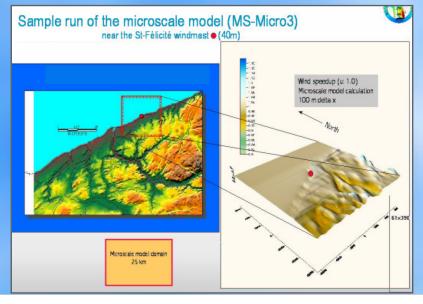

Présentation dédicacée a André Robert 28 Avril 1929 – 18 Novembre 1993

WEST (Wind Energy Simulation Toolkit)

WEST is a 100% Canadian wind energy analysis and forecasting software. It includes:


- Statistics package to compress the historical observation (upper air ballon) data
- Surface property generator
- NWP (Numerical Weather Prediction) type operational mesoscale model
- Microscale model
- Post-analysis package
- •specially designed for use by industries due moderate computer requirement.

Mesoscale

- fully compressible Navier-Stokes equations
- •3D, time-dependent
- · accurate and efficient solution of flow
- Limited Area
- •self-nesting capability (250--> 50 ...-->5 ... km)

Microscale

- 3D steady-state surface boundary-layer flow model
- •Mixing-length turbulence closure
- Horizontal domains of order 100 m to 10 km
- •Terrain slopes less than 0.3 to 0.5
- •Inputs:
 - -DEM and land-use
 - -Wind statistics at a given height agl:
 - •joint frequency table for speed and direction
 - •from the set of mesoscale simulations

Climate Classification ... two options

•EOLE

- -Geostrophic time series for one global cell
 - •0 m and 1500 m ASL
- -Equi-angular (16) and equi-frequency-speed bins
- -Sign of shear
- -~200 states with distinct frequencies (weights)
- -Ancillary params to 5000 m ASL
- —Initialize LAM for each state:
 - •hydrostatic + geostrophic wind, level by level, zero initial topography
- -Constant Lateral BCs: geostrophic drag (Ekman) at low levels

MonteCarlo

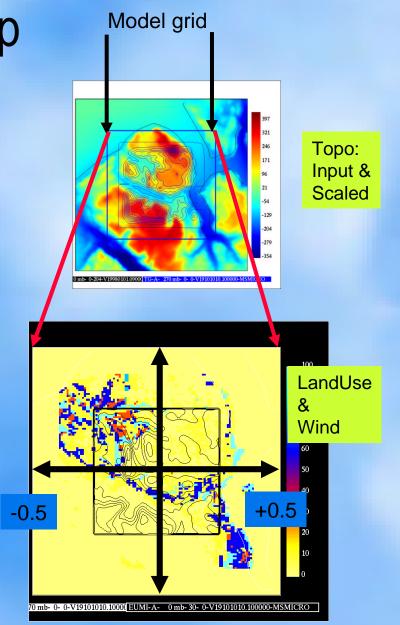
- —Use full atmospheric states (3D weather analyses)
- —Replace classification with random "representative" sample (~300 members)
- -Unsuccesful attempt to use advanced classification tools
 - •EOFs, r.diag
 - •... further work needed!
- —Regular NWP initialization of the LAM
- —Equal frequencies

Time dimension in meso/micro-scale model

- 2 modes of operation for the <u>Meso</u>:
 - 1. Weather forecast mode
 - Clock is significant
 - Full initial state (eg a weather map)
 - All physical processes are on
 - IR and solar
 - Ground heating/cooling
 - Up/downslope density currents
 - More time steps (eg 1 day)
 - 2. Lower Flow (< 5 km agl) adaptation to terrain
 - Final time not significant
 - Simplified initial state (eg strait isobars)
 - Turn off some physical effects: sun, ground heating, etc
 - Achieve pseudo-equilibrium
 - Less (antonger) time steps (eg 9 hours)
- Possible to measure sensitivity to each mode
- 2nd mode = usual practice for WEST wind maps
- <u>Micro</u>: full steady-state (no time stepping)
- Cost & complexity: MESO >>> MICRO
- An efficient alternative to Regional Climate Models (RCMs) to obtain local low-level wind climate distributions

