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MOTIVATION FOR ENSEMBLE FORECASTING

e FORECASTS ARE NOT PERFECT - IMPLICATIONS FOR:

— USERS:
* Need to know how often / by how much forecasts falil
« Economically optimal behavior depends on
— Forecast error characteristics
— User specific application
» Cost of weather related adaptive action
» Expected loss if no action taken
— EXAMPLE: Protect or not your crop against possible frost
Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1
« NEED FOR PROBABILISTIC FORECAST INFORMATION

— DEVELOPERS:
* Need to improve performance - Reduce error in estimate of first moment
— Traditional NWP activities (l.e., model, data assimilation development)
* Need to account for uncertainty - Estimate higher moments
— New aspect — How to do this?
» Forecast is incomplete without information on forecast uncertainty
« NEED TO USE PROBABILISTIC FORECAST FORMAT



USER NEEDS — PROBABILISTIC FORECAST INFORMATION
FOR MAXIMUM ECONOMIC BENEFIT

ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take

action (eg, protects its crop against frost) Viyine & Harrisorn, 1999
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SCIENTIFIC NEEDS - DESCRIBE FORECAST UNCERTAINTY
ARISING DUE TO CHAQOS

ORIGIN OF FORECAST UNCERTAINTY O
1) The atmosphere is a deterministic system AND pnt 0
has at least one direction in which perturbations grow Qb& 00
2) Initial state (and model) has error in it ==> ﬁfM

Chaotic system + Initial error =(Loss of) Predictability
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FORECASTING IN A CHAOTIC ENVIRONMENT
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

SINGLE FORECAST - Oneintegration with an NWP model
* Is not best estimate for future evolution of system
*Does not contain all attainable forecast information
« Can be combined with past verification statistics to form probabilistic forecast
» Gives no estimate of flow dependent variations in forecast uncertainty

PROBABILISTIC FORECASTING - Based on Liuville Equations
* Initialize with probability distribution function (pdf) at analysis time
» Dynamical forecast of pdf based on conservation of probability values
* Prohibitively expensive -
 Very high dimensional problem (state space x probability space)
» Separate integration for each lead time
* Closure problems when simplified solution sought



FORECASTING IN A CHAOTIC ENVIRONMENT - 2
DETERMINISTIC APPROACH - PROBABILISTIC FORMAT

MONTE CARLO APPROACH — ENSEMBLE FORECASTING

 |IDEA: Sample sources of forecast error
» Generate initial ensemble perturbations
» Represent model related uncertainty

« PRACTICE: Run multiple NWP model integrations
» Advantage of perfect parallelization
» Use lower spatial resolution if short on resources

« USAGE: Construct forecast pdf based on finite sample
» Ready to be used in real world applications
» Verification of forecasts
 Statistical post-processing (remove bias in 1st, 2", higher moments)

CAPTURES FLOW DEPENDENT VARIATIONS
IN FORECAST UNCERTAINTY



SOURCES OF FORECAST ERRORS
IMPERFECT KNOWLEDGE OF

INITIAL CONDITIONS
» Incomplete observing system (not all variables observed)
* Inaccurate observations (instrument/representativeness error)
 Imperfect data assimilation methods
« Statistical approximations (eg, inaccurate error covariance information)
» Use of imperfect NWP forecasts (due to initial and model errors) —
 Effect of cycling (forecast errors “inherited” by analysis — use breeding)

GOVERNING EQUATIONS:
* Imperfect model
e Structural uncertainty (eg, choice of structure of convective scheme)
» Parametric uncertainty (eg, critical values in parameterization schemes)
 Closure/truncation errors (temporal/spatial resolution; spatial coverage, etc)

NOTES:
» Two main sources of forecast errors hard to separate =>
 Very little information is available on model related errors
» Tendency to attribute all forecast errors to model problems



SAMPLING FORECAST ERRORS =
REPRESENTING ERRORS ORIGINATING FROM TWO MAIN SOURCES

INITIAL CONDITION RELATED ERRORS - “Easy”
« Sample initial errors
* Run ensemble of forecasts
* It works
* Flow dependent variations in forecast uncertainty captured (show later)
» Difficult or impossible to reproduce with statistical methods

