Parallel geometric multigrid solver at the reduced latitude-longitude grid

Gordey Goyman, Mikhail Tolstykh

Marchuk Institute of Numerical Mathematics RAS (INM RAS)

Hydrometeorological Center of Russia (HMCR)

Outline

Motivation

Solver description

Numerical experiments

Global semi-Lagrangian atmosphere model SL-AV

Global semi-Lagrangian atmosphere model SL-AV

Current version: SL-AV20*

- SISL time-stepping
- Regular lat-lon grid, variable latitude resolution
- Vor-div formulation Z-grid
- Fourier space in longitude, FD in latitude
- Implicit 4th order hyper-diffusion
- 1d MPI decomposition, OpenMP

^{*}Tolstykh M. et al. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core //Geoscientific Model Development. – 2017. – T. 10. – №. 5. – C. 1961-1983.

SL-AV20 strong scaling

 SL-AV20 model with the grid resolution 3024x1513x126

Cray XC40-LC supercomputer

Global semi-Lagrangian atmosphere model SL-AV

Current version: SL-AV20*

- SISL time-stepping
- Regular lat-lon grid, variable latitude resolution
- Vor-div formulation Z-grid
- Fourier space in longitude, FD in latitude
- Implicit 4th order hyper-diffusion
- 1d MPI decomposition, OpenMP

New version: SL-AV10

- SISL time-stepping
- Reduced lat-lon grid, variable latitude resolution
- Vor-div formulation Z-grid / U-V + C-grid?
- Fully grid-point
- Implicit 4th order hyper-diffusion?
- 2d MPI decomposition, OpenMP?

^{*}Tolstykh M. et al. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core //Geoscientific Model Development. – 2017. – T. 10. – №. 5. – C. 1961-1983.

SL-AV model: elliptic problems

SISL time-stepping	$(\omega^2 - \Delta)G = R$
Vor-Div formulation	$\begin{cases} \Delta \psi = \xi \\ \Delta \chi = D \end{cases}$
Implicit hyper-diffusion	$\psi_f = \psi - \nabla \cdot \left(\mathbf{K} \nabla^3 \psi_f \right)$

Set of 2d elliptic equations at each vertical level of the model

SL-AV20 elliptic solver:

- FFT in longitude direction ⇒ set of 1d independent problems
- Global forward data transposition
- Block Thomas algorithm
- Global backward data transposition

SL-AV10 elliptic solver:

Multigrid solvers

Basic idea:

- Eliminate high frequency part of the error (smoothing operator)
- Move to the coarse grid (restriction)
- Repeat recursively
- Interpolate error correction back to the fine grid (prolongation)

proven efficiency in various applications, including NWP*

BUT!

Special care is needed in the presence of anisotropy in the equation coefficients

^{*}Müller E. H., Scheichl R. Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction //Quarterly Journal of the Royal Meteorological Society. – 2014.

Reduced grid

- ullet Points located at the latitudes $arphi_j$ with longitude spacing $\Delta \lambda_j$
- First and last grid latitudes half-step shifted from the poles
- Anisotropy ratio relaxed, but still noticeable

Multigrid solvers. Anisotropic case

 Pointwise technics (Jacobi-like methods) failed to provide error smoothing in both directions

- 2 ways to overcome problems with anisotropy
 - Special smoothing technics
 - Special coarse-grid construction technics

Conditional semi-coarsening

- Firstly mentioned in (Larsson 2008)
- Regular lat-lon grid solver presented in (Buckeridge 2010)
- Closely related to Algebraic MG concept
- Always coarsen in lon-direction, coarsen in lat-direction only in the areas with low anisotropy ratio

Longitude coarsening

Vertex-centered strategy
 coarse points are the subset
 of the fine grid points

Cell-centered strategy
 coarse points are the centers
 of the joint fine grid cells

Non-uniform grid spacing could be introduced

Complicates the structure of the code

Requires equation discretization for the non uniform case

Longitude coarsening

Vertex-centered strategy
 coarse points are the subset
 of the fine grid points

1 2 3 4 5 6 7 1 1 2 3 4 1

Non-uniform grid spacing could be introduced

Complicates the structure of the code

Requires equation discretization for the non uniform case

• Cell-centered strategy coarse points are the centers of the joint fine grid cells

Uniform coarsening strategy

coarse points distributed uniformly

Uniform spacing

Coarse grids have the same structure as the initial one

Latitude coarsening

Grid anisotropy ratio is function of latitude only

$$\alpha(\varphi_j) = \left(\frac{2\Delta\lambda(j)\cos\varphi_j}{\varphi_{j+1} - \varphi_{j-1}}\right)^2$$

Pointwise smoother effectively dump high frequency errors in both directions at latitudes with

$$\alpha(\varphi_i) \ge 0.5$$

$$\varphi_{j+1}$$
 φ_{j}
 $\Delta\lambda(j)$
 φ_{j-1}

Coarse grids construction example

MG components. Intergrid operators

• **Restriction** – volume-weighted average:

$$\psi_i^c = \frac{1}{V(\Omega_i^c)} \sum_k \psi_k^f V\left(\Omega_i^c \cap \Omega_k^f\right)$$

• **Prolongation** – bilinear interpolation

• Other choices are possible $(Px, y)_{Qx} = (x, R)$

$$(Px, y)_{\Omega_f} = (x, Ry)_{\Omega_c}$$

MG components. Smoothing operator

 Smoother must effectively eliminate high frequency error modes

 All standard approaches are applicable (Jacobi, Gauss-Seidel, SPAI, block ILU(0), ...)