Typical LAM setup

Dynamics

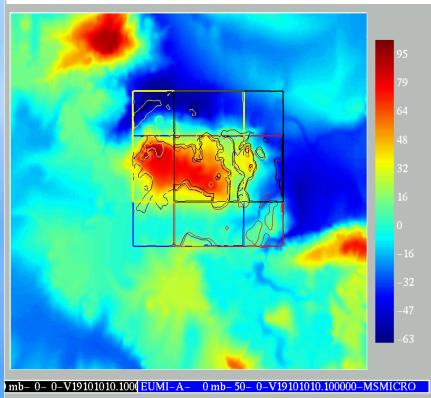

- −5 km; Nx, Ny~ 150; lid=20 000 m
- -120 s timestep (twice longer than usual...no fast UL flow); Total steps=270 (9 h)
- -28 levels; 10 under 1500 m
- -Diffusion: del4, no top sponge
- -Halo: 3 pnts
- —Nest: 13 total = 5 (blend) + 8 (topography)
- -Topo: Grid cell mean or some smoothing ($\sim 4\Delta x$)

Physics

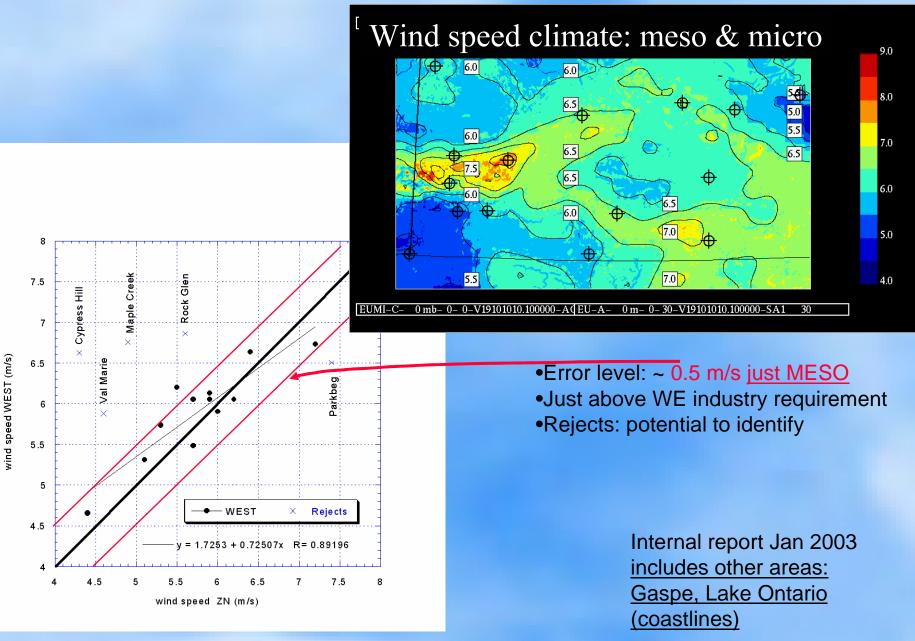
- -Dry
- -No radiation
- -No GWD
- –No surface heat flux
- –Land-sea mask
- -CLEF blyr
- -Roughness: vegetation-based, NO subgridscale nor Silhouette scheme

Typical Micromodel setup

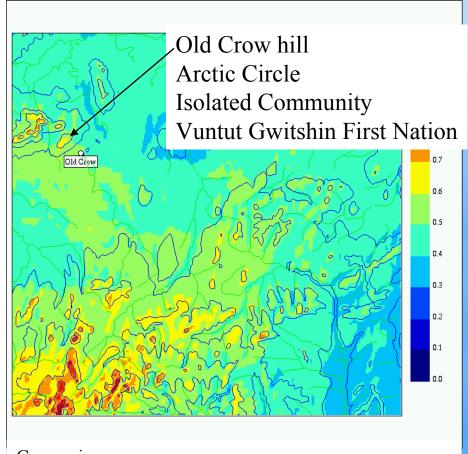
- • $\Delta x = 150 \text{ m}$
- Topo,roughness input:
 - 205 x 205 grid
 - -room for all model rotations
- N=128 transform (=model) grid
 - -Non-dimensional edge=1
 - -x=-0.5 to x=+0.5
- •Outer scale x=0.4 (flat outside this)
- •Inner scale x=0.3 (free inside that)
- Wind output from central quarter, N=64 (~10 km edge)

