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OutlineOutline:

> review of the subgrid-scale orographic (SGO) 
   parameterization: the simplified version

> impact of the simplified SGO parameterization:

       - on the properties of singular vectors (SV);

       - on the calculation of key analysis errors (KAE);

       - on the behavior of the 4DVar assimilation system.
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The SGO drag: a brief reviewThe SGO drag: a brief review

real topography “equivalent” mountain
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> The SGO drag has a direct impact on the winds...

Experiment: average change of  zonal-mean zonal wind
due to blocking term, after 5 days
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> …but the SGO drag also impacts the temperature
       field, through the model dynamics*

Experiment: average change of  zonal-mean temperature
due to blocking term, after 5 days

* An explanation of this thermal response can be found in “The subgrid scale orographic 
  blocking parametrization of the GEM model”  by Zadra et al., to appear in Atmos.Ocean.
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What does “ simplified physics”  mean ?What does “ simplified physics”  mean ?

model dynamics
- nonlinear

- tangent-linear
- adjoint

full (nonlinear) physics

simplified physics
vertical diffusion (simplified nonlinear, tangent linear, adjoint)
blocking + gwd (simplified nonlinear, tangent linear, adjoint)

large-scale condensation (simplified nonlinear, tangent linear, adjoint)
convection (simplified nonlinear, tangent linear, adjoint)
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Example: The simplified SGO parameterizationExample: The simplified SGO parameterization

1- Simplifying the nonlinear scheme:

> possible approximations in the original code

Exs: - ignore blocking term, take gwd only

- ignore directional aspect of mountain drag
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> choose a less complex scheme:

Ex:

- the full physics of the nonlinear could eventually
  adopt a new GWD scheme (for instance, the
  Scinocca-McFarlane 2000 scheme);

- while the simplified physics could keep the original,
  simpler parametrization (the McFarlane 86 GWD
  scheme).
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2- Constructing the tangent-linear scheme:

Ex: The linearized blocking term 
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3- Constructing the adjoint scheme:

> if you write the tangent-linear model as:

U

T
t

l l

l l

U

T
t

'

'
( )

'

'
( )









 =




















+ −11 12

21 22

> then the adjoint model will be:
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transpose !

sensitivies (gradients)
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Example from the simplified sgo code:

do i=il1,il2
 vmod(i) = sqrt ( uu(i,lrefm)**2 + vv(i,lrefm)**2 )
 if (vmod(i).le.vmin)  vmod(i) = vmin
 uub(i) = uu(i,lrefm)/vmod(i) 
 vvb(i) = vv(i,lrefm)/vmod(i)
enddo 

do i=il1,il2
  vmod5(i) = sqrt ( uu5(i,lrefm)**2 + vv5(i,lrefm)**2 )
  if (vmod5(i).le.vmin)  vmod5(i) = vmin
  uub5(i) = uu5(i,lrefm)/vmod5(i) 
  vvb5(i) = vv5(i,lrefm)/vmod5(i)
enddo 
.
.
.
do i=il1,il2
  vmod(i) = uub5(i)*uu(i,lrefm) + vvb5(i)*vv(i,lrefm)
  if (vmod5(i).le.vmin)  vmod(i) = zero
  uub(i) = ( uu(i,lrefm) - vmod(i)*uub5(i) )/vmod5(i)
  vvb(i) = ( vv(i,lrefm) - vmod(i)*vvb5(i) )/vmod5(i) 
enddo 

  

 do i=il1,il2
   vmod5(i) = sqrt ( uu5(i,lrefm)**2 + vv5(i,lrefm)**2 )
   if (vmod5(i).le.vmin)  vmod5(i) = vmin
   uub5(i) = uu5(i,lrefm)/vmod5(i)
   vvb5(i) = vv5(i,lrefm)/vmod5(i)
 enddo
 .
 .
 .
 do i=il2,il1,-1
   vmod(i)     = vmod(i) - vvb(i)*vvb5(i)/vmod5(i)
   vv(i,lrefm) = vv(i,lrefm) + vvb(i)/vmod5(i)
   vvb(i)      = 0.
   vmod(i)     = vmod(i) - uub(i)*uub5(i)/vmod5(i)
   uu(i,lrefm) = uu(i,lrefm) + uub(i)/vmod5(i)
   uub(i)      = 0.
   if (vmod5(i).le.vmin)  vmod(i) = 0.
     vv(i,lrefm) = vv(i,lrefm) + vmod(i)*vvb5(i)
     uu(i,lrefm) = uu(i,lrefm) + vmod(i)*uub5(i)
     vmod(i)     = 0.
   enddo

simplified nonlinear scheme

tangent-linear scheme

adjoint scheme



11

Evaluating the tangent-linear approximationEvaluating the tangent-linear approximation

