ENSEMBLE FORECASTING AT NCEP

Zoltan Toth⁽³⁾,

Yuejian Zhu⁽⁴⁾, Jun Du ⁽⁴⁾, Richard Wobus ⁽⁴⁾, Tim Marchok, Mozheng Wei⁽⁵⁾,

Ackn.: S. Lord ⁽³⁾, H.-L. Pan ⁽³⁾, R. Buizza⁽¹⁾, P. Houtekamer⁽²⁾, S. Tracton ⁽⁶⁾

⁽¹⁾: European Centre for Medium-Range Weather Forecasts, Reading UK (www.ecmwf.int)

⁽²⁾: Meteorological Service of Canada, Dorval, Quebec, Canada (www.msc-smc.ec.gc.ca)

⁽³⁾: NCEP/EMC, Washington, US (www.emc.ncep.noaa.gov)

⁽⁴⁾: SAIC at NCEP/EMC, Washington, US (www.emc.ncep.noaa.gov)

⁽⁵⁾: UCAR Visiting Scientist, NCEP/EMC, Washington, US

⁽⁶⁾ : ONR

OUTLINE

- MOTIVATION FOR ENSEMBLE/PROBABILISTIC FORECASTING
 - User Needs
 - Scientific needs
- SOURCES OF FORECAST ERRORS
 - Initial value
 - Model formulation
- ESTIMATING & SAMPLING FORECAST UNCERTAINTY
- DESCRIPTION OF NCEP ENSEMBLE FORECAST SYSTEMS
 - Global
 - Regional
 - Coupled ocean-atmosphere
- FORECAST EXAMPLES
- VERIFICATION
- ONGOING RESEARCH / OPEN QUESTIONS

MOTIVATION FOR ENSEMBLE FORECASTING

- FORECASTS ARE NOT PERFECT IMPLICATIONS FOR:
 USERS:
 - Need to know how often / by how much forecasts fail
 - Economically optimal behavior depends on
 - Forecast error characteristics
 - User specific application
 - » Cost of weather related adaptive action
 - » Expected loss if no action taken
 - EXAMPLE: Protect or not your crop against possible frost

Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1

• NEED FOR PROBABILISTIC FORECAST INFORMATION

- **DEVELOPERS**:

- Need to improve performance *Reduce error in estimate of first moment*
 - Traditional NWP activities (I.e., model, data assimilation development)
- Need to account for uncertainty Estimate higher moments
 - New aspect How to do this?
- Forecast is incomplete without information on forecast uncertainty
- NEED TO USE PROBABILISTIC FORECAST FORMAT

USER NEEDS – PROBABILISTIC FORECAST INFORMATION FOR MAXIMUM ECONOMIC BENEFIT

ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take action (eg, protects its crop against frost) *Mylne & Harrison, 1999*

Optimum decision criterion for user action: P(weather event)=C/L (Murphy 1977)

SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY ARISING DUE TO CHAOS

ORIGIN OF FORECAST UNCERTAINTY

1) The atmosphere is a **deterministic system** *AND* has at least one direction in which **perturbations grow**

2) Initial state (and model) has error in it ==>

Chaotic system + Initial error =(Loss of) Predictability

FORECASTING IN A CHAOTIC ENVIRONMENT DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - One integration with an NWP model

- Is not best estimate for future evolution of system
- •Does not contain all attainable forecast information
- Can be combined with past verification statistics to form probabilistic forecast
 - Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING -

Based on Liuville Equations

- Initialize with probability distribution function (pdf) at analysis time
- Dynamical forecast of pdf based on conservation of probability values
- Prohibitively expensive -
 - Very high dimensional problem (state space x probability space)
 - Separate integration for each lead time
 - Closure problems when simplified solution sought

FORECASTING IN A CHAOTIC ENVIRONMENT - 2 *DETERMINISTIC APPROACH - PROBABILISTIC FORMAT*

MONTE CARLO APPROACH – ENSEMBLE FORECASTING

IDEA: Sample sources of forecast error

- Generate initial ensemble perturbations
- Represent model related uncertainty

PRACTICE: Run multiple NWP model integrations

- Advantage of perfect parallelization
- Use lower spatial resolution if short on resources

