
Parallel geometric multigrid solver at the 
reduced latitude-longitude grid

Gordey Goyman, Mikhail Tolstykh
Marchuk Institute of Numerical Mathematics RAS (INM RAS)

Hydrometeorological Center of Russia (HMCR)

PDEs on the sphere 2019



Outline

• Motivation

• Solver description

• Numerical experiments



Global semi-Lagrangian atmosphere 
model SL-AV



Global semi-Lagrangian atmosphere 
model SL-AV

Current version: SL-AV20*
• SISL time-stepping
• Regular lat-lon grid, variable 

latitude resolution
• Vor-div formulation Z-grid
• Fourier space in longitude, FD in 

latitude
• Implicit 4th order hyper-diffusion
• 1d MPI decomposition, OpenMP

*Tolstykh M. et al. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core 
//Geoscientific Model Development. – 2017. – Т. 10. – №. 5. – С. 1961-1983.



SL-AV20 strong scaling

• SL-AV20 model with the grid 
resolution 3024x1513x126

• Cray XC40-LC supercomputer 53% PE at 
13608 cores 



Global semi-Lagrangian atmosphere 
model SL-AV

Current version: SL-AV20*
• SISL time-stepping
• Regular lat-lon grid, variable 

latitude resolution
• Vor-div formulation Z-grid
• Fourier space in longitude, FD in 

latitude
• Implicit 4th order hyper-diffusion
• 1d MPI decomposition, OpenMP

New version: SL-AV10

*Tolstykh M. et al. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core 
//Geoscientific Model Development. – 2017. – Т. 10. – №. 5. – С. 1961-1983.

• SISL time-stepping
• Reduced lat-lon grid, variable latitude 

resolution
• Vor-div formulation Z-grid / U-V + C-

grid?
• Fully grid-point
• Implicit 4th order hyper-diffusion?
• 2d MPI decomposition, OpenMP?



SL-AV20 elliptic solver:
• FFT in longitude direction ⇒ set of 1d 

independent problems
• Global forward data transposition
• Block Thomas algorithm 
• Global backward data transposition

SISL time-stepping 𝜔𝜔2 − Δ 𝐺𝐺 = 𝑅𝑅

Vor-Div formulation �Δ𝜓𝜓 = 𝜉𝜉
Δ𝜒𝜒 = 𝐷𝐷

Implicit hyper-diffusion 𝜓𝜓𝑓𝑓 = 𝜓𝜓 − 𝛻𝛻 ⋅ 𝑲𝑲𝛻𝛻3𝜓𝜓𝑓𝑓

Set of 2d elliptic 
equations at each 
vertical level of the 
model

SL-AV10 elliptic solver:

SL-AV model: elliptic problems

Fast
Robust
Scalable



Basic idea:
• Eliminate high frequency part of the error (smoothing operator)
• Move to the coarse grid (restriction)
• Repeat recursively 
• Interpolate error correction back to the fine grid (prolongation)

proven efficiency in various applications, including NWP*

BUT!
Special care is needed in the presence of anisotropy in the 

equation coefficients

*Müller E. H., Scheichl R. Massively parallel solvers for elliptic partial differential equations in numerical 
weather and climate prediction //Quarterly Journal of the Royal Meteorological Society. – 2014.

Multigrid solvers



Reduced grid

• Points located at the latitudes 𝜑𝜑𝑗𝑗 with longitude spacing Δ𝜆𝜆𝑗𝑗
• First and last grid latitudes half-step shifted from the poles
• Anisotropy ratio relaxed, but still noticeable



• Pointwise technics (Jacobi-like methods) failed 
to provide error smoothing in both directions

• 2 ways to overcome problems with anisotropy
• Special smoothing technics
• Special coarse-grid construction technics 

Multigrid solvers. Anisotropic case



Conditional semi-coarsening

• Firstly mentioned in (Larsson 2008)
• Regular lat-lon grid solver presented in (Buckeridge 2010) 
• Closely related to Algebraic MG concept
• Always coarsen in lon-direction, coarsen in lat-direction only in 

the areas with low anisotropy ratio



• Vertex-centered strategy
coarse points are the subset 
of the fine grid points

• Cell-centered strategy 
coarse points are the centers 
of the joint fine grid cells 

Non-uniform grid spacing 
could be introduced
Complicates the structure 
of the code
Requires equation 
discretization for the non 
uniform case

Longitude coarsening



• Vertex-centered strategy
coarse points are the subset 
of the fine grid points

• Cell-centered strategy 
coarse points are the centers 
of the joint fine grid cells 

• Uniform coarsening strategy
coarse points distributed 
uniformly

Non-uniform grid spacing 
could be introduced
Complicates the structure 
of the code
Requires equation 
discretization for the non 
uniform case

Uniform spacing
Coarse grids have the 
same structure as the 
initial one

Longitude coarsening



Grid anisotropy ratio is function of 
latitude only

Pointwise smoother effectively dump 
high frequency errors in both 
directions at latitudes with

Latitude coarsening

𝛼𝛼 𝜑𝜑𝑗𝑗 =
2Δ𝜆𝜆 𝑗𝑗 cos𝜑𝜑𝑗𝑗
𝜑𝜑𝑗𝑗+1 − 𝜑𝜑𝑗𝑗−1

2

𝛼𝛼 𝜑𝜑𝑗𝑗 ≥ 0.5



Coarse grids construction example



• Restriction – volume-weighted average:

