Modelling marine boundary layer clouds

Adrian Lock Met Office / RPN

Outline

- n Introduction to stratocumulus
- n Met Office boundary layer parametrization
- n Validation of marine subtropical Sc in Met Office GCM
- Stratocumulus single column model intercomparison
 - RPN boundary layer parametrization

Stratocumulus – complex yet simple

- Marine stratocumulus is often a stable equilibrium state arising from complicated interactions between many processes that are parametrized in NWP
- Need to replicate this balance within NWP parametrizations, often using schemes that work independently
- Simple conceptual framework: mixed layer model
 - turbulent mixing generally ensures that variables conserved under moist adiabatic ascent are close to uniform in the vertical. For example:

$$q_t = q_v + q_l$$
 $\theta_e = \theta + \frac{L}{c \pi} q_v$

ivironneme

Observed profiles from stratocumulus

Large-eddy simulation

n 3D turbulence simulation at high resolution:

- Sufficient to resolve the 'larger' eddies that are responsible for the bulk of the turbulent transport
- Tend to use $\Delta x \sim 20-100$ m, $\Delta z \sim 5$ m-40m
- Able to explore parameter space (vary surface heating, radiative cooling, inversion strength, layer depth, etc.)

Met Office

- A clean environment (no advection or representivity problems)
- n But only a numerical model

LES of Stratocumulus

- n $\Delta x = 20$ m, $\Delta z = 5$ m
- Instantaneous slice
 through the liquid
 water field near
 cloud-top:

 q_{\parallel} (g/kg)

0.6

0.0

LES: vertical slices

Mean profiles from LES

n Continuous turbulent mixing over the depth of the boundary layer ensures $\theta_l = \theta - (L/c_p)q_l$ and $q_t = q_v + q_l$ are constant with height

Environment

Canada

Simple framework: Lilly's mixed layer model (1968)

Standard equations (ignoring resolved scale advection and precipitation) $\frac{\partial q_t}{\partial t} = -\frac{\partial}{\partial z} \left(\overline{w'q_t}' \right)$ $\frac{\partial \theta_l}{\partial \theta_l} = \frac{\partial}{\partial z} \left(\overline{w'q_t}' \right)$

$$\partial t = \partial z$$
 (*P* + **P**^{*net*}) ∂z (*P* + *P*^{*net*}) ∂z (*P* + *P*net*) ∂z (*P* + *P*net*)**********

ⁿ Mixed layer model assumes θ_l and q_t are constant with height

Mixed layer model (continued)

- In Integrating over the boundary layer gives the mixed layer model equations: $\frac{\partial q_t^{ML}}{\partial t} = -\frac{\overline{w'q_t'}_{z_i} - \overline{w'q_t'}_{surf}}{z_i}$
 - $\frac{\partial \theta_{l}^{ML}}{\partial t} = -\frac{H|_{z_{i}} H|_{surf}}{\partial z}$ Discontinuous inversion implies $\overline{w'q_{t}'}|_{z_{i}} = -w_{e}\Delta q_{t}$ $H|_{z_{i}} = -w_{e}\Delta \theta_{l} + \Delta_{ML}F_{net}$ where $w_{e} = \frac{\partial z_{i}}{\partial t} w_{LS}$ is the entrainment rate.

Implies stratocumulus is a simple system where entrainment is a key process

Difficulties with parametrizing entrainment

- Process is non-local (mixing at inversion is driven by eddies impinging from below)
- n Hard to parametrize on GCM grids. For traditional first order closures, $\overline{w'\chi'_{k}} = -K_{k} \frac{\Delta_{k}\chi}{\Delta_{k}\tau}$, gradients are large and
 - for K(Ri) local stability dependence is not relevant
 - for K(TKE) accurate TKE evolution hard to resolve
 - $K(z/z_i)$ is very sensitive to the definition of z_i
- So the Met Office scheme uses an explicit parametrization of entrainment fluxes, using w_e from Lock (1998)