• USAGE: Construct forecast pdf based on finite sample

- Ready to be used in real world applications
- Verification of forecasts
- Statistical post-processing (remove bias in 1st, 2nd, higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS

IN FORECAST UNCERTAINTY

SOURCES OF FORECAST ERRORS IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS

- Incomplete observing system (not all variables observed)
- Inaccurate observations (instrument/representativeness error)
- Imperfect data assimilation methods
 - Statistical approximations (eg, inaccurate error covariance information)
 - Use of imperfect NWP forecasts (due to initial and model errors) -
 - Effect of cycling (forecast errors "inherited" by analysis use breeding)

GOVERNING EQUATIONS:

- Imperfect model
 - Structural uncertainty (eg, choice of structure of convective scheme)
 - Parametric uncertainty (eg, critical values in parameterization schemes)
 - Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:

- Two main sources of forecast errors hard to separate =>
- Very little information is available on model related errors
- Tendency to attribute all forecast errors to model problems

SAMPLING FORECAST ERRORS =

REPRESENTING ERRORS ORIGINATING FROM TWO MAIN SOURCES

INITIAL CONDITION RELATED ERRORS – "Easy"

- Sample initial errors
- Run ensemble of forecasts
- It works
 - Flow dependent variations in forecast uncertainty captured (show later)
 - Difficult or impossible to reproduce with statistical methods

MODEL RELATED ERRORS – No theoretically satisfying approach

- Change structure of model (eg, use different convective schemes, etc, MSC)
- Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
- Works? Advantages of various approaches need to be carefully assessed
 - Are flow dependent variations in uncertainty captured?
 - Can statistical post-processing replicate use of various methods?
- Need for a
 - more comprehensive and
 - theoretically appealing approach

SAMPLING INITIAL CONDITION ERRORS CAN SAMPLE ONLY WHAT'S KNOWN – FIRST NEED TO ESTIMATE INITIAL ERROR DISTRIBUTION

THEORETICAL UNDERSTANDING – THE MORE ADVANCED A SCHEME IS (e. g., 4DVAR, Ensemble Kalman Filter)

- The lower the overall error level is
- The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES-

ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION

- **Statistical approach** (dynamically growing errors neglected)
 - Selected estimated statistical properties of analysis error reproduced
 - Baumhefner et al Spatial distribution; wavenumber spectra
 - ECMWF Implicite constraint with use of Total Energy norm
- *Dynamical approach* Breeding cycle (NCEP)
 - Cycling of errors captured
 - Estimates subspace of dynamically fastest growing errors in analysis
- **Stochastic-dynamic approach** Perturbed Observations method (MSC)
 - Perturb all observations (given their uncertainty)
 - Run multiple analysis cycles
 - Captures full space (growing + non-growing) of analysis errors

SAMPLING INITIAL CONDITION ERRORS THREE APPROACHES – SEVERAL OPEN QUESTIONS

• **RANDOM SAMPLING – Perturbed observations method** (MSC)

- Represents all potential error patterns with realistic amplitude
- Small subspace of growing errors is well represented
- Potential problems:
 - Much larger subspace of non-growing errors poorly sampled,
 - Yet represented with realistic amplitudes

• **SAMPLE GROWING ANALYSIS ERRORS** – **Breeding** (NCEP)

- Represents dynamically growing analysis errors
- Ignores non-growing component of error
- Potential problems:
 - May not provide "wide enough" sample of growing perturbations
 - Statistical consistency violated due to directed sampling? Forecast consequences?