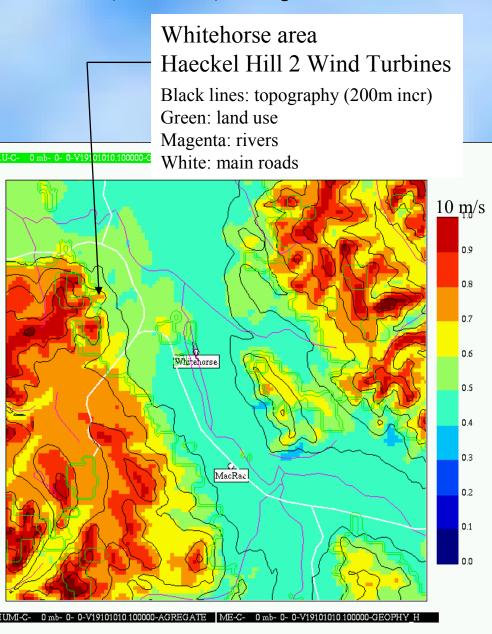


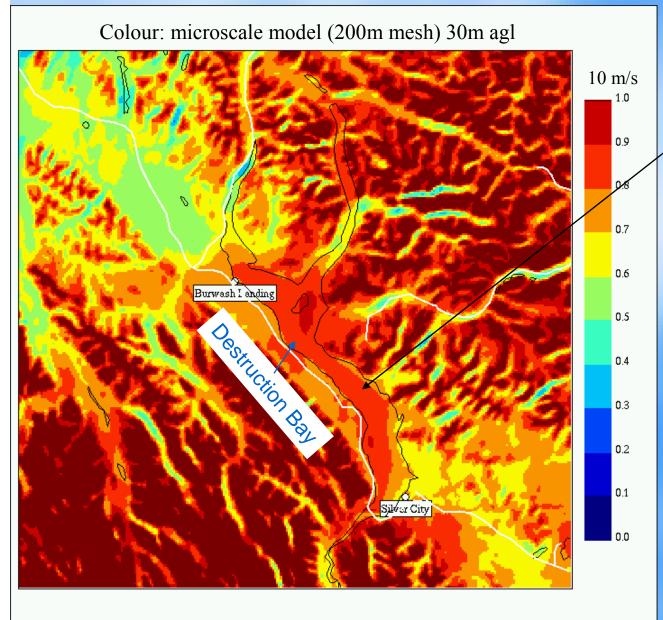
WEST


Meso-Micro Coupler

- Strong response to ground forcing
- •Important to align well the micro grids
- Anchor on the mesogrid due to wind coupling
- Define
 - $-\sigma$ =fractional overlap of the "central quarters"
 - $-\alpha$ =nondimensional distance between consecutive microdomain centers (in units of meso Δx)
- Meso/Micro splitter and aggregator
- Minimize double counting of effects:
 - -Perturbation topo
 - -Prefer input wind well-above surface layer
- Inputs:
 - -Meso grids of mean wind speed, directional frequencies and topo/roughness
 - -Microscale topo&landuse on meso domain
 - -Matching table betw meso/micro LU indexes
- Outputs (Microscale aggregated) :
 - -Wind Speed
 - -Wind Energy
- •Typical run: over a full LAM domain every 1 or 3rd points
 - →3000-10000 micromodel runs...~1 sec each on LINUX
 - $-\sigma \sim 0.3$; $\alpha = 1$ or 3
 - -Example later in presentation