Verification of entrainment parametrization against LES and observations

LES Cloud free: Δ = surface heated Smoke clouds: ∇ = radiatively cooled \Box = surf heat + rad cool Water clouds: X = rad cool (no b.r.) + = rad cool + buoy rev \Rightarrow = buoyancy reversal only Observations

= Nicholls & Leighton, 1986;

Environmen Canada

Price, 1999; Stevens 2003

Environnemen

Met Office

Canada

Difficulties with parametrizing entrainment (continued)

- All model processes (turbulence, radiation, LS advection) should be coupled to preserve mixed layer budgets
 - i.e., no spurious numerical transport across inversion (Stevens et al 1999, Lenderink and Holtslag 2000, Lock 2001, Grenier and Bretherton 2001)
- n So the Met Office scheme uses a subgrid inversion diagnosis to couple the entrainment, radiative and vertical advection fluxes across the inversion

Impact of coupling inversion fluxes in SCM for nocturnal subsiding stratocumulus ($|w_{subs}| > w_e$)

Coupled fluxes:

Uncoupled fluxes:

Limitations of the mixed layer model

- n The mixed layer model framework allows a realistic treatment of the inversion and the transports across it
- It is possible to use a mixed layer model as the boundary layer scheme in your GCM with z_i as a coordinate surface (Suarez et al, 1983: UCLA GCM) but this is:
 - technically hard to implement and
 - stratocumulus often decouples into two mixed layers (see Turton and Nicholls, 1987, for example)

'K-profile' scheme for interior mixing

- n Based on a cloud-free scheme by Holtslag and Boville (1993)
- For $\chi = \theta_l, q_t, u, v$ need to solve:

$$\frac{\partial \chi}{\partial t} = -\frac{\partial}{\partial z} \left(\overline{w' \chi'} \right)$$
$$\overline{w' \chi'} = -K \frac{\partial \chi}{\partial z} + \overline{w' \chi'}^{ng}$$

Use a 1st order closure:

S Where K, $w'\chi'^{ng}$ are empirically determined functions of height within the mixed layer and velocity scales representative of the turbulence forcing (separate K-profiles are used for surface and cloud-top driven turbulence)

GCSS Working Group 1: Boundary layer clouds

- Unfunded (!) international group performing intercomparisons of LES, observations and SCM
- S cases examined to date: stratocumulus (FIRE 1, DYCOMS II), smoke cloud, Sc to Cu transition (ASTEX), trade-cumulus (BOMEX), Cu rising into Sc (ATEX), diurnal cycles of Cu over land (ARM-SGP) and marine Sc (FIRE 1)
- **§** Conclusions:
 - With care, LES tend to be similar to each other and observations (particularly for Cu)
 - **SCMs** are improving
 - s many productive lines of research have been inspired by WG1
- Future cases to include microphysics (drizzling/not drizzling Sc, Cu)

EUROCS GCM intercomparison

Christian Jacob, Pier Sibesma, Roel Neggers

- n Traditional GCSS/EURCREM intercomparisons have limitations
 - only a few cases
 - we know little about their representivity
- n EUROCS included a GCM intercomparison of the NE Pacific
- n Model output requested:
 - Along two cross-sections from California to the central Pacific, representing the Sc to Cu to ITCZ transition
 - JJA 1998, every 3 hours through the day to give the diurnal cycle

Met Office GCM

n Met Office 'Climate' model simulation

- AMIP-style, prescribed SST
- N48L38 resolution = 2.5 latitude by 3.75 longitude (~300km in tropics) with 38 levels (~250m at 1km)
- n 7 other centres contributed similar climate simulations with global or regional models
- n ECMWF contributed averaged short-range forecasts

Met Office GCM cloud cover climatology

Environment

Canada

Observed daytime cloud types (Norris, 1998) JJA mean

Fig. 3. Observed daytime frequency of occurrence of different cloud types, from Norris (1998). JJA mean from 1954 to 1992: (a) stratus and fog, (b) stratocumulus, (c) cumulus-stratocumulus, and (d) moderate and large cumulus, and cumulonimbus.