 Our choice – hybrid Gauss-Seidel with red-black ordering

MG components. Coarse grid solver

 Common practice is to use several iterations of the smoother (assuming coarse problem well-conditioned)

• Laplacian discretization matrix spectrum:

$$\Delta \psi \approx L \psi$$
, $\mu_{min}(L) = O(1)$, $\mu_{max}(L) \sim \max_{j} \frac{1}{\Delta \lambda_{j}^{2} \Delta \varphi_{j}^{2}}$

- Pointwise smoothing is not effective coarse grid solver
- Several iterations (3-8) of BICGSTAB/CG method is used

Algorithm convergence analysis

- Given the problem Ax = b
- rhs known solution (random vector) multiplied by the system matrix
- Looking for the average number of iterations N to reach relative error tolerance $\frac{\|\xi^N\|}{\|x^*\|} \leq 10^{-7}$
- 2 iterations of pre- and post-smoothing

Grids setup

• Grids with initial resolution:

512x256, 1024x512, 2048x1024, 4096x2048

• Linear reduction towards poles from N_{λ} to αN_{λ} , $\alpha \in \{1, 0.1, 0.01\}$

Initial grid	α	Dof	N_{λ} at poles	
	1	$1.3\cdot 10^5$	512	
512x256	0.1	$7.2\cdot10^4$	54	
	0.01	$6.6\cdot10^4$	10	
	1	$5.2 \cdot 10^5$	1024	
1024x512	0.1	$2.8\cdot10^5$	106	
	0.01	$2.6\cdot10^5$	14	

Initial grid	α	Dof	N_{λ} at poles
	1	$2.1 \cdot 10^6$	512
2048x1024	0.1	$1.1 \cdot 10^{6}$	208
	0.01	$1.0 \cdot 10^{6}$	24
	1	$8.3 \cdot 10^{6}$	4096
4096x2048	0.1	$4.6 \cdot 10^6$	414
	0.01	$4.2 \cdot 10^6$	44

Algorithm convergence. Poisson problem

$$\Delta G = R$$

Initial grid	α	Coarse grids	N _{iter}
	1	6	6
512x256	0.1	5	7
	0.01	5	7

Initial grid	α	Coarse grids	N _{iter}
	1	7	6
1024x512	0.1	6	7
	0.01	6	8

Initial grid	α	Coarse grids	N _{iter}
2048x1024	1	8	6
	0.1	7	7
	0.01	7	7

Initial grid	α	Coarse grids	N _{iter}
4096x2048	1	9	6
	0.1	8	7
	0.01	8	8

Algorithm convergence. Helmholtz problem

$$(\omega^2 - \Delta)G = R$$
 $\omega^2 = \{300, 1200, 4800, 19200\}$ (scaling proportional to $(\Delta t)^{-2}$)

Initial grid	α	Coarse grids	N _{iter}	Coarsest level Dof
	1	6	7	120
512x256	0.1	3	6	1200
	0.01	2	6	4185

Initial grid	α	Coarse grids	N _{iter}	Coarsest level Dof
	1	8	6	144
2048x1024	0.1	5	7	1212
	0.01	2	7	66413

Initial grid	α	Coarse grids	N _{iter}	Coarsest level Dof
	1	7	7	136
1024x512	0.1	4	7	1205
	0.01	2	6	16654

Initial grid	α	Coarse grids	N _{iter}	Coarsest level Dof
	1	9	6	160
4096x2048	0.1	6	6	1212
	0.01	3	6	66378

Implicit hyper-diffusion equation

$$\bullet \, \psi_f = \psi - \nabla \cdot \left(\mathbf{K} \nabla^3 \psi_f \right) \Rightarrow \begin{cases} \psi_f = \psi - \nabla \cdot \left(\mathbf{K} \nabla z \right) \\ z = \nabla^2 \psi_f \end{cases}$$

- Smoothing operator collective relaxation
- All other components remain the same
- Convergence results quite similar to the Helmholtz problem case

Parallel implementation

- Pure MPI implementation
- Scaling tests yet to be done

Summary

- Geometric multigrid algorithm at the reduced lat-lon grid is developed
- Algorithm is robust with respect to the problem size and grid reduction ratio
- The use of sufficient grid reduction allows using fewer coarse levels (in case of Helmholtz and implicit hyper-diffusion problems), which is likely to have a positive effect on the algorithm parallel efficiency
- Algorithm could be extended to the 3d case
- Scalability tests and test within the SL-AV model framework have to be performed

Reduced grid discretization

$$(\nabla^{2}\psi)_{i,j} = \frac{1}{V_{j}} \left(dS_{j}^{\varphi} \frac{\psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j}}{\Delta \lambda_{j} \cos \varphi_{j}} + dS_{j+1/2}^{\lambda} \frac{\widetilde{\psi}_{i,j+1} - \psi_{i,j}}{\varphi_{j+1} - \varphi_{j}} - dS_{j-1/2}^{\lambda} \frac{\psi_{i,j} - \widetilde{\psi}_{i,j-1}}{\varphi_{j} - \varphi_{j-1}} \right),$$

$$dS_{j}^{\varphi} = \frac{\varphi_{j+1} - \varphi_{j-1}}{2}, \quad dS_{j\pm 1/2}^{\lambda} = \Delta \lambda_{j} \cos \frac{\varphi_{j\pm 1} + \varphi_{j}}{2}, \quad V_{j} = a^{2} \frac{dS_{j+1/2}^{\lambda} + dS_{j-1/2}^{\lambda}}{2} dS_{j}^{\varphi},$$

$$\widetilde{\psi}_{i,j\pm 1}$$
 is the value interpolated to the point $((i-1)\Delta\lambda_j,\varphi_{j\pm 1})$

Coarse grid matrix condition number

Coarse grid with resolution 4x8

