error

PRESENTATION OUTLINE

- -Why is it interesting to measure CO₂ from space ?
- -Which instruments are available for this purpose?
- -Presentation of the AIRS and AMSU instruments
- -Radiative transfer, principles of atmospheric sounding
- -Description of the retrieval method

-First results

-Conclusion, perspectives

Seasonal variations

. Comparison with in situ observations made at the surface

Comparison with in situ observations made at the surface

Lower amplitude (3,4 km \Box 5-15 km) but good agreement between both sets.

Comparison with aircraft measurements :

Since 1991, JAL aircrafts have been equiped to measured CO_2 .

Altitude : 8-10 km (inside the zone 5-15 km seen by AIRS/AMSU).

One to two measurements per month.

Comparison with aircraft measurements :

Since 1991, JAL aircrafts have been equiped to measure CO₂.

Altitude : 8-10 km (inside the zone 5-15 km seen by AIRS/AMSU).

One to two measurements per month.

The retrievals are now averaged -over $15^{\circ} \times 15^{\circ}$ boxes centered on the $1^{\circ} \times 1^{\circ}$ boxes (moving average) -on a monthly basis -night time -from April to October 2003.

Two « test » months

Interferences

Sensitivity of neural networks :

The 8 AIRS channels have been selected for their weak sensitivity to interferences.

However, they are still sensitive to other signals (eg: ozone). Thus, we must verify the impact of an ozone perturbation on CO_2 retrievals.

<u>Study</u>: on a representative set of atmospheres, we make a perturbation of O_3 of 100% between 0 - 16 km.

The T_B are presented to the NN.

The output error obtained is 0,13 ppmv (mean) and 0,36 ppmv (std).

This weak impact is due to:

- the low sensitivity to ozone.
- the distinct behaviour: CO₂ signal is constant / ozone signal varies.

Geographical distributions

<u>Study of the geographical variations</u> :

The validation of CO_2 geographical distribution is hard due to the lack of information on this gas.

A few aircraft campaigns, always limited in both time (a few months) and space, have measured trace gases in the troposphere. Unfortunately, CO_2 was not systematically studied (as opposed to CO).

Example of PEM-T [Vay et al. 1999] :

110°W-170°W ; September 1996.

Between 6 and 12 km, the highest values of CO_2 were observed in the South, below 10°S, $20^{\circ}N$ from Tahiti to New-Zealand.

But no decrease in the East of the Pacific...

0°E

50°W

120°W

120°E

60°E

CO₂ AIRS 2003 (ppmv)

Geographical distributions

Biomass burnings Emissions of CO₂, CO, O₃, aerosols, ... Mainly in dry tropical regions. → seasonality linked to dry seasons in

both hemisphere: Dec.-Fev. : North. June-Sept. : South.

CO₂ AIRS (ppmv)

In April : central Africa [*Barbosa et al.* 1999] + expulsion in the « Golfe de Guinée » [*Baudet et al.* 1990]

Summer: [0;10°N].

In October [Bremer et al. 2004]

South Africa and America.

plum between both continents.

expulsion forward the Réunion Island

Qualitative agreement with AATSR fire counts and CO MOPITT measurements

Comparison with TOVS :

NOAA10 : July 1987-June 1991

Comparison with April-May 1990 and June-Oct. 1989 (weak El Nino)

Given the interannual variations, both structures are similar:

- Pacific.
- Indian Ocean.
- Atlantic ocean.
- Biomass burnings.

Some differences :

- North in April and May $(O_3 ?)$.
- ^s Dynamic.

Geographical distributions

18379

382

LONGTUDE

LONGITUDE

<u>Comparison with transport model</u> <u>outputs (TM3 and LMDz in the</u> <u>framework of the COCO project)</u> :

[Y. Tiwari, MPI, private com.].

model inputs:

Sources: 2002.

Winds: ECMWF 2003.

AIRS weighting function is applied to the outputs that are averaged following the same method as for AIRS retrievals.

- The models are zonal with very low longitudinal variations.
 - Lower dynamic.
 - Same fire locations.

Origin of these differences ?

IDIG

Geographical distributions

PRESENTATION OUTLINE

- -Why is it interesting to measure CO₂ from space ?
- -Which instruments are available for this purpose?
- -Presentation of the AIRS and AMSU instruments
- -Radiative transfer, principles of atmospheric sounding
- -Description of the retrieval method
- -First results
- -Conclusion, perspectives

Conclusion and perspectives

- Realisation of an AIRS/AMSU archive.
- Channel selection:

OSP method for CO_2 , CH_4 , N_2O and CO.

- à Extension to other instruments : IASI.
- Clear sky detection.
- Tropospheric CO₂ retrieval:
 - Extension of the TOVS NN method.

Tropospheric CO₂ retrieval (5-15 km), in the tropics $[20^{\circ}S;20^{\circ}N]$, night time, from April to October 2003.

- Good agreement with *in situ* measurements.
- Monthly distribution at a resolution of $15^{\circ} \times 15^{\circ}$, with a precision of 2,5 ppmv.
- Good agreement with TOVS retrievals.
- Transport models.

CO₂ campaigns are needed to validate the retrievals !

Conclusion et perspectives

Extension of the method : tropospheric CO_2 in the tropics:

- à Better computation of radiative biases.
- à 2004.
- à Comparaison between retrievals / aircraft campaigns / transport models.

Extension of the method :

- à High-latitude regions ?
- à stratospheric CO_2 ?

Other trace gases and instruments:

- à CH_4 (initiated), CO, N₂O.
- à IASI