> Take an initial condition        and make a nonlinear 24h integration:

U Uo
nonlinear propagation → 1

Uo

> Perturb the initial condition with a realistic disturbance         and 
   make another nonlinear 24h integration:

U U Uo o+  →' nonlinear propagation
2

Uo '

> Propagate the disturbance         for 24h using the tangent-linear model:Uo '

U Uo ' 'tangent-linear propagation →

> Compare: U U2 1− U '
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Ex: TLM test of zonal wind / model level 26 / Dt = 24h / resol. 120X60

       trajectory         

       diff. nonlinear integr.               linear integr. -- SGO = off        

       linear integr. -- SGO = on       
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Impact of the simplified SGO parameterizationImpact of the simplified SGO parameterization
on the properties of singular vectors (SV)on the properties of singular vectors (SV)
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> Singular vectors are set of states        orthogonal w.r.t. a
   specified norm -- for instance the energy norm:

Xi

> Given a basic state, they provide the maximum (energy) 
   growth over a specified period (optimization time interval = OTI):

X1 has largest growth:                          is maximum
final energy

initial energy

X2 has second largest growth, etc...

kinetic potential surface pressure
scalar product
(projections)
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> The energy at final time is based on the singular vector 
    propagated by the tangent-linear model.
    Ex: for the first SV,

E ini
ini1 1 1=< >X X|

E L Lfin
fin1 1 1=< >X X|

initial energy:

final energy:

tangent-linear
model

E

E

fin

ini
1

1
1
2= σ

σ1

energy growth:

growth rate:

_______________
For more details on the calculation of SVs: http://iweb.cmc.ec.gc.ca/~armabue
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E L L L Lfin
fin fin1 1 1 1 1=< > =< >X X X X| | *> Note:

adjoint

and the calculation of SVs may be reduced to an
eigenvalue problem* (related to the linear operator         )
where the eigenvalues are the growth factors         . 

L L*

σ i
2

> Note also that the amplitude of the SVs is arbitrary.
   The convention is to choose the amplitudes such that
                      for all SVs.E ini  =  1

_____________________
* A Lanczos-type algorithm is used to solve this eigenvalue problem.
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Examples: for TT winter / OTI=48h / simpl.phys.: VDIFF only

SV1 SV1

SV2 SV2
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SV3 SV3

SV5 SV5
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Types of tests:Types of tests:

> compare SVs produced by 2 different configurations
   of the simplified physics;

> take SVs produced by one configuration (ex: only 
   VDIFF) and propagate them with the TLM of another 
   configuration (ex: VDIFF + SGO);

> take SVs produced by one configuration and propagate
   them using the full nonlinear model. 
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Comparison of TT SVs / OTI=48h / VDIFF vs VDIFF + SGO

SV1 SV1

SV1 SV1

VDIFFVDIFF VDIFFVDIFF

VDIFF+SGOVDIFF+SGO VDIFF+SGOVDIFF+SGO
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SV3 SV3

SV3 SV3

VDIFFVDIFF VDIFFVDIFF

VDIFF+SGOVDIFF+SGO VDIFF+SGOVDIFF+SGO
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Example of energy growth: OTI=48h / VDIFF only

E t
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Example of growth-rate spectrum: OTI=48h / VDIFF only

σ
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Example of energy partition: OTI=48h / VDIFF only

E ini E fin
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Example: impact of SGO on the growth-rate spectrum

σ

3rd SV (over Siberia) 3rd SV (over Siberia) 
strongly damped by SGO dragstrongly damped by SGO drag

SGO tends toSGO tends to
decrease growth ratedecrease growth rate
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Example: impact of LSC on the growth-rate spectrum

LSC parametrizationLSC parametrization
tends to increase the growth ratetends to increase the growth rate
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Examples of spatial distribution of SV energy
10 SVs / OTI=24h / simpl.phys.: VDIFF only

initialinitial

finalfinal

initial peak ininitial peak in
middle tropospheremiddle troposphere

final peaks near final peaks near 
surface and tropopausesurface and tropopause

horizontal distributionhorizontal distribution meridional distributionmeridional distribution
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Impact of SGO on the initial energy distribution
10 SVs / OTI=24h

