

DWC

The HEVI approach with an IMEX-RK Discontinuous Galerkin solver

PDEs on the sphere Montreal, Canada 29 April – 3 May 2019

Michael Baldauf Deutscher Wetterdienst, Germany

with thanks to Floran Prill for several discussions

Discontinuous Galerkin (DG) methods in a nutshell

 $dx v(\mathbf{x})$

$$\frac{\partial q^{(k)}}{\partial t} + \nabla \cdot \mathbf{f}^{(k)}(q) = S^{(k)}(q), \qquad k = 1, ..., K$$

weak formulation

Finite-element ingredient

Finite-volume ingredient

$$q^{(k)}(x,t) = \sum_{l=0}^{p} q_{j,l}^{(k)}(t) \ p_l(x - x_j)$$

e.g. Legendre-Polynomials

From Nair et al. (2011) in ,Numerical techniques for global atm. models'

e.g.

Cockburn, Shu (1989) Math. Comput. Cockburn et al. (1989) JCP Hesthaven, Warburton (2008): Nodal DG Methods

$$\mathbf{f}(q) \to \mathbf{f}^{num}(q^+, q^-) = \frac{1}{2} \left(\mathbf{f}(q^+) + \mathbf{f}(q^-) - \alpha(q^+ - q^-) \right)$$

Lax-Friedrichs flux

Gaussian quadrature for the integrals of the weak formulation

 \rightarrow ODE-system for $q^{(k)}_{il}$

DG – Pros and Cons

local conservation

- any order of convergence possible
- flexible application on unstructured grids (also dynamic adaptation is possible, h-/p-adaptivity)
- very good scalability
- **explicit** schemes are easy to build and are quite well understood
- higher accuracy helps to avoid several awkward approaches of standard 2nd order schemes: staggered grids (on triangles/hexagons, vertically heavily stretched), numerical hydrostatic balancing, grid imprints by pentagon points or along cubed sphere lines,

- high computational costs due to
 - (apparently) small Courant numbers
 - higher number of DOFs
- **well-balancing** (hydrostatic, perhaps also geostrophic?) in Euler equations is an issue (see below)
- basically ,only' an A-grid-method, however, the ,spurious pressure mode' is very selectively damped!

Target system: ICON model

(Zängl et al. (2015) QJRMS) - operational at DWD since Jan. 2015 (global (13km) and nest over Europe (6.5km))

- convection-permitting (2.2km): Q4/2020

but currently far away from this, only a toy model for 2D problems exists with:

- explicit time integration DG-RK (with Runge-Kutta schemes) or horizontally explicit-vertically implicit (DG-HEVI) (with IMEX-Runge-Kutta)
- ,local DG' (LDG) option for PDEs with higher spatial derivatives

2D Euler equations, non-hydrostatic, compressible with a reference state, in terrain-following coordinates (x, z')

use a *strong conservation form* with terrain following coordinates but cartesian base vectors (*Schuster et al. (2014) MetZ, appendix, for the sphere*):

$$\begin{split} \frac{\partial \tilde{\rho}'}{\partial t} &+ \frac{\partial}{\partial x} (\tilde{M}_x) &+ \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \tilde{M}_x + \frac{\partial z'}{\partial z} \tilde{M}_z \right) &= 0, \\ \frac{\partial \tilde{M}_x}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{\tilde{M}_x^2}{\tilde{\rho}} + \tilde{p}' \right) + \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \left(\frac{\tilde{M}_x^2}{\tilde{\rho}} + \tilde{p}' \right) + \frac{\partial z'}{\partial z} \frac{\tilde{M}_x \tilde{M}_z}{\tilde{\rho}} \right) &= 0, \\ \frac{\partial \tilde{M}_z}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{\tilde{M}_x \tilde{M}_z}{\tilde{\rho}} \right) + \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \frac{\tilde{M}_x \tilde{M}_z}{\tilde{\rho}} + \frac{\partial z'}{\partial z} \left(\frac{\tilde{M}_z^2}{\tilde{\rho}} + \tilde{p}' \right) \right) &= -g \tilde{\rho}' - \frac{\tilde{M}_z}{\tau} \\ \frac{\partial \tilde{\eta}'}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{\tilde{\eta} \tilde{M}_x}{\tilde{\rho}} \right) &+ \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \frac{\tilde{\eta} \tilde{M}_x}{\tilde{\rho}} + \frac{\partial z'}{\partial z} \frac{\tilde{\eta} \tilde{M}_z}{\tilde{\rho}} \right) &= 0, \\ p = p_{ref} \left(\frac{\eta R_d}{p_{ref}} \right)^{cp/cv}, \end{split}$$

