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Discontinuous Galerkin (DG) methods in a nutshell

From Nair et al. (2011) in 
‚Numerical techniques for global atm.
models'

weak formulation

Finite-element ingredient

Finite-volume ingredient

à ODE-system for q(k)

Lax-Friedrichs flux
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e.g.
Cockburn, Shu (1989) Math. Comput.
Cockburn et al. (1989) JCP
Hesthaven, Warburton (2008): 

Nodal DG Methods

e.g. Legendre-Polynomials

Gaussian quadrature for the integrals of the weak formulation
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DG – Pros and Cons

• local conservation
• any order of convergence possible
• flexible application on unstructured 

grids (also dynamic adaptation is 
possible, h-/p-adaptivity)

• very good scalability
• explicit schemes are easy to build 

and are quite well understood
• higher accuracy helps to avoid 

several awkward approaches of 
standard 2nd order schemes: 
staggered grids (on 
triangles/hexagons, vertically heavily 
stretched), numerical hydrostatic 
balancing, grid imprints by pentagon 
points or along cubed sphere lines, 
…

• high computational costs due to 
• (apparently) small Courant

numbers
• higher number of DOFs

• well-balancing (hydrostatic, perhaps 
also geostrophic?) in Euler equations 
is an issue (see below)

• basically ‚only‘ an A-grid-method, 
however, the ‚spurious pressure 
mode‘ is very selectively damped!
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but currently far away from this, only a toy model for 2D problems exists with:
• explicit time integration DG-RK (with Runge-Kutta schemes) or

horizontally explicit-vertically implicit (DG-HEVI) (with IMEX-Runge-Kutta)
• ‚local DG‘ (LDG) option for PDEs with higher spatial derivatives 

Target system: ICON model
(Zängl et al. (2015) QJRMS)
- operational at DWD since Jan. 2015 

(global (13km) and nest over Europe (6.5km))
- convection-permitting (2.2km): Q4/2020
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2D Euler equations, non-hydrostatic, compressible
with a reference state, in terrain-following coordinates (x, z‘)

e.g. Kelly, Giraldo (2012) JCP 

with the prognostic variables:

use a strong conservation form with terrain following coordinates but cartesian 
base vectors (Schuster et al. (2014) MetZ, appendix, for the sphere):
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A problem with the Euler equations …

Approximate hydrostatic balance 
pressure gradient (àflux div.) = buoyancy term (à source term) 

is crucial for the Euler equations.

However, the source term integral 
contains base polynomials themselves, 
whereas the flux div. term integral uses
derivatives of base polynomials.
à no proper balance possible.

Blaise et al. (2016) IJNMF, Orgis et al. (2017) JCP:
use vertically a reduced base (one polynomial degree less; modal base)
for the calculation of the source term.
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Test properties:
• test of dry Euler equations (without Coriolis force)
• unstationary
• strongly nonlinear
• comparison with reference solution from paper

Test case: cold bubble
Straka et al. (1993) 

DG explicit

no reference state 
is used!
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dx=dz=200m

dx=dz=200m

Reference solution 
from Straka et al. (1993)

COSMO DG explicit

Faktor 512
in comput. time

Faktor 4.3
in comput. time

2nd order

3rd order
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Test case: flow over steep mountains, equidistant grid
Schaer et al. (2002) MWR    (case 5b: U0=10m/s, N=0.01 1/s)

Horo = 1000m, 
amax = 38°

Horo= 2000m, 
amax = 57°

Horo = 3000m, 
amax = 61°

Explicit DG simulation (3rd order) remains stable even for steeper slopes!
(remark: diffusion switched off à strong gravity wave breaking occurs)
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Test case: flow over steep mountains, vertically stretched grid
Schaer et al. (2002) MWR    (case 5b: U0=10m/s, N=0.01 1/s)

Horo = 1000m, 
amax = 38°

Explicit DG simulation (3rd order) remains stable even for steeper slopes!
(remark: diffusion switched off à strong gravity wave breaking occurs)

with vertical grid stretching ~1:20, Dzmin~50m

Horo= 2000m, 
amax = 57°

Horo = 3000m, 
amax = 61°
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colors : simulation with p=2/RK3-SSP

(i.e. 3rd order explicit DG) 

blue lines: analytic solution for compressible, 

non-hydrostatic Euler eqns. 