VDIFF onlyVDIFF only

VDIFF + SGOVDIFF + SGO

Impact of SGO on the initial energy distribution
10 SVs / OTI=24h

horizontal distributionhorizontal distribution meridional distributionmeridional distribution
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Impact of SGO on the final energy distribution
10 SVs / OTI=24h

VDIFF onlyVDIFF only

VDIFF + SGOVDIFF + SGO

horizontal distributionhorizontal distribution meridional distributionmeridional distribution
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Impact of LSC on the initial energy distribution
10 SVs / OTI=24h

VDIFF + SGOVDIFF + SGO

VDIFF + SGO + LSCVDIFF + SGO + LSC

horizontal distributionhorizontal distribution meridional distributionmeridional distribution
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Impact of LSC on the final energy distribution
10 SVs / OTI=24h

VDIFF + SGOVDIFF + SGO

VDIFF + SGO + LSCVDIFF + SGO + LSC

horizontal distributionhorizontal distribution meridional distributionmeridional distribution
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initialinitial finalfinal TLMTLM

initialinitial finalfinal NLM2-NLM1NLM2-NLM1scale = 0.1scale = 0.1

Linear vs. nonlinear prop. of SV1  / TT  level=18 / OTI=24h

nonlinear
propagation

linear
propagation
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initialinitial finalfinal TLMTLM

initialinitial finalfinalscale = 1.0scale = 1.0 NLM2-NLM1NLM2-NLM1

Linear vs. nonlinear prop. of SV1  / TT  level=18 / OTI=24h
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initialinitial finalfinal TLMTLM

initialinitial finalfinalscale = -1.0scale = -1.0 NLM2-NLM1NLM2-NLM1

Linear vs. nonlinear prop. of SV1  / TT  level=18 / OTI=24h
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initialinitial finalfinal TLMTLM

initialinitial finalfinalscale = 5.0scale = 5.0 NLM2-NLM1NLM2-NLM1

Linear vs. nonlinear prop. of SV1  / TT  level=18 / OTI=24h
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Impact of the simplified SGO parameterizationImpact of the simplified SGO parameterization
on the calculation of key analysis errors (KAE)on the calculation of key analysis errors (KAE)

> KAE = sensitivity of 24h forecast errors w.r.t. initial
    conditions (analysis). 

> The algorithm uses tangent-linear and adjoint integrations 
   to find corrections to the initial analysis that reduce the 
   24h forecast error.

> Errors are measured according to the total energy norm.

_________________
For more details on KAEs: 
http://iweb.cmc.ec.gc.ca/~afsdjmo/SENSIB/sensib.html
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Impact of SGO on KAEs / zonal wind

reference / VDIFF onlyreference / VDIFF only

difference when SGO is activated (drag - nodrag)difference when SGO is activated (drag - nodrag)

EuropeEurope
AsiaAsia

RockiesRockies

GWDGWD
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Propagated KAEs (after 24h) / zonal wind

reference / VDIFF onlyreference / VDIFF only

difference when SGO is activated (drag - nodrag)difference when SGO is activated (drag - nodrag)
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Test: projection of KAEs on the SV space Test: projection of KAEs on the SV space 

> A projection of KAEs on the leading SVs provides the
   the most unstable components of the analysis corrections.

> In this test, the KAEs are projected (using the energy
   norm) on the 50 leading SVs, with an OTI=24h.

> The projected KAEs are propagated using the TLM for 
    24h, and the result is compared with the structure of
    forecast errors.
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Projection of KAEs on 50 SVs / TT / initial time

projected KAEsprojected KAEs

full KAEsfull KAEs
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Projection of KAEs on 50 SVs / UU / final time

projected KAEsprojected KAEs

full KAEsfull KAEs
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SummarySummary

> Adding the SGO to the simplified physics improves
   the consistency between the tangent-linear and the
   nonlinear model.

> The SGO scheme tends to decrease the growth rate
   of the leading extra-tropical SVs, especially those 
   over continents.

> The simplified SGO parameterization has a non-
   negligible impact on the amplitude of the KAEs’
   (especially on low-level winds).
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Future workFuture work
> Evaluate the impact of other physical processes
   (ex: LSC, convection) in the simplified physics, as
   well as the use of other norms (ex: add a moist 
   term to the energy norm).

> Further tests of sensitivity analysis with SGO scheme
   (ex: daily sensitivity analysis -- see seminar by 
   Stephane Laroche next week !)

> Low-resolution experiments suggest that the SGO
   scheme may smooth and speed up the minimization
   process in 4DVar assimilations. Tests at higher 
   resolutions will be made soon.