with the prognostic variables: $\tilde{\rho}' := \sqrt{G'}\rho', \quad \tilde{M}_x := \sqrt{G'}\rho u, \quad \tilde{M}_z := \sqrt{G'}\rho w, \\
\eta := \rho\Theta, \quad \tilde{\eta} := \sqrt{G'}\rho\Theta, \quad \tilde{\eta}' := \tilde{\eta} - \tilde{\eta}_0, \quad \tilde{\eta}_0 := \sqrt{G'}\rho_0\Theta_0, \\
\tilde{p}' := \sqrt{G'}p' = \sqrt{G'}(p - p_0),$

A problem with the Euler equations ...

Approximate hydrostatic balance pressure gradient (\rightarrow flux div.) = buoyancy term (\rightarrow source term) is crucial for the Euler equations.

However, the source term integral contains base polynomials themselves, whereas the flux div. term integral uses derivatives of base polynomials. \rightarrow no proper balance possible.

Blaise et al. (2016) IJNMF, Orgis et al. (2017) JCP:

use vertically a reduced base (one polynomial degree less; modal base) for the calculation of the source term.

Test case: cold bubble

Straka et al. (1993)

7

Test case: flow over steep mountains, equidistant grid Schaer et al. (2002) MWR (case 5b: U_0 =10m/s, N=0.01 1/s)

Explicit DG simulation (3rd order) remains stable even for steeper slopes! (remark: diffusion switched off \rightarrow strong gravity wave breaking occurs)

Test case: flow over steep mountains, vertically stretched grid Schaer et al. (2002) MWR (case 5b: $U_0=10m/s$, N=0.01 1/s)

with vertical grid stretching ~1:20, Δz_{min} ~50m

Explicit DG simulation (3rd order) remains stable even for steeper slopes! (remark: diffusion switched off \rightarrow strong gravity wave breaking occurs)

Linear gravity/sound wave expansion in a channel

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Horizontally explicit - vertically implicit (HEVI)-scheme with DG

Motivation: get rid of the strong time step restriction by vertical sound wave expansion in flat grid cells (in particular near the ground)

References:

Giraldo et al. (2010) SIAM JSC: propose a HEVI semi-implicit scheme *Bao, Klöfkorn, Nair (2015) MWR:* use of an iterative solver for HEVI-DG *Blaise et al. (2016) IJNMF*: use of IMEX-RK schemes in HEVI-DG *Abdi et al. (2017) arXiv:* use of multi-step or multi-stage IMEX for HEVI-DG

2D Euler equations, non-hydrostatic, compressible with a reference state, in terrain-following coordinates (x, z')

use a *strong conservation form* with terrain following coordinates but cartesian base vectors (*Schuster et al. (2014) MetZ, appendix, for the sphere*):