MODEL RELATED ERRORS - No theoretically satisfying approach
» Change structure of model (eg, use different convective schemes, etc, MSC)
» Add stochastic noise (eg, perturb diabatic forcing, ECMWF)
» Works? Advantages of various approaches need to be carefully assessed
» Are flow dependent variations in uncertainty captured?
» Can statistical post-processing replicate use of various methods?
* Need for a
* more comprehensive and
* theoretically appealing approach



SAMPLING INITIAL CONDITION ERRORS
CAN SAMPLE ONLY WHAT'S KNOWN — FIRST NEED TO

ESTIMATE INITIAL ERROR DISTRIBUTION

THEORETICAL UNDERSTANDING — THE MORE ADVANCED A SCHEME IS
(e. g., 4ADVAR, Ensemble Kalman Filter)
» The lower the overall error level is
* The more the error is concentrated in subspace of Lyapunov/Bred vectors

PRACTICAL APPROACHES -
ONLY SOLUTION IS MONTE CARLO (ENSEMBLE) SIMULATION
» Statistical approach (dynamically growing errors neglected)
» Selected estimated statistical properties of analysis error reproduced
 Baumhefner et al — Spatial distribution; wavenumber spectra
« ECMWF — Implicite constraint with use of Total Energy norm
« Dynamical approach — Breeding cycle (NCEP)
 Cycling of errors captured
» Estimates subspace of dynamically fastest growing errors in analysis
e Stochastic-dynamic approach — Perturbed Observations method (MSC)
 Perturb all observations (given their uncertainty)
* Run multiple analysis cycles
» Captures full space (growing + non-growing) of analysis errors



SAMPLING INITIAL CONDITION ERRORS
THREE APPROACHES — SEVERAL OPEN QUESTIONS

RANDOM SAMPLING — Perturbed observations method (MSC)
— Represents all potential error patterns with realistic amplitude

— Small subspace of growing errors is well represented

— Potential problems:
» Much larger subspace of non-growing errors poorly sampled,
* Yet represented with realistic amplitudes

SAMPLE GROWING ANALYSIS ERRORS - Breeding (NCEP)
— Represents dynamically growing analysis errors
— Ignores non-growing component of error

— Potential problems:
« May not provide “wide enough” sample of growing perturbations
 Statistical consistency violated due to directed sampling? Forecast consequences?

SAMPLE FASTEST GROWING FORECAST ERRORS - SVs (ECMWF)
— Represents forecast errors that would grow fastest in linear sense
— Perturbations are optimized for maximum forecast error growth

— Potential problems:
* Need to optimize for each forecast application (or for none)?
« Linear approximation used
* Very expensive

11



ESTIMATING AND SAMPLING INITIAL ERRORS:
THE BREEDING METHOD

« DATA ASSIM: Growing errors due to cycling through NWP forecasts
« BREEDING: - Simulate effect of obs by rescaling nonlinear perturbations

— Sample subspace of most rapidly growing analysis errors
« Extension of linear concept of Lyapunov Vectors into nonlinear environment
» Fastest growing nonlinear perturbations
» Not optimized for future growth —

— Norm independent

— Is non-modal behavior important?

Differences
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LYAPUNOV, SINGULAR, AND BRED VECTORS

« LYAPUNOV VECTORS (LLV):
— Linear perturbation evolution
— Fast growth
— Sustainable
— Norm independent
— Spectrum of LLVs

e SINGULAR VECTORS (SV):
— Linear perturbation evolution
— Fastest growth
— Transitional (optimized)
— Norm dependent
— Spectrum of SVs

« BRED VECTORS (BV):
— Nonlinear perturbation evolution

Local Lyapunov Vector (LLV)

T10, L18 MRF expetiments, Szunyogh et al, 13¢
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PERTURBATION EVOLUTION

PERTURBATION GROWTH
— Due to effect of instabilities
— Linked with atmospheric phenomena (e.g, frontal system)
LIFE CYCLE OF PERTURBATIONS
— Associated with phenomena
— Nonlinear interactions limit perturbation growth
— Eg, convective instabilities grow fast but are limited by availability of moisture etc

