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MOTIVATION FOR ENSEMBLE FORECASTING

• FORECASTS ARE NOT PERFECT - IMPLICATIONS FOR:
– USERS:

• Need to know how often / by how much forecasts fail
• Economically optimal behavior depends on

– Forecast error characteristics
– User specific application

» Cost of weather related adaptive action
» Expected loss if no action taken

– EXAMPLE: Protect or not your crop against possible frost
Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1
• NEED FOR PROBABILISTIC FORECAST INFORMATION

– DEVELOPERS:
• Need to improve performance   - Reduce error in estimate of first moment

– Traditional NWP activities (I.e., model, data assimilation development)
• Need to account for uncertainty - Estimate higher moments

– New aspect – How to do this?
•  Forecast is incomplete without information on forecast uncertainty
• NEED TO USE PROBABILISTIC FORECAST FORMAT
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USER NEEDS – PROBABILISTIC FORECAST INFORMATION
FOR MAXIMUM ECONOMIC BENEFIT
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SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY
ARISING DUE TO CHAOS

Buizza
2002
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FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST -  One integration with an NWP model
• Is not best estimate for future evolution of system

•Does not contain all attainable forecast information
• Can be combined with past verification statistics to form probabilistic forecast

• Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING -  Based on Liuville Equations
• Initialize with probability distribution function (pdf) at analysis time
• Dynamical forecast of pdf based on conservation of probability values
• Prohibitively expensive -

• Very high dimensional problem (state space x probability space)
• Separate integration for each lead time
• Closure problems when simplified solution sought
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FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH – ENSEMBLE FORECASTING

•  IDEA: Sample sources of forecast error
• Generate initial ensemble perturbations

• Represent model related uncertainty

•  PRACTICE: Run multiple NWP model integrations
• Advantage of perfect parallelization
• Use lower spatial resolution if short on resources

•  USAGE: Construct forecast pdf based on finite sample
• Ready to be used in real world applications
• Verification of forecasts
• Statistical post-processing (remove bias in 1st, 2nd, higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
 IN FORECAST UNCERTAINTY 7



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS
• Incomplete observing system (not all variables observed)
• Inaccurate observations (instrument/representativeness error)
• Imperfect data assimilation methods

• Statistical approximations (eg, inaccurate error covariance information)

• Use of imperfect NWP forecasts (due to initial and model errors) –
• Effect of cycling (forecast errors “inherited” by analysis – use breeding)

GOVERNING EQUATIONS:
• Imperfect model

• Structural uncertainty (eg, choice of structure of convective scheme)
• Parametric uncertainty (eg, critical values in parameterization schemes)

• Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
• Two main sources of forecast errors hard to separate =>
• Very little information is available on model related errors

• Tendency to attribute all forecast errors to model problems 8



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS ORIGINATING FROM TWO MAIN SOURCES

INITIAL CONDITION RELATED ERRORS – “Easy”
• Sample initial errors

• Run ensemble of forecasts
• It works

• Flow dependent variations in forecast uncertainty captured (show later)

• Difficult or impossible to reproduce with statistical methods

MODEL RELATED ERRORS – No theoretically satisfying approach
• Change structure of model (eg, use different convective schemes, etc, MSC)
• Add stochastic noise (eg, perturb diabatic forcing, ECMWF)

• Works? Advantages of various approaches need to be carefully assessed
• Are flow dependent variations in uncertainty captured?
• Can statistical post-processing replicate use of various methods?

• Need for a
• more comprehensive and
• theoretically appealing approach
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SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT’S KNOWN – FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION
THEORETICAL UNDERSTANDING – THE MORE ADVANCED A SCHEME IS

(e. g., 4DVAR, Ensemble Kalman Filter)

• The lower the overall error level is
• The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES –
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
• Statistical approach (dynamically growing errors neglected)

• Selected estimated statistical properties of analysis error reproduced
• Baumhefner et al – Spatial distribution; wavenumber spectra
• ECMWF – Implicite constraint with use of Total Energy norm

• Dynamical approach – Breeding cycle (NCEP)
• Cycling of errors captured
• Estimates subspace of dynamically fastest growing errors in analysis

• Stochastic-dynamic approach – Perturbed Observations method (MSC)
• Perturb all observations (given their uncertainty)
• Run multiple analysis cycles

• Captures full space (growing + non-growing) of analysis errors
10



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES – SEVERAL OPEN QUESTIONS

• RANDOM SAMPLING – Perturbed observations method (MSC)
– Represents all potential error patterns with realistic amplitude

– Small subspace of growing errors is well represented
– Potential problems:

•  Much larger subspace of non-growing errors poorly sampled,
•  Yet represented with realistic amplitudes

• SAMPLE GROWING ANALYSIS ERRORS – Breeding (NCEP)
– Represents dynamically growing analysis errors
– Ignores non-growing component of error
– Potential problems:

• May not provide “wide enough” sample of growing perturbations
• Statistical consistency violated due to directed sampling? Forecast consequences?