𝜓𝜓𝑖𝑖𝑐𝑐 =
1

𝑉𝑉(Ω𝑖𝑖𝑐𝑐)
�
𝑘𝑘

𝜓𝜓𝑘𝑘
𝑓𝑓 𝑉𝑉 Ω𝑖𝑖𝑐𝑐 ∩ Ω𝑘𝑘

𝑓𝑓

• Prolongation – bilinear interpolation

• Other choices are possible
𝑃𝑃𝑃𝑃,𝑦𝑦 Ω𝑓𝑓 = 𝑥𝑥,𝑅𝑅𝑅𝑅 Ω𝑐𝑐

MG components. Intergrid operators



MG components. Smoothing operator

• Smoother must effectively eliminate high 
frequency error modes

• All standard approaches are applicable (Jacobi, 
Gauss-Seidel, SPAI, block ILU(0), …)

• Our choice – hybrid Gauss-Seidel with red-black 
ordering



MG components. Coarse grid solver
• Common practice is to use several iterations of the 

smoother (assuming coarse problem well-conditioned)

• Laplacian discretization matrix spectrum:

Δ𝜓𝜓 ≈ 𝐿𝐿𝐿𝐿, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿 = 𝑂𝑂(1), 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿 ~ max
𝑗𝑗

1
Δ𝜆𝜆𝑗𝑗2Δ𝜑𝜑𝑗𝑗2

• Pointwise smoothing is not effective coarse grid solver

• Several iterations (3-8) of BICGSTAB/CG method is used



Algorithm convergence analysis

• Given the problem 𝐴𝐴𝐴𝐴 = 𝑏𝑏

• rhs – known solution (random vector) multiplied by the 
system matrix

• Looking for the average number of iterations 𝑁𝑁 to reach 

relative error tolerance 𝜉𝜉
𝑁𝑁

𝑥𝑥∗
≤ 10−7

• 2 iterations of pre- and post-smoothing



Grids setup
• Grids with initial resolution:

512x256, 1024x512, 2048x1024, 4096x2048
• Linear reduction towards poles from N𝜆𝜆 to 𝛼𝛼𝑁𝑁𝜆𝜆, 𝛼𝛼 ∈ {1, 0.1, 0.01}

Initial grid 𝜶𝜶 Dof N𝝀𝝀 at poles

512x256

1 1.3 ⋅ 105 512

0.1 7.2 ⋅ 104 54

0.01 6.6 ⋅ 104 10

1024x512

1 5.2 ⋅ 105 1024

0.1 2.8 ⋅ 105 106

0.01 2.6 ⋅ 105 14

Initial grid 𝜶𝜶 Dof N𝝀𝝀 at poles

2048x1024

1 2.1 ⋅ 106 512

0.1 1.1 ⋅ 106 208

0.01 1.0 ⋅ 106 24

4096x2048

1 8.3 ⋅ 106 4096

0.1 4.6 ⋅ 106 414

0.01 4.2 ⋅ 106 44



Algorithm convergence. Poisson problem

Δ𝐺𝐺 = 𝑅𝑅

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

1024x512

1 7 6

0.1 6 7

0.01 6 8

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

2048x1024

1 8 6

0.1 7 7

0.01 7 7

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

4096х2048

1 9 6

0.1 8 7

0.01 8 8

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

512x256

1 6 6

0.1 5 7

0.01 5 7



Algorithm convergence. Helmholtz problem

𝜔𝜔2 − Δ 𝐺𝐺 = 𝑅𝑅
𝜔𝜔2 = 300, 1200, 4800, 19200 (scaling proportional to Δ𝑡𝑡 −2)

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
Coarsest 
level Dof

1024x512

1 7 7 136

0.1 4 7 1205

0.01 2 6 16654

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
Coarsest 
level Dof

2048x1024

1 8 6 144

0.1 5 7 1212

0.01 2 7 66413

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
Coarsest 
level Dof

4096х2048

1 9 6 160

0.1 6 6 1212

0.01 3 6 66378

Initial grid 𝜶𝜶 Coarse grids N𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
Coarsest 
level Dof

512x256

1 6 7 120

0.1 3 6 1200

0.01 2 6 4185



Implicit hyper-diffusion equation

• 𝜓𝜓𝑓𝑓 = 𝜓𝜓 − 𝛻𝛻 ⋅ 𝑲𝑲𝛻𝛻3𝜓𝜓𝑓𝑓 ⇒ �
𝜓𝜓𝑓𝑓 = 𝜓𝜓 − 𝛻𝛻 ⋅ 𝑲𝑲∇𝑧𝑧

𝑧𝑧 = ∇2𝜓𝜓𝑓𝑓
• Smoothing operator – collective relaxation
• All other components remain the same
• Convergence results quite similar to the Helmholtz problem case



Parallel implementation

Halo exchanges 

Halo exchanges + allreduce

Restriction

Prolongation

Smoothing

Coarse grid solver

Processors number reduction

• Pure MPI implementation
• Scaling tests – yet to be done



Summary

• Geometric multigrid algorithm at the reduced lat-lon grid is developed
• Algorithm is robust with respect to the problem size and grid reduction 

ratio
• The use of sufficient grid reduction allows using fewer coarse levels (in 

case of Helmholtz and implicit hyper-diffusion problems), which is likely 
to have a positive effect on the algorithm parallel efficiency

• Algorithm could be extended to the 3d case
• Scalability tests and test within the SL-AV model framework have to be 

performed



Reduced grid discretization



Coarse grid matrix condition number

• Coarse grid with resolution 4x8
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