• SAMPLE FASTEST GROWING FORECAST ERRORS – SVs (ECMWF)

- Represents forecast errors that would grow fastest in linear sense
- Perturbations are optimized for maximum forecast error growth
- Potential problems:
 - Need to optimize for each forecast application (or for none)?
 - Linear approximation used
 - Very expensive

ESTIMATING AND SAMPLING INITIAL ERRORS: THE BREEDING METHOD

- **DATA ASSIM:** Growing errors due to cycling through NWP forecasts
- **BREEDING:** Simulate effect of obs by rescaling nonlinear perturbations
 - Sample subspace of most rapidly growing analysis errors
 - Extension of linear concept of Lyapunov Vectors into nonlinear environment
 - Fastest growing nonlinear perturbations
 - Not optimized for future growth -
 - Norm independent
 - Is non-modal behavior important?

LYAPUNOV, SINGULAR, AND BRED VECTORS

• LYAPUNOV VECTORS (LLV):

- Linear perturbation evolution
- Fast growth
- Sustainable
- Norm independent
- Spectrum of LLVs

• SINGULAR VECTORS (SV):

- Linear perturbation evolution
- Fastest growth
- Transitional (optimized)
- Norm dependent
- Spectrum of SVs

• BRED VECTORS (BV):

- Nonlinear perturbation evolution
- Fast growth
- Sustainable
- Norm independent
- Can orthogonalize (Boffeta et al)

PERTURBATION EVOLUTION

• **PERTURBATION GROWTH**

- Due to effect of instabilities
- Linked with atmospheric phenomena (e.g, frontal system)

• LIFE CYCLE OF PERTURBATIONS

- Associated with phenomena
- Nonlinear interactions limit perturbation growth
- Eg, convective instabilities grow fast but are limited by availability of moisture etc

• LINEAR DESCRIPTION

- May be valid at beginning stage only
- If linear models used, need to reflect nonlinear effects at given perturb. Amplitude

BREEDING

- Full nonlinear description
- Range of typical perturbation amplitudes is only free parameter

DESCRIPTION OF NCEP ENSEMBLE FORECAST SYSTEMS OPERATIONAL

- Global ensemble forecast system (based on MRF/GFS system)
- Limited Area Ensemble Forecast System (SREF, over NA)
 PLANNED
- Seasonal Ensemble Forecast System (Planned, coupled model)

FOR EACH SYSTEM:

- Configuration
- Initial perturbations
- Model perturbations
- Main users
- Applications
- Examples
- Discussion/Conclusion

NCEP GLOBAL ENSEMBLE FORECAST SYSTEM

CURRENT (APRIL 2003) SYSTEM

- 10 members out to 16 days
- 2 *(4)* times daily
- T126 out to 3.5 (7.5) days
- Model error not yet represented
- PLANS
- Initial perturbations
 - Rescale bred vectors via ETKF
 - Perturb surface conditions

• Model errors

- Push members apart
- Multiple physics (combinations)
- Change model to reflect uncertainties

Post-processing

- Multi-center ensembles
- Calibrate 1st & 2nd moment of pdf
- Multi-modal behavior?

ADVANTAGES OF USING ENSEMBLE (VS. CONTROL) FCSTS

BEST ESTIMATE OF FUTURE STATE

- RMS error
 - Ensemble mean beats control
 - Skill above climatology even in summer, out to 16 days
 - Low resolution control beats hires control
- Ensemble spread
 - Lower than ensemble mean error
 - Due to lack of model perturbations

Aug-Sept. 2002 3-basin Tropical torm track errors

19

RESOLUTION OF ENSEMBLE BASED PROB. FCSTS

QUESTION:

What are the typical variations in foreseeable forecast uncertainty? What variations in predictability can the ensemble resolve?