LINEAR DESCRIPTION

— May be valid at beginning stage only

— If linear models used, need to reflect nonlinear effects at given perturb. Amplitude
BREEDING

— Full nonlinear description

— Range of typical perturbation amplitudes is only free parameter

'§ ONLY FREE PARAMETER: Range of perturbation amplitudes
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C Instabilities
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DESCRIPTION OF NCEP ENSEMBLE FORECAST SYSTEMS
OPERATIONAL

* Global ensemble forecast system (based on MRF/GFS system)
 Limited Area Ensemble Forecast System (SREF, over NA)
PLANNED

« Seasonal Ensemble Forecast System (Planned, coupled
model)

FOR EACH SYSTEM:
e Configuration
e Initial perturbations
 Model perturbations
 Main users
« Applications
 Examples

e Discussion/Conclusion
15



NCEP GLOBAL ENSEMBLE FORECAST SYSTEM
CURRENT (APRIL 2003) SYSTEM

10 members out to 16 days

2 (4) times daily

T126 out to 3.5 (7.5) days
Model error not yet represented

00Z MRF

PLANS

Initial perturbations
— Rescale bred vectors via ETKF
— Perturb surface conditions

B1
B2

B3
B4
B5

1272 AVN

Model errors
— Push members apart
— Multiple physics (combinations)

— Change model to reflect
uncertainties

Post-processing

— Multi-center ensembles

— Calibrate 1st & 2" moment of pdf
— Multi-modal behavior?
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ADVANTAGES OF USING ENSEMBLE (VS. CONTROL) FCSTS
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BEST ESTIMATE OF FUTURE STATE

e RMS error

— Ensemble mean beats
control

— Skill above climatology
even in summer, out to
16 days

— Low resolution control
beats hires control

 Ensemble spread
— Lower than ensemble
mean error

 Due to lack of model
perturbations
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Aug-Sept. 2002 3-basin Tropical torm track errors
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RESOLUTION OF ENSEMBLE BASED PROB. FCSTS

QUESTION:
What are the typical variations in foreseeable forecast uncertainty?
What variations in predictability can the ensemble resolve?

METHOD:
Ensemble mode value to distinguish high/low predictability cases
Stratify cases according to ensemble mode value —

Use 10-15% of cases when ensemble is highest/loewest

DATA:
NCEP 500 hPa NH extratropical ensemble fcsts for March—May 1997
14 perturbed fcsts and high resolution control

VERIFICATION:
Hit rate for ensemble mode and hires control fcst
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SEPARATING HIGH VS. LOW UNCERTAINTY FCSTS

i —— SM LL_uucEn'r,a_uM |
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1236 HRS DAYS3-5 DAYS 1013

THE UNCERTAINTY OF FCSTS CAN BE QUANTIFIED IN ADVANCE

HIT RATES FOR 1-DAY FCSTS
CAN BE AS LOW AS 36%, OR AS HIGH AS 92%

10-15% OF THE TIME A 12-DAY FCST CAN BE AS GOOD, OR A
1-DAY FCST CAN BE AS POOR AS AN AVERAGE 4-DAY FCAST

1-2% OF ALL DAYS THE 12-DAY FCST CAN BE MADE WITH MORE
CONFIDENCE THAN THE 1-DAY FCST

AVERAGE HIT RATE FOR EXTENDED-RANGE FCSTS IS LOW —
VALUE IS IN KNOWING WHEN FCST IS RELIABLE 21
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ENSEMBLE BASED PROBABILISTIC FORECASTS
AND THEIR VERIFICATION

VERIFYING AMALYSIS
ENSEMBLE
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BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE

CURRENT NWS PRACTICE
2) “CLIMATE” ENSEMBLE:

a) 12-months coupled ocean—atm fcsis
b) Average the SST fcsts
FORECAST NineS.{ 9T ANOMALIES

I HES P ]

Ef:. MEAN FUOHELaSY

LUEAN 1
BT RO
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c) Run AGCM ensemble forced by average SST fcst

STRENGTH:
Ensemble approach used both for coupled and AGCM model fcsts

for enhancing (weak) signal
SHORTCOMINGS:

a) Coupled ensemble (lagged fcst) perturbations not optimal
b) Uncertainty information related to SST fcst Is discarded
c) Initial condition information from atmosphere not used
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BRIDGING THE GAP BETWEEN WEATHER AND CLIMATE
PLANS

3) POSSIBLE FUTURE SYSTEM:
“WEATHER AND CLIMATE” ENSEMBLE?