Canada

Environment Canada

Met Office GCM cloud fractions EUROCS cross-section - 1998 JJA mean

Environment

Canada

Canada

EUROCS GCM intercomparison Total cloud cover and LWP

Diurnal cycle of stratocumulus in GCM

n Time lag in LWP relative to solar cycle well represented away from coast

Environment

Canada

Environnemen

Canada

Met Office

n But FIRE observations were at San Nicolas Island!

Cloud sensitivity to entrainment

- So, more active entrainment (either explicit or numerical) gives a boundary layer with less stratocumulus
- Numerical errors (no flux coupling) would be more serious than a factor of two in the parametrized entrainment

Environment

Canada

Summary

- n The Met Office GCM produces a reasonably realistic marine stratocumulus sheet over the NE Pacific:
 - Good cloud cover and LWP diurnal cycle
- n Close to coast LWP is too small and diurnal cycle does not lag the solar cycle
 - Lack of resolution?
 - Horizontal: noise from the coastline?

 Vertical: cloud-top at 500m gives ~4 levels in the boundary layer so decoupling is hard and cloud layer hard to resolve

Summary (continued)

- n GCM has too much cloud, particularly when stratocumulus is over shallow cumulus
 - Problem has been alleviated with change to Cu cloud fraction
 - Possible problem with Sc/Cu interaction (or with Cu/inversion interaction in general)?
 - Radiative impact of cloud inhomogeneity?
- n Erroneous numerical entrainment can be a serious problem in GCMs

GCSS WG1 Case 8: simulations of RF01 from DYCOMS II

- S Nocturnal stratocumulus off California (July 2001)
- S Well-mixed boundary layer with cloud base at 600m, top at 850m
 - S both were approximately constant over 8 hours of aircraft observations following the airmass → ~equilibrium
- S Case specifications
 - Initial profiles
 - S Forcing: fixed geostrophic winds, large-scale divergence and fixed SST (or surface fluxes)
 - Simplified LW radiation scheme
- S No drizzle was observed

Observed profiles for RF01

Single-column model simulations of GCSS-DYCOMS

- ⁿ Step 4 (fixed SST, subsidence, full idealised radiation code)
- Run for "at least 48 hours"

Resolution	Timestep (' <u>standard'</u>)	
(Δz)	RPN	Met Office
10 m	<u>10s</u> , 60s	60s, <u>300s</u>
50 m	60s, <u>180s</u>	<u>450s</u>
"Operational"	60s, <u>300s</u> , 600s	300s, 600s, <u>1800s</u>

"Operational" is a stretched grid with 13 levels below 1500m
 (Δz~150m at cloud-top)

invironnemer

Met Office

RPN single-column model

- n Only interfaces to the boundary layer turbulence and cloudiness schemes
 - TKE closure with mixing of θ_l and q_t
 - Bougeault-Lacarrere (1989) mixing lengths
 (but no condensation in parcels → 'small' *l* in Sc)
 - Bechtold and Siebesma (1998) statistical cloud scheme for shallow Cu and Sc
- So, as yet, no "grid-scale" cloud, precipitation, radiation, deep convection...

Bechtold et al cloud scheme

- Statistical / empirical scheme based on observations and LES
- Cloud properties are empirical functions of $Q_1 \propto \frac{q_t q_{sat}(T_1)}{Q_1}$

with $\sigma_{s} \propto \left(l_{h} l_{\varepsilon}\right)^{1/2} \left(a \frac{\partial \overline{q_{t}}}{\partial z} - b \frac{\partial \overline{\theta_{l}}}{\partial z}\right)^{2}$

n E.g., for $Q_1 > 0$ $q_1 = \sigma_s (e^{-1} + 0.66 Q_1 + 0.086 Q_1^2)$

n But in SCM of Sc, find σ_s is small

- $\rightarrow Q_1 >> 1$ $\rightarrow q_l \sim 0.086 \sigma_s Q_1^2 \sim \frac{1}{\sigma_s}$ is large
- n RPN therefore limits $-6 < Q_1 < 4$