METHOD:

Ensemble mode value to distinguish high/low predictability cases Stratify cases according to ensemble mode value –

Use 10-15% of cases when ensemble is highest/loewest

DATA:

NCEP **500 hPa NH extratropical ensemble fcsts** for March–May 1997 14 perturbed fcsts and high resolution control

VERIFICATION:

Hit rate for ensemble mode and hires control fcst

SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS

THE UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE

HIT RATES FOR 1-DAY FCSTS

CAN BE AS LOW AS 36%, OR AS HIGH AS 92%

10–15% OF THE TIME A 12–DAY FCST CAN BE AS GOOD, OR A 1–DAY FCST CAN BE AS POOR AS AN AVERAGE 4–DAY FCAST

1–2% OF ALL DAYS THE 12–DAY FCST CAN BE MADE WITH MORE CONFIDENCE THAN THE 1–DAY FCST

AVERAGE HIT RATE FOR EXTENDED-RANGE FCSTS IS LOW -VALUE IS IN KNOWING WHEN FCST IS RELIABLE

Prob of Precip Amount Exceeding 0.5 Inch (12.7 mm/day) Ens Prob of Precip Amount Exceeding 0.5 Inch (12.7 mm/day) Valid Period: 2000102712-2000102812
Valid Period: 2000110312-2000110412

Prob of Precip Amount Exceeding <u>1.0 inch</u> (25.4 mm/day) Ens Prob of Precip Amount Exceeding <u>1.0 inch</u> (25.4 mm/day)
 Valid Period: <u>2000102712-2000102812</u>
 Valid Period: <u>2000110312-2000110412</u>

ENSEMBLE BASED PROBABILISTIC FORECASTS AND THEIR VERIFICATION

Reliability diagram for 3-day lead time ensembles for January 1996. Forecast probabilities are based on observed frequencies associated with the same number of ensemble members falling in a particular bin during December 1-20, 1995. The diagram for uncalibrated forecasts is shown on the right.

BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE

CURRENT NWS PRACTICE

2) "CLIMATE" ENSEMBLE:

- a) 12-months coupled ocean-atm fcsts
- b) Average the SST fcsts

c) Run AGCM ensemble forced by average SST fcst

STRENGTH:

Ensemble approach used both for coupled and AGCM model fcsts for enhancing (weak) signal

SHORTCOMINGS:

- a) Coupled ensemble (lagged fcst) perturbations not optimal
- b) Uncertainty information related to SST fcst is discarded
- c) Initial condition information from atmosphere not used

BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE PLANS

3) POSSIBLE FUTURE SYSTEM: "WEATHER AND CLIMATE" ENSEMBLE?

COUPLED MODEL ENSEMBLE -

Use dynamically constructed perturbations

- a) Nonlinear bred perturbations capture dominant ENSO instability
- b) Initial error present in analysis dominated by same instability
- c) Symmetrically placed perturbed fcsts provide optimal ensemble

AGCM ENSEMBLE – PART OF COUPLED SYSTEM?

- i) Use ensemble SST fcsts as various boundary scenarios
- ii) Single set of AGCM fcsts for all time ranges (D1-climate)

ONE-TIER SYSTEM - If possible, with coupled ocean model

NCEP SHORT-RANGE ENSEMBLE FORECAST SYSTEM (SREF)

OPERATIONAL SYSTEM

- 10 Members out to 63 hrs
- 2 Models used:ETA & RSM
- 09 & 21 UTC initialization
- NA domain
- 48 km resolution
- Bred initial perturbations
- Products (on web):
 - Ens. Mean & spread
 - Spaghetti
 - Probabilities
 - Aviation specific
- Ongoing training

PLANS

- 5 more members
- More model diversity
- 4 cycles per day (3&15 UTC)
- 32 km resolution
- New products
 - Aviation specific
 - AWIPS

• Transition to WRF

PERTURBATION VS. ERROR CORRELATION ANALYSIS (PECA)

METHOD: Compute correlation between ens perturbtns and error in control fcst fc

- Individual members
- Optimal combination of members
- Each ensemble
- Various areas, all lead time

EVALUATION: Large correlation indicates ens captures error in control forecast

- Caveat - errors defined by analysis

RESULTS:

- Canadian best on large scales
 - Benefit of model diversity?
- ECMWF gains most from combinations
 - Benefit of orthogonalization?
- NCEP best on small scale, short term
 - Benefit of breeding (best estimate initial error)?
- PECA increases with lead time
 - Lyapunov convergence
 - Nonlilnear saturation
- Higher values on small scales