$$\begin{split} \frac{\partial \tilde{\rho}'}{\partial t} &+ \frac{\partial}{\partial x} (\tilde{M}_x) &+ \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \tilde{M}_x + \frac{\partial z'}{\partial z} \tilde{M}_z \right) &= 0, \\ \frac{\partial \tilde{M}_x}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{\tilde{M}_x^2}{\tilde{\rho}} + \tilde{p}' \right) + \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \left(\frac{\tilde{M}_x^2}{\tilde{\rho}} + \tilde{p}' \right) + \frac{\partial z'}{\partial z} \frac{\tilde{M}_x \tilde{M}_z}{\tilde{\rho}} \right) &= 0, \\ \frac{\partial \tilde{M}_z}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{\tilde{M}_x \tilde{M}_z}{\tilde{\rho}} \right) + \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \frac{\tilde{M}_x \tilde{M}_z}{\tilde{\rho}} + \frac{\partial z'}{\partial z} \left(\frac{\tilde{M}_z^2}{\tilde{\rho}} + \tilde{p}' \right) \right) &= \left[-g \tilde{\rho}' - \frac{\tilde{M}_z}{\tau} \right] \\ \frac{\partial \tilde{\eta}'}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{\tilde{\eta} \tilde{M}_x}{\tilde{\rho}} \right) &+ \frac{\partial}{\partial z'} \left(\frac{\partial z'}{\partial x} \frac{\tilde{\eta} \tilde{M}_x}{\tilde{\rho}} + \frac{\partial z'}{\partial z} \frac{\tilde{\eta} \tilde{M}_z}{\tilde{\rho}} \right) &= 0, \\ p = p_{ref} \left(\frac{\eta R_d}{p_{ref}} \right)^{cp/cv}, \end{split}$$

= terms treated implicitly (after linearizsation)

implicit

Some remarks about the DG-HEVI approach

Treatment of the local Lax-Friedrich flux:

$$\begin{pmatrix} \mathbf{f}_{slow}^{(s)} + \mathbf{f}_{fast}^{(s)} \end{pmatrix}^{(num)} \cdot \mathbf{n} = \frac{1}{2} \begin{pmatrix} \mathbf{f}_{slow,+}^{(s)} + \mathbf{f}_{slow,-}^{(s)} + \mathbf{f}_{fast,+}^{(s)} + \mathbf{f}_{fast,-}^{(s)} \end{pmatrix} \cdot \mathbf{n}$$

$$- \frac{\lambda_{slow}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix} - \frac{\lambda_{fast}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix}$$

$$= \frac{\lambda_{slow}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix} - \frac{\lambda_{fast}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix}$$

$$= \frac{\lambda_{slow}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix} - \frac{\lambda_{fast}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix}$$

$$= \frac{\lambda_{slow}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix} - \frac{\lambda_{fast}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix}$$

- Use of IMEX-RK (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3) (Pareschi, Russo (2005) JSC)
- The implicit part leads to several band diagonal matrices • \rightarrow here a direct solver is used (expensive!)
- Until now a modal base is used (not necessary, but tensor product seems) advisable)
- BCs: reflective and mirror conditions are applied in a weak form • (experience: for explicit terms only mirror conditions)

Test case: falling cold bubble (Straka et al. (1993)

Comparison explicit vs. HEVI scheme

M. Baldauf (DWD) 16

First attempts to bring it on the sphere ...

Idea to avoid pole problem and to keep high order discretization: use **local (rotated) coordinates** for every (triangle) grid cell, i.e. rotate every grid cell towards $\lambda \approx 0$, $\phi \approx 0$.

- \rightarrow geometry is treated exactly
- \rightarrow transform fluxes between neighbouring cells

Example: 2D scalar advection equation on the sphere

$$\frac{\partial}{\partial t}\sqrt{G}\rho + \frac{\partial}{\partial x^i}\sqrt{G}v^i\rho = 0$$

 x^{i} = rotated geographical – gnomonial coordinates

Läuter, Giraldo et al. (2007): shift \sqrt{G} into the integral (e.g. to calc. the mass matrix) and treat ρ as the prognostic variable

Test case: scalar advection on a sphere with a prescribed velocity field for solid body rotation with ω =0.1/s, rotation axis tilted by 45°

simple triangle grid on the sphere

4th order scheme (with RK4) transport is mass conserving (up to roundoff precision)