COUPLED MODEL ENSEMBLE -
Use dynamically constructed perturbations

BREEDING CYCLE:.

ANALYSIS CYCLE , . ; ,
o :'. “#:f,.‘ .n\““’r‘ J\l /f"l'“ a*, -
8| o e i T 8 A A
[ i L ] L L] 1=
T .
£ L wi - L E . .. . .
] E w . . $‘~ \.“ l.¥
- : -—
1 2 3 + 3 1 2 3 4 3
) Time (wks) - Time (wks)
_/ Firstguess .
1-week fest  {} Observations s Positively -, Negatively
' purturbed fest . purturbed fest

= Nature X Analysis
Toth and Kalnay 1996

a) Nonlinear bred perturbations capture dorminant ENSO instability
b) Initial error present in analysis dominated by same instability
c) Symmetrically placed perturbed fcsts provide optimal ensemble

AGCM ENSEMBLE - PART OF COUPLED SYSTEM?
i) Use ensemble SST fcsts as various boundary scenarios

i) Single set of AGCM fcsts for all time ranges (D1-—climate)

ONE-TIER SYSTEM - If possible, with coupled ocean model



NCEP SHORT-RANGE ENSEMBLE FORECAST SYSTEM
(SREF)

OPERATIONAL SYSTEM

10 Members out to 63 hrs
2 Models used:ETA & RSM
09 & 21 UTC initialization
NA domain

48 km resolution

Bred initial perturbations
Products (on web):

— Ens. Mean & spread

— Spaghetti

— Probabillities

— Aviation specific
Ongoing training

PLANS
e 5 more members
 More model diversity

o 4 cycles per day (3&15 UTC)

32 km resolution

New products
 Aviation specific
« AWIPS

Transition to WRF
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PERTURBATION VS. ERROR
CORRELATION ANALYSIS (PECA)

METHOD: Compute correlation between

ens perturbtns and error in control fcst fc

EVALUATION: Large correlation indicates

Individual members

Optimal combination of members
Each ensemble

Various areas, all lead time

ens captures error in control forecast

Caveat — errors defined by analysis

RESULTS:

Canadian best on large scales
» Benefit of model diversity?

ECMWEF gains most from combinations
* Benefit of orthogonalization?

NCEP best on small scale, short term

» Benefit of breeding (best estimate initial
error)?

PECA increases with lead time
e Lyapunov convergence
* Nonlilnear saturation

Higher values on small scales

{a) Globalz500(MJJ0Z)

101
thick-=opt; thin-=single

corzlation

00~ -
MCEP
............ ECIMWF
L2
..... CMS
L i
4] 5 10 15
lead fime (day)
fc)  MN.America.zs00(MJJ0Z)
g T 1 ]

thick-=opt; thin-=single

S 04 el
a A
[] -
8 £
02 NaE
ook ol
MCEF |
............ ECMWF
oz
----- CMS
|_ 1
o 5 10 15

lead time (day)

corzlation

corelation

(b)  MN.Hemisphere.z500(MJJO;
thick-=opt; thin-=single

[eF:]

00-
NCEP
............ ECMWF
02
..... CMS
L
Q 5 10 1
lzad time day)
id) EuropezS00[MJJ0Z)
1or

thick-=opt; thin->single
_Fe-..ul"'-

L3

[eF:]

o6
04 . *_.-_,r"":_;__ N
P
v
02 e
0o -
MCEP
............ ECKMWF
02
----- CMS
L
0 5 10 31 1
lsad time (day)



