A Cubed Sphere model for wave propagation on long
dynamical time scales

M. Brachet, Matthieu.Brachet@inria.fr
C. Eldred, christopher.eldred@inria.fr
L. Debreu, laurent.debreu@inria.fr
J.-P. Croisille, jean-pierre.croisille@univ-lorraine.fr

ABSTRACT
We describe a new computational dynamical core for
global-scale atmospheric and oceanic models. It is based
on a new area-preserving dynamical core, using an
hermitian compact cubed sphere (HCCS) mesh. The
HCCS is based on the sinh approach with a
Cubed-Sphere grid.

1. Space discretization

The scheme HCCS (Hermitian Compact Cubed Sphere)
is based on the fourth order hermitian scheme
\[\frac{\partial}{\partial t} q + \nabla \cdot (\gamma q) = 0 \]
where subscript \(t \) stands for the tangential operator.

2. Time discretization

The semi-discretization of (1) is
\[\frac{\partial}{\partial t} q + \nabla \cdot (\gamma q) = 0 \]
\[q(t, x) = q(t_0, x) + \int_{t_0}^{t} \nabla \cdot (\gamma q) \, dt \]
where (\(q, t, x \)) are the spherical coordinates.

3. Comparison between ERK and RK4

- Barotropic Instability [2]. Initial condition: perturbation
 of an equilibrium state. Discriminant test case for a Cubed
 Sphere due to a large interpanel gradient.

- Assessing the long time behavior of the HCCS scheme
 using a family of quasi-analytic solutions.

Figure 3: Vorticity at 6 days on the grid 6 x 96 x 96. Top : ERK2 with \(\Delta t = 1 \) hour. Bottom : RK4 with \(\Delta t = 32 \) seconds.

Table 1: Phase error \(\Delta \tau \) for the wave propagation with different schemes on the Cubed-Sphere 6 x 64 x 64.

References

 scheme, submited.
1971.
[5] O. Shamil and N. Baldor, A quantitative test case for global-scale dynamical cores based on analytic