• SAMPLE FASTEST GROWING FORECAST ERRORS – SVs (ECMWF)
– Represents forecast errors that would grow fastest in linear sense
– Perturbations are optimized for maximum forecast error growth
– Potential problems:

• Need to optimize for each forecast application (or for none)?
• Linear approximation used
• Very expensive 11



ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

• DATA ASSIM: Growing errors due to cycling through NWP forecasts

• BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations
– Sample subspace of most rapidly growing analysis errors

• Extension of linear concept of Lyapunov Vectors into nonlinear environment
• Fastest growing nonlinear perturbations

• Not optimized for future growth –
– Norm independent
– Is non-modal behavior important?
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LYAPUNOV, SINGULAR, AND BRED VECTORS
• LYAPUNOV VECTORS (LLV):

– Linear perturbation evolution
– Fast growth
– Sustainable

– Norm independent
– Spectrum of LLVs

• SINGULAR VECTORS (SV):
– Linear perturbation evolution
– Fastest growth

– Transitional (optimized)
– Norm dependent
– Spectrum of SVs

• BRED VECTORS (BV):
– Nonlinear perturbation evolution
– Fast growth
– Sustainable

– Norm independent
– Can orthogonalize (Boffeta et al)
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PERTURBATION EVOLUTION
• PERTURBATION GROWTH

– Due to effect of instabilities
– Linked with atmospheric phenomena (e.g, frontal system)

• LIFE CYCLE OF PERTURBATIONS
– Associated with phenomena
– Nonlinear interactions limit perturbation growth

– Eg, convective instabilities grow fast but are limited by availability of moisture etc

• LINEAR DESCRIPTION
– May be valid at beginning stage only
– If linear models used, need to reflect nonlinear effects at given perturb. Amplitude

• BREEDING
– Full nonlinear description

– Range of typical perturbation amplitudes is only free parameter
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DESCRIPTION OF NCEP ENSEMBLE FORECAST SYSTEMS
OPERATIONAL
• Global ensemble forecast system (based on MRF/GFS system)
• Limited Area Ensemble Forecast System (SREF, over NA)
PLANNED
• Seasonal Ensemble Forecast System (Planned, coupled

model)
FOR EACH SYSTEM:

• Configuration
• Initial perturbations
• Model perturbations
• Main users
• Applications
• Examples
• Discussion/Conclusion
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NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
CURRENT (APRIL 2003) SYSTEM
• 10 members out to 16 days
• 2 (4) times daily
• T126 out to 3.5 (7.5) days
• Model error not yet represented

• PLANS
• Initial perturbations

– Rescale bred vectors via ETKF
– Perturb surface conditions

• Model errors
– Push members apart
– Multiple physics (combinations)
– Change model to reflect

uncertainties
• Post-processing

– Multi-center ensembles
– Calibrate 1st & 2nd moment of pdf
– Multi-modal behavior?
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BEST ESTIMATE OF FUTURE STATE

• RMS error
– Ensemble mean beats

control

– Skill above climatology
even in summer, out to
16 days

– Low resolution control
beats hires control

• Ensemble spread
– Lower than ensemble

mean error
• Due to lack of model

perturbations
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Aug-Sept. 2002 3-basin Tropical torm track errors
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NCEP SHORT-RANGE ENSEMBLE FORECAST SYSTEM
(SREF)

OPERATIONAL SYSTEM
• 10 Members out to 63 hrs
• 2 Models used:ETA & RSM
• 09 & 21 UTC initialization
• NA domain
• 48 km resolution
• Bred initial perturbations
• Products (on web):

– Ens. Mean & spread
– Spaghetti
– Probabilities
– Aviation specific

• Ongoing training

PLANS
• 5 more members
• More model diversity
• 4 cycles per day (3&15 UTC)

• 32 km resolution

• New products
• Aviation specific
• AWIPS

• Transition to WRF
30



PERTURBATION VS. ERROR
CORRELATION ANALYSIS (PECA)

METHOD: Compute correlation between
ens perturbtns and error in control fcst for

– Individual members
– Optimal combination of members

– Each ensemble
– Various areas, all lead time

EVALUATION: Large correlation indicates
ens captures error in control forecast

– Caveat – errors defined by analysis

RESULTS:
– Canadian best on large scales

• Benefit of model diversity?

– ECMWF gains most from combinations
• Benefit of orthogonalization?

– NCEP best on small scale, short term
• Benefit of breeding (best estimate initial

error)?

– PECA increases with lead time
• Lyapunov convergence

• Nonlilnear saturation

– Higher values on small scales 31