Canada

Using scheme outside original parameter space

 q_c/σ_s vs Q_1

Revised: $q_c = \sigma_s (0.23 + 0.9 Q_1)$ for $Q_1 > 2$

TKE budgets

TKE budgets similar to Met Office LEM (except for strange double peak in $\overline{w'b'}$ at higher resolution)

Bechtold et al buoyancy flux enhancement

 Write buoyancy production as the weighted sum of fluxes in saturated and unsaturated air

where

$$\overline{w'b'} = (1 - f_N N) \overline{w'b'}\Big|_{clear} + f_N N \overline{w'b'}\Big|_{cloud}$$

 $\overline{w'b'}\Big|_{cloud/clear} = g(\beta_T^{cloud/clear} \overline{w'\theta_l} + \beta_Q^{cloud/clear} \overline{w'q_t})$

§ For a Gaussian distribution of Q₁ about the grid-box mean (i.e. Sc), f_NN = N, the cloud fraction
§ For a skewed distribution (i.e. Cu), f_N >> 1

Bechtold et al buoyancy flux enhancement (continued)

ⁿ But the air just above and below stratocumulus sheets is slightly unsaturated too ($Q_1 \le 0$, e.g. RF01):

n Hence Bechtold et al suggest imposing a Gaussian distribution at the top and base of cloud layers

Environment

Canada

Bechtold et al buoyancy flux enhancement (continued)

n But what about Cumulus rising into stratocumulus?

• Is Q_1 really the appropriate variable?

Revised TKE budgets

- n TKE budgets very similar but without double peak in buoyancy production
- n Good agreement with LES at high resolution lack of resolution near cloud-top evident at 'Oper' resolution

RPN time series (48 hours) Oper resolution: Impact of changes to q_I and f_NN formulations

- Changes apparently beneficial (give more cloud)
- Actually the result of somewhat complex changes in TKE production and entrainment

Revised RPN resolution senstivity: time series, standard timesteps (96 hours)

- Remember observations
 were only for 8 hours
- Lack of convergence probably reflects inadequate resolution of the TKE equation

Revised RPN profiles

Revised RPN timestep dependence (96 hours)

RPN summary

- n Problems identified with the Bechtold et al scheme
 - serious errors for q_l in well-mixed boundary layers
 - strange buoyancy flux profile, particularly at higher resolution a 'feature' intended for shallow cumulus that requires diagnostic removal
- n Good simulation of RF01, particularly at 50m resolution or less.
- n Resolution dependence:
 - "Operational" resolution too coarse properly to resolve cloud layer (hence low (~0.5) cloud fraction)

nvironnemei

Met Office

- Higher resolution gives more entrainment
- ⁿ Timestep dependence:
 - Tendency to have less cloud at larger timestep

Met Office time series (48 hours)

Met Office profiles

Met Office timestep dependence (96 hours)

Met Office summary

- n Good simulation of RF01
- n Resolution dependence:
 - the (z-z_i)^{1/3} shape to the θ profile makes the inversion appear stronger as the grid size increases, giving a weaker entrainment rate.
- n No timestep dependence

Further investigation of RPN model

- If condensation is included in the Bougeault-Lacarrere mixing length diagnosis, does that improve the mixing of q_t within the cloud layer and thence the cloud fraction in shallow cloud layers at coarse resolution?
 - How does that affect the entrainment rate?
 - How does that affect the simulation of shallow cumulus?
- ⁿ Would other mixing length formulations work better?
- ⁿ What controls the entrainment rate in the RPN model?
- Include an explicit entrainment parametrization, as in Met Office scheme?
- Is there an alternative formulation for the buoyancy flux enhancement?

Further simulations

n Include other physics schemes:

- Precipitation: what effect does drizzle have?
- n Test on other GCSS cases (BOMEX = shallow Cu; ATEX = shallow Cu rising into Sc)

SW forcing climatology: 5 year JJA mean (Met O - ERBE)

n Negative implies 'too much' cloud so:

- Do 'need' less cloud towards trade Cu regions
- No more cloud 'needed' close to coast

Canada