Analogous: shallow water equations on the sphere

covariant formulation (here: without bathymetry)

$$\begin{aligned} \frac{\partial \sqrt{G}H}{\partial t} + \frac{\partial}{\partial x^{i}} \sqrt{G}m^{i} &= 0\\ \frac{\partial \sqrt{G}m^{i}}{\partial t} + \frac{\partial}{\partial x^{j}} \sqrt{G}T^{ij} &= \sqrt{G}(F_{Cor}^{i} - \Gamma_{jk}^{i}T^{jk})\\ T^{ij} &= \frac{m^{i}m^{j}}{H} + \frac{1}{2}g^{ij}g_{grav}H^{2} \end{aligned}$$

90 80

20

10

- 2

-20

-30

-40

-50

-60

-70

-80

-90

Sigma

100

- 2

Shallow water equations on the sphere: Rossby-Haurwitz wave (test case 6 in *Williamson et al. (1992)*)

H, p=3 t=0.0 u, p=3 t=0.0 0800 0650 RK4-kida2a 0500 RK4-kida2a dt=14.229 10350 dt=14.229; dx=25019 dy=2509-9 dx=25019 dy=2509-9 initialisation: 10050 9900 0.6 0.6 9750 9600 0.3 8450 0.3 9300 9150 9000 8850 -0.3 8700 -0.3 8550 8400 -0.6 -0.6 8250 8100 -o.: -0.9 950 800 -1.2 -1. maskout(u,u+9**60a**dh): 31.8319 Min: 0.0059718 Max: 99.9967

Summary

- 2D toy model for
 - explicit DG-RK (on arbitrary unstructured grids with triangle or quadrilateral grid cells) and
 - HEVI DG-IMEX-RK works for several idealized tests (also Euler equations with terrain-following coordinates) correct convergence behaviour, ...
- problems with well-balancing solved
- no reference state necessary (\leftarrow higher accuracy)
- HEVI-DG: treatment of numerical flux and boundary conditions ٠ seems to work, too. Band diagonal (direct) vertical solver is expensive (for 2D simul./p=2, needs ~40% of total comput. time)
- DG on the sphere by use of local (rotated gnomonial) coordinates •

Outlook

- work in progress \rightarrow several bug fixes in the 2D toy model necessary (e.g. lower BCs for DG-HEVI with mountains, local transformations on the sphere, ...)
- take further design decisions: nodal vs. modal DG, local DG vs. interior penalty vs. ..., ...
- coupling of tracer advection (mass-consistency)?
- improve efficiency in the HEVI direct solver: use of block-tridiagonal structure of the band diagonal matrices?
- further milestones at DWD (for the next years!)
 - development of a 3D prototype DG-HEVI solver
 - choose optimal convergence order p estimated: $p_{\text{horiz}} \sim 3 \dots 6$, $p_{\text{vert}} \sim 3 \dots 4 (p_{\text{time}} \sim 3 \dots 4)$

How to treat orography and how to bring DG on the sphere?

<u>For local models</u>: use a *strong conservation form* with spherical + terrain following coordinates but spherical base vectors *Schuster et al. (2014) MetZ (appendix):*

for a scalar field
$$\Psi$$
: $\frac{\partial \sqrt{G'}\Psi}{\partial t} + \frac{\partial}{\partial x^{k'}} \left(\sqrt{G'} f^{*k} \frac{\partial x^{k'}}{\partial x^k} \frac{1}{\sqrt{g_{(kk)}}} \right) = \sqrt{G'}S.$

vor a vector field *m*:

$$\frac{\partial \sqrt{G'}m^{*k}}{\partial t} + \frac{\partial}{\partial x^{j'}} \left(\sqrt{G'} \frac{\partial x^{j'}}{\partial x^i} \frac{1}{\sqrt{g_{(ii)}}} T^{*k*i} \right) = \sqrt{G'} (S^{*k} - b^{*k})$$

*=physical (contravariant) components

 b^* ='non-flux-form'-corrections of momentum flux due to spherical metric terms

For the whole sphere: use the icosahedral/triangle grid of ICON together with vector, tensor components mentioned above

