An algorithm for quadrature on spherical polygonal grids

Christopher Subich
Christopher.Subich@canada.ca
Environment & Climate Change Canada
Dorval, Québec

PDEs on the Sphere
30 April 2019
Montreal, Québec
Outline

1. Objectives
2. Algorithm
3. Results
4. Conclusions & Future Work
Objectives

- Core objective: develop higher-order methods on the spherical icosahedral grid
- Cell-based methods require integrals
 - Finite volume: compute cell averages
 - Finite element: compute inner products
 - Dynamical cores: integrate physics forcings
- Icosahedral grid is necessarily irregular: no simple transformations of a canonical hexagon
- For “online” use, we seek an equivalent to Gaussian quadrature
 - Minimize number of quadrature points per cell
 - Maximize number of (relevant) moment functions integrated exactly
Previous work

- Not very much previous work in this area
- Reeger and Fornberg [2015]: Quadrature rule for the entire sphere given node locations
 - Not directly applicable; we need quadrature for individual volumes
- Mousavi et al [2010]: Quadrature rules for arbitrary polygons
 - Arbitrary planar polygons – spherical polygons add significant complications
 - Root algorithm here is the basis for this work
- Existing numerical methods use geometric arguments for quadrature (e.g.):
 - TRiSK [Thuburn et al, 2009] – cell centroids give a single quadrature point and second order method
 - Cell-centered FV [Subich, 2018] – large tensor-product quadrature rules for precomputation of stencils
Quadrature on a plane

Problem: Given moment functions $M_i(\vec{x})$, find \vec{x}_j and weights w_j s.t.

$$\sum_j M_i(\vec{x}_j) \cdot w_j = \int_{\Omega} M_i(\vec{x}) dA$$

Start with a large, exact quadrature rule, and iterate:
- Eliminate a point
- Adjust remaining degrees of freedom via Newton’s method to “fix” quadrature rule
- Iterate until adjustment no longer converges

Implementation details:
- Helps to have orthogonal moment functions, giving well-conditioned Jacobian (sphere: “mostly-orthogonal”)
- Flexibility in removing points (here augment underdetermined system to push weights towards 0)
- Iteration can incorporate constraints (Mousavi also builds symmetric quadrature rules)
Quadrature on a sphere

- Nice properties of the sphere give some obvious correspondences:
 - Spherical polygons \rightarrow planar polygons via orthographic projection
 - Planar monomials \rightarrow spherical harmonics \rightarrow monomials in Cartesian coordinates

- Each comes with a drawback:
 - Orthographic projection has $(1 + x^2 + y^2)^{-3/2}$ determinant of metric tensor – quadrature rules depend on element size
 - Spherical harmonics are more numerous than monomials in (x, y)
 - Spherical harmonics are not linearly independent over small elements
Moment functions

- Consider element rotated to north pole \((z = 1)\)
- Locally, spherical harmonics look like 1, \(x\), \(y\), \(z\), . . .
 - Not all functions are equal
 - \(z = \sqrt{1 - x^2 - y^2} \approx 1 - \frac{1}{2}(x^2 + y^2)\)
 - Dropping \(z\) gives error equivalent to dropping higher-order \(x\), \(y\) terms!

- Two options for resulting quadrature rule:
 - Keep all spherical harmonics up to order \(k\)
 - \(O(\Delta x^{k+1})\) error
 - Exact element-wise integration of spherical harmonics
 - . . . but significant problems with local linear dependence
 - Drop all \(z\) terms from moment functions
 - Also \(O(\Delta x^{k+1})\) error
 - Need fewer quadrature points
 - . . . but no exact integration of spherical harmonics
Moment functions

- For well-conditioned iteration, we want moment functions that are mostly orthogonal.
- Expensive on a per-element basis, but doable once for a reference area.
- Cheat: use square region on orthographic projection:
 - Functions in \(x \) and \(y \) retain their form.
 - Grid elements are small enough that projection does not make a leading-order difference.
 - Orthogonalization is only approximate.
- Moments with \((x,y)\) only are easy: scaled Legendre polynomials.
 - Number of moments to order \(i \) is \((i + 1)(i + 2)/2\), matching triangular truncation.
- Moments with \(z \) are more complicated, must compute via Gram-Schmidt process.
 - Total number of moments to order \(i \) is \((i + 1)^2\).
Moment functions

An example

- Region (x, y), $|x|, |y| \leq \frac{1}{10}$, second-order
- Normalized to root mean square 1
- “Planar” moments (no z):
 - 1
 - $10\sqrt{3}x$, $10\sqrt{3}y$
 - $\sqrt{5} (150x^2 - \frac{1}{2})$, $300xy$, $\sqrt{5} (150y^2 - \frac{1}{2})$
- “Spherical” moments (with z):
 - $\frac{3150000}{\sqrt{67}} z + \frac{1581000}{\sqrt{67}} x^2 + \frac{1581000}{\sqrt{67}} y^2 - \frac{6300031}{2\sqrt{67}}$
 - $\frac{10500000\sqrt{1590705237}}{48203189} xz - \frac{10450865\sqrt{1590705237}}{48203189} x$
 - $\frac{10500000\sqrt{1590705237}}{48203189} yz - \frac{10450865\sqrt{1590705237}}{48203189} y$

- Coefficients become very large, very quickly, with near-cancellation of large numbers
- Requires very high working precision, but evaluation via Newton iteration possible in ordinary floating point

Page 9 – 30 April 2019
Moment functions

In pictures

Moment functions to order 1
Moment functions

In pictures

Moment functions to order 2

Page 11 – 30 April 2019
Moment functions

In pictures

Moment functions to order 3

Page 12 – 30 April 2019
Moment functions

In pictures

Moment functions to order 4
Moment functions

In pictures

Moment functions to order 5
Results

- Generated quadrature rules for SVCT-optimized grids
 - Pedro Peixoto’s iModel repository (https://github.com/pedrospeixoto/iModel)
 - Grid levels 1 (42 elements) through 6 (40,962)
- Quadrature rules for 1st – 6th-order moments
 - 2nd–7th-order quadrature rules
 - Both “triangular” and “complete” truncations
- Generation procedure:
 - Define scale factor r_0 based on average cell size
 - Compute near-orthogonal moment functions
 - Generate reference quadrature rule for a regular hexagon
 - Adjust regular rule to each element via Newton’s method
Minimal rules

<table>
<thead>
<tr>
<th>Order</th>
<th>Triangular</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>

- Number of points is close to theoretical lower bound
- Three degrees of freedom per point
- Noticeable “penalty” for full truncation
- Worse with increasing order
Sample quadrature rules

Sample cell (1, 0)

Sole point at element centroid
Sample quadrature rules

Sample cell (1, 1)

Two points necessary to integrate \(z \) exactly
Sample quadrature rules

Sample cell (4, 0)
Sample quadrature rules

Quadrature points are not constrained to the element interior, but remain close.
Convergence rates

Quadrature errors (triangular)

\[\| \cdot \|_\infty \text{ error for test function } 1 + \tanh(9(z - x - y)) \]

Triangular truncation
Convergence rates

Quadrature errors (complete)

- $\| \cdot \|_\infty$ error for test function $1 + \tanh(9(z-x-y))$
- Full set of moments
Conclusions

- Near-optimal element-wise quadrature on a spherical domain is possible
- Code available now: github.com/csubich/squidpack
 - Rough but working state, generates the figures here
- Numerical next steps