(Baldauf, Brdar (2013) QJRMS)

setup similar to Skamarock, Klemp (1994) MWR

Linear gravity/sound wave expansion in a channel

Dx=500m, Dz=250m

Exact 3rd order convergence for 

w and T‘:
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Horizontally explicit - vertically implicit (HEVI)-scheme with DG

References:
Giraldo et al. (2010) SIAM JSC: propose a HEVI semi-implicit scheme
Bao, Klöfkorn, Nair (2015) MWR: use of an iterative solver for HEVI-DG
Blaise et al. (2016) IJNMF: use of IMEX-RK schemes in HEVI-DG
Abdi et al. (2017) arXiv: use of multi-step or multi-stage IMEX for HEVI-DG

explicit implicit explicit implicit

Motivation: get rid of the strong time step restriction by vertical sound wave
expansion in flat grid cells  (in particular near the ground)
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2D Euler equations, non-hydrostatic, compressible
with a reference state, in terrain-following coordinates (x, z‘)
use a strong conservation form with terrain following coordinates but cartesian 
base vectors (Schuster et al. (2014) MetZ, appendix, for the sphere):

= terms treated implicitly (after linearizsation)
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Some remarks about the DG-HEVI approach

• Treatment of the local Lax-Friedrich flux: implicit

implicit

Blaise et al. (2016) IJNMF

• Use of IMEX-RK (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3)
(Pareschi, Russo (2005) JSC)

• The implicit part leads to several band diagonal matrices 
à here a direct solver is used (expensive!)

• Until now a modal base is used (not necessary, but tensor product seems 
advisable)

• BCs: reflective and mirror conditions are applied in a weak form
(experience: for explicit terms only mirror conditions)
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Test case: falling cold bubble (Straka et al. (1993)
Comparison explicit vs. HEVI scheme

DG explicit DG HEVI

2nd order

3rd order
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DG explicit
3rd order
dx=500m, dz=250m

DG HEVI
3rd order
dx=1000m, dz=500m

test case: linear gravity/sound wave expansion in a channel
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First attempts to bring it on the sphere …

Idea to avoid pole problem and to keep high order discretization: 
use local (rotated) coordinates for every (triangle) grid cell, 
i.e. rotate every grid cell towards l»0, j»0.
à geometry is treated exactly
à transform fluxes between neighbouring cells

Example: 2D scalar advection equation on the sphere

xi = rotated geographical – gnomonial coordinates

Läuter, Giraldo et al. (2007): shift ÖG into the integral (e.g. to calc. the mass matrix)
and treat r as the prognostic variable
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Test case: scalar advection on a sphere with a prescribed 
velocity field for solid body rotation with w=0.1/s, rotation axis tilted by 45°

4th order scheme (with RK4)
transport is mass conserving (up to 
roundoff precision)

simple triangle grid on the sphere      

90°

-90°
180°-180°
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Analogous: shallow water equations on the sphere

covariant formulation (here: without bathymetry)
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Not yet satisfying …

initialisation:

after 
24h:

Shallow water equations on the sphere:
Rossby-Haurwitz wave (test case 6 in Williamson et al. (1992))
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Summary
• 2D toy model for

- explicit DG-RK (on arbitrary unstructured grids with triangle or quadrilateral

grid cells) and

- HEVI DG-IMEX-RK 

works for several idealized tests (also Euler equations with terrain-following

coordinates) correct convergence behaviour, …

• problems with well-balancing solved

• no reference state necessary (ß higher accuracy)

• HEVI-DG: treatment of numerical flux and boundary conditions

seems to work, too.

Band diagonal (direct) vertical solver is expensive (for 2D simul./p=2, needs

~40% of total comput. time)

• DG on the sphere by use of local (rotated gnomonial) coordinates
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Outlook
• work in progress à several bug fixes in the 2D toy model necessary

(e.g. lower BCs for DG-HEVI with mountains, local transformations
on the sphere, …)

• take further design decisions:
nodal vs. modal DG, local DG vs. interior penalty vs. …, …

• coupling of tracer advection (mass-consistency)?
• improve efficiency in the HEVI direct solver:

use of block-tridiagonal structure of the band diagonal matrices?
• further milestones at DWD (for the next years!)

• development of a 3D prototype DG-HEVI solver
• choose optimal convergence order p

estimated: phoriz ~ 3 … 6, pvert ~ 3 … 4   (ptime ~ 3…4)
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How to treat orography and how to bring DG on the sphere?

For local models: use a strong conservation form with
spherical + terrain following coordinates but spherical base vectors
Schuster et al. (2014) MetZ (appendix):

for a scalar field Y:

vor a vector field m:

*=physical (contravariant) components
b*='non-flux-form'-corrections of momentum flux due to spherical metric terms

For the whole sphere: use the icosahedral/triangle grid of ICON together with
vector, tensor components mentioned above