Basic 2 x 2 Microdomains Array Speeds on Topographic Perturbation


Validation of WEST over SW Saskatchewan

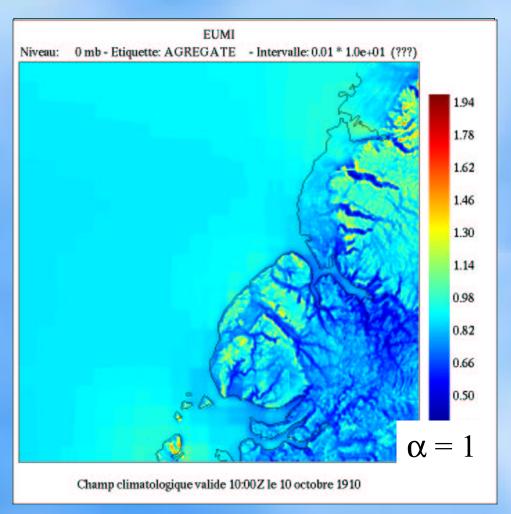

Yukon windmaps: Zooms Colour: microscale model (200m mesh) 30m agl

Green: rivers Blue: topography

Yukon windmaps: Zooms

Kluane Lake area Prospect Turbine Site Kluane First Nation

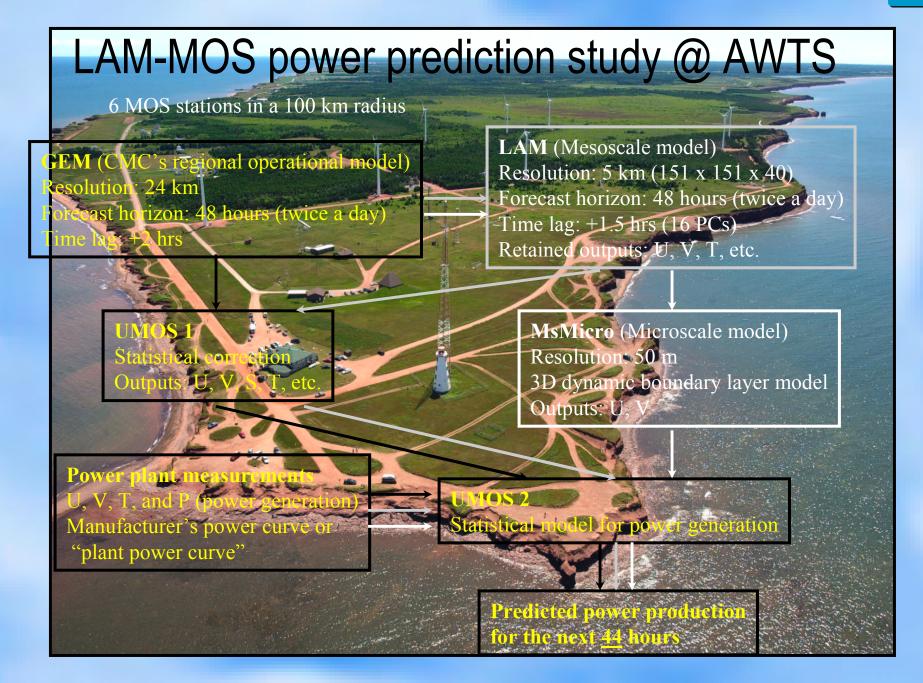
Black lines: lakes White: main roads


Preliminary Validation of the Yukon Windmaps (30 m agl)

Location	Observed	WEST Meso	Notes
Valleys	~ < 4	~ 4	
Destruction Bay	6	9	Tower near lakeshore escarpment
Paint Mt	5	4.5	Projected to 30 m
Bear Crk	6	6	
Tagish	4+	5	
Faro Sheep	4.6	5	
Lendrums	4.5	4.5	
Haeckle Hill	6 – 6.5	7	

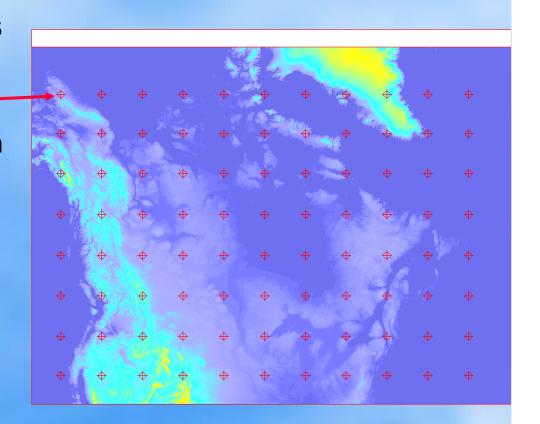
Thanks to JPPinard et al! Paper in prep for Atm-Oc

MMC Coupling aspects in coastal areas


- •Flat response of micromodel when no topo or landuse gradient across domain (ocean)
- Tends to generate flat tiles near coastline
- •Reduced with $\alpha = 1$

