Adaptive volcanic modeling using Discontinuous Galerkin Methods

Michel Bänsch1, Jörn Behrens1 & Stefan Vater2

University of Hamburg1, Freie Universität Berlin2

PDEs on the sphere 2019
2019, May 2nd
Table of Contents

1. Introduction and Motivation
2. Numerical scheme and Equation set
3. Capturing shocks
4. The well-balancing Problem
5. Adaptive Mesh Refinement (AMR)
6. Outlook
Introduction to volcanic eruptions

Eyjafjallajökull eruption 2010

Predicted ash cloud over the northern hemisphere

April 20th, 00:00 UTC

⇒ Big parts above Europe, Russia and the Atlantic are covered

⇒ Good forecasts necessary
Introduction to volcanic eruptions and motivation

Strong volcanic plume
Why model a volcanic plume?
Mass flux \propto height$^{1/4}$

Main issues with existing plume models:
- resolution \rightarrow Adaptive Mesh Refinement
- shock modeling \rightarrow correct numerics
Quick outline:

• start with a weak formulation (Galerkin Method)
• use (piecewise continuous) polynomials as test functions
• coupling with neighboring elements through flux

Why use DGM (for volcanic settings)?

• well-suited for complex geometries
• local conservation
• good for capturing shocks
• local structure lends itself for parallelization and AMR
• easier to implement higher order schemes (compared to FVM)
Timestepping and Accuracy

Spatial discretization (nodal DGM):

Results presented for piecewise linear elements and without limiter ⇒ 2nd order accurate

Two choices for timestepping:

(implicit) Runge-Kutta methods e.g. SSPRK2 ⇒ 2nd order accurate
Rosenbrock-type methods (implicit RK) e.g. ROS2 ⇒ 2nd order accurate
Gas dynamics modeled with (compressible) Euler equation

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0
\]

\[
\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} + P I_2) = -\rho g \mathbf{k}
\]

\[
\frac{\partial \rho e}{\partial t} + \nabla \cdot [(\rho e + P) \mathbf{u}] = -\rho w g
\]

Equation of state:

\[
P = (\gamma - 1) \left(\rho e - \frac{1}{2} \rho \mathbf{u} \cdot \mathbf{u} \right)
\]

- one-phase model
- gas only (dry air)
- 2D only
- inviscous
- no Coriolis force
⇒ simple model
DGM and compressible Euler equation allow shock capturing
RHS = −ρg is unstable for (nearly) hydrostatic states (\(\nabla P^h = −ρg k\))

⇒ need for well-balanced source term

RHS = −ρg ⇒ \(\int_{\Omega_e} \psi_i(x) \nabla P^h \, dx + \int_{\Gamma_e} \psi_i(x) \mathbf{n} \cdot P^h \, dx\)

\(\Omega_e\) \(\Gamma_e\)

interior edges

hydrostatic pressure \(P^h\) is calculated with averaging inside the element
Well-balancing

Rising warm air bubble test case
Well-balancing

Results with interior pressure reconstruction

\[\Delta x = \Delta z = 10\text{m}\]

⇒ Well-balancing has to be improved
Adaptive Mesh Refinement

Grid is adapted according to error estimator/indicator:

- small error \(\Rightarrow\) grid is coarsened
- large error \(\Rightarrow\) grid is refined

Reason: saving CPU time while maintaining high resolution

AMR library: AMATOS (h-adaptivity)
Shock wave test case again

Take very simple error indicator: density gradient
CPU time saved: 85%

In general: finding error estimators/indicators for more complex CFD can be quite challenging
Outlook

To-do list:

• Implement (better) well-balanced scheme
• Find good error estimation for AMR
• Include ash phases
• 3D?
• ...

M. Bänsch, Adaptive volcanic modeling, PDEs on the sphere 2019
Questions?

Thank you!

© Fabrizio
Appendix: Existing plume models

<table>
<thead>
<tr>
<th>Spatial discretization</th>
<th>ASHEE</th>
<th>ATHAM</th>
<th>PDAC</th>
<th>SK-3D</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVM</td>
<td>FDM</td>
<td>FVM</td>
<td>FDM</td>
<td>DGM</td>
<td>specified by user</td>
</tr>
<tr>
<td>2nd order</td>
<td>2nd order</td>
<td>3rd order</td>
<td>3rd order</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy of scheme</th>
<th>yes</th>
<th>no</th>
<th>yes</th>
<th>no</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>shocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example test case “weak plume” from intercomparison study (height \(\approx\) 12 km)

<table>
<thead>
<tr>
<th>(\Delta x_{\text{min}})</th>
<th>ASHEE</th>
<th>ATHAM</th>
<th>PDAC</th>
<th>SK-3D</th>
<th>New model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 m</td>
<td>18 m</td>
<td>18 m</td>
<td>3 m</td>
<td>adaptive</td>
</tr>
</tbody>
</table>

| \(\Delta x_{\text{min}}\) | 70 m | 600 m | 200 m | 27 m | adaptive |
DGM weak form:

\[
\int_{\Omega_e} \left(\frac{\partial q}{\partial t} - \mathbf{F} \cdot \nabla - \mathbf{S} \right) \psi_i(\mathbf{x}) \, d\mathbf{x} = -\int_{\Gamma_e} \psi_i(\mathbf{x}) \mathbf{n} \cdot \mathbf{F}^* \, d\mathbf{x}
\]

for differential equations of the form:

\[
\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{F}(q) = \mathbf{S}(q)
\]

and numerical flux (Rusanov)

\[
\mathbf{F}^* = \frac{1}{2} \left[\mathbf{F}(q^L) + \mathbf{F}(q^R) - |\lambda| (q^R - q^L) \mathbf{n} \right]
\]
Appendix: Convergence study

DGM with piecewise linear elements

Timestepping: Rosenbrock (ROS2)
linear profile for hydrostatic pressure reconstruction

\[P^h = (\gamma - 1)\overline{\rho e} - g\overline{\rho}(z - \overline{z}) \]
Appendix: Warm air bubble with AMR

deviation

case 1

gradient

case 2

case 3