Limited Area Modelling with GEMDM

M. Desgagné, V. Lee

Recherche en Prévision Numérique Environment Canada - MSC/RPN

Environment Canada - MSC (formerly AES)

<u>OUTLINE</u>

- Details of LAM implementation in GEMDM
- Validation a beginning:
 - 10 km horizontal resolution
 - 2 km horizontal resolution (not completed)
- Performance
- Remaining differences with MC2
- What's ahead

Merci à: Michel Valin, Luc Corbeil, Jean Coté, Abdessamad Qaddouri, Claude Girard, Jocelyn Mailhot and Pierre Pellerin

An Acid Test for LAM <u>Regional Modelling: A Theoretical Discussion</u> A. Staniforth, 1995 (Meteor. Atmos. Phys.)

At same horizontal and temporal resolution, how well can a LAM reproduce the solution of a large domain on any smaller subdomain

Launching a LAM configuration: user perspective

Validating GEMDM in LAM configurations

• LU_10km (10 km resolution): - EARL (5-6 Sept 1998): ET re-development - Thanks to Lubos Spacek – Winter Storm of 14-15 December 2000 - Thanks to Sylvain Ménard & Richard Moffet • LU 02km (2 km resolution) – Vortex case study (7-8 May 1995) – IOP2b of MAP-SOP (19 September 1999)

EARL: 30 August to 9 September 1998

September 1998: Classified as a very active TC period

Earl Case Study

Total Accumulation of Precipitation over 36H (mm)

Winter Storm Case Study

Total Accumulation of Precipitation over 36H (mm)

Belair & Mailhot, 2001: Impact of Horizontal Resolution on the Numerical Simulation of a Midlatitude Squall Line: Implicit vs Explicit Condensation. Mon. Wea. Rev., 129, 2362-2376

Grid Strategy for GEMDM-LAM: Vortex case study of 7-8 May 1995

27 H Forecast of Precipitation Rate (mm/h) valid 0300 UTC 8 May 1995

Vortex Case Study: Next Stage at 10 km

LU_10km (235 x 255)

<u>nk = 65</u> Hor. Diffu = del 4.2

24H, dt=75

Color Shades: Topography

Arrow: Low level Flow valid 16 UTC 07 May 1995

Comparative Timings for 2 km resolution runs on SX6

Timings (2)

	345 x 385 1080 steps	345 x 385 2160 steps	338 x 385 1080 steps	452 x 475 1080 steps
	GEM	MC2	GEM	GEM
	LAM		FFT-LAM	VAR
CPU (hours)	34.0	28.7	25.7	53.7
FC (E+12)	198.2	145.7	119.0	394.8
Gflops/sec	1.6	1.5	1.3	2.06
Vector length	160	176	153	207
Mem (Gbytes)	11.5	7.4	9.0	11.8

Remaining differences between GEM and MC2

	GEM	MC2	
Time discretization	2 time level fully implicit	3 time level semi-implicit	
Pressure solver	direct solver on nk planes	iterative fully 3D solver	
Vertical coordinate	mass no-staggering	height Charney-Phillips staggering	
SLT	1 set of trajectories	3 sets of trajectories	
Change grid	mostly cubic	strictly linear	
Physics interface	4 basic tendencies + 6 derivates including a heat term on mass fields	4 basic tendencies	
Prognostics variables	14: 6 basics + 5 derivates + 3 pertub.	6	
Topography	fixed	time dependent at startup	

<u>Time Dependent Topography</u> Improving Spinup when using high resolution topography: Claude Girard (spring 1999)

Conclusions & Future work

- LAM configurations for GEMDM are ready to explore (v_3.0.2 and up)
- Machine performance as expected
- Caution for high resolution simulations

- Canonical cases
- Pursue LAM validation at high resolution using MC2
- Formal comparisons between LAM and variable resolution method
- Operational LAM...

THE END

Thank You !

Environment Canada