Applying WEST for new Wind Atlas of Canada

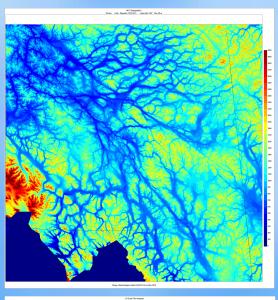
- •Canada far behind U.S. and Europe in operationalizing its wind atlas
- coast to coast: uniform quality, role of Environment Canada
- Spatial resolution:
 - -5 km meso mesh (=Level 1)
 - -100-200 m micro mesh
- •1st version complete Late 2003 –Early 2004
- Web-based results:
 - -maps & graphics : public
 - -Gridded numerical results: consultants
- •EC/NRCAN Partnership
 - -FC: WFSTechnology, Atlas generation and Webte prototype
 - -NRCAN and Geomatics Canada:
 - •providing high quality topography and LandUse national databases for the microscale model
 - •Hosting of the Wind Atlas in the Atlas of Canada
- •role of industry, private sector consultants:
 - _Quality control & Grid refinement
 - -WEST Level 2 and/or alternate microscale
- •Much progress during last 6 months ... almost ready to go into production
- Atlas: ~ 5 M\$ product value from user point of view
- Atlas favorise installation de l'electricite eolienne au pays
- Consequence future:
 - -besoin de prevision de puissance eolienne ciblees a microechelle sur plusieurs teis
 - → nombreux clients de donnees du CMC

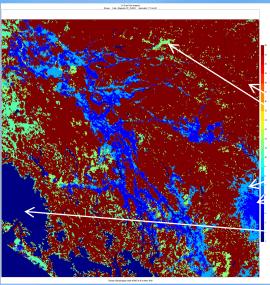

Global-Meso Coupler

- Couple the gridded climatic data (Reanalyses) to the LAMs
- Mosaic approach
- Same principles as the Meso-Micro Coupler
- Ensure gridpoints sharing between adjacent LAMs
 - -Minimize flow differences due to
 - –Surface forcings
 - —Splitting/merging operations
- •Center LAMs on individual Global gridpoints ($\Delta x \sim 250 \text{ km}$)
- •Define overlap (σ '). Minimum ~0.3 to cover 2 adjacent nestings
- •Practical maximum ~ 0.6. (cost proportional to σ^{2})
- •Atlas = aggregate of all LAMs
- Minimize spatial distortion of Atlas
 - -Project Global grid on a coordinate system with mapscale very close to 1 over Canada

Environnement

Layout of mesoscale domains

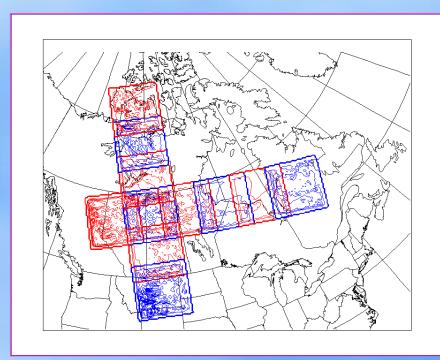

- Centroids of the meso-domains
 - –Sample strategy:
 - -11x8 = 88 centroids
 - -Each mesodomain @ 5km mesh
- 5km seamless geophysics for the meso
 - -Shown=topography
- Wind Atlas Climate problem size:
 - -~ 20 000 flow realizations
 - —Will be executed under a regional priorization scheme
 - -E.g. Northern Territories and Southern Canada first, then less populated parts



Hi-res Terrain & Land-use for the microscale

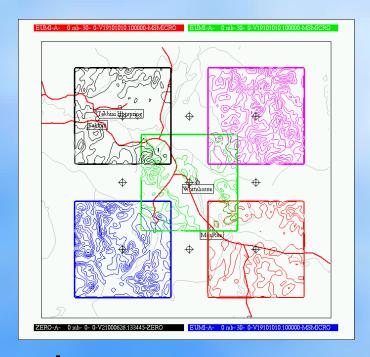
- Topography
 - -1:250 000 elevation rasters (DEMs, CDED) NRCAN
 - –National coverage
- •Land-use (veg class.) → roughness
 - -USGS satellite classification: 1-km global
 - -NRCAN vector veg themes 1:250 000
- •Others: eg BTM, USGS, Corine
- Micro-flows: Tributary on quality of these datasets

1:250 000 rasters=80 m grids


Southern Yukon

22 tundra 11deciduous shrubs 7 deciduous trees 5 evergreen trees

1 water ??? Vs ICE


Maximum quality: Achieving seamless results

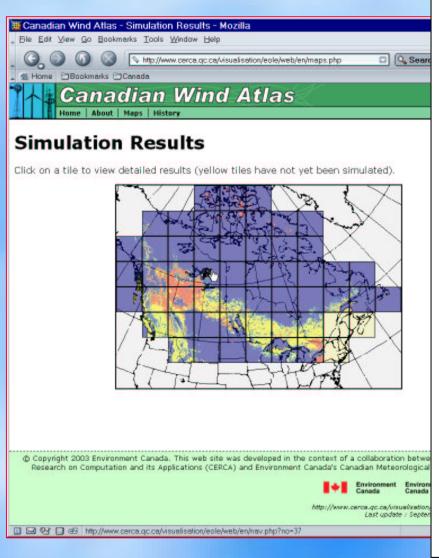
On the mesoscale domains

- Terrain-adapted flow pattern
 - -Here: Just for westerly inital isobars
 - _Atas: whole clmate
- •Isotachs shown for 6 x 5 domains, at 50 m agl
- •Global-Meso Coupler
- •Domains overlap= 30%
 - -~minimum
- •Further development before Atlas production...
 - -Reducelte, v differences

...and the microscale domains

=individual meso gridpoint

Meso-micro Coupler
Colored boxed=
individual micromodel runs


Computing the Wind Atlas Database

- •Computing task:
 - -Major Cost is the meso part:
 - •~100x200 flows for the meso part
 - Could increase significantly if larger overlap needed
 - –Micro part:
 - impressive
 - •1000-10000 microdomains per mesodomain
 - but cheap to compute
- Disk Archive::
 - -DISK: 8600MB/mesodomain
 - —Overall: Close to 1 TeraByte. 755 GB (2 time samples)
- Linux Cluster
 - ~ 10 Pentium 4- 2.4 GHz
 - -~100 days of wall-clock ... or more
- •EC supercomputer:
 - -IBM Power4 (Regata) 800 cpu at the CMC
 - —A few days/weeks (wall-clock), if access to a large chunk of the machine is granted (Special Agreement needed)

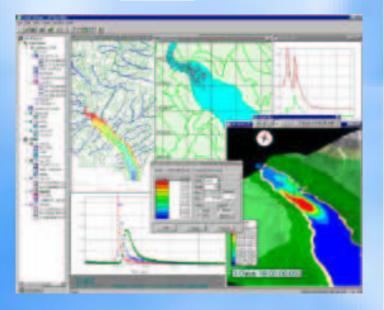
Website of the Wind Atlas

Goal is a public-domain web-based Wind Atlas

- Prototype almost completed in Montreal Engineering School (Polytechnique)
 - Fully portable
 - Canned Graphics
- Aim at transfering the prototype to Geomatics Canada early 2004 (National Atlas)

Maps Database:

- –Large set of maps
- —By Region, Parameter (windspeed, windrose freq)
- -Meso, Micro or Both
- -Option to export map content in Georeferenced form (eg MID/MIF, ...)


Fluid Modelling Database

- —For wind energy consultants
- —Allows redo of the microscale part
- And further meso downscaling: eg 5km down to 1 or 2 km, on a smaller piece of land
- -May require a "tape"/"media" service, depending on data volume

WEST system: licensing to private sector

- WEST wind mapping system developed under UNIX/Linux
- •Full **WEST** Porting to Windows XP Pro:
 - ─~ 9 months, from July 2003
 - —Meso engine port almost completed by now (9/2003)
 - —Embedded in a full GIS environment: EnSIM (NRC-Canada)
 - -Annual license basis
- •Interim license for Linux Users (until early 2004)
 - —Per project basis
- Hardware level: scalable cluster approach
- Licenses
 - —definition being worked out at EC now
 - -User Support team being assembled

Remaining challenges for the "Atlas"

- •UV differences across LAM overlaps
- Minimize overlap ratio (0.3 − 0.6)
- •Initialization of the LAM-mosaic:
 - —Geostrophic initialization tolerable or …
 - —Revert to MonteCarlo (set of 50 km national f'casts)
- •If Geostrophic, then Upgrade Geostrophic Classification scheme
- Upgrade the NRCAN topography
- Obtain the NRCAN landuse & interface to geophysics generator
- Complete the website prototype
- Execute the Atlas calculation !!!!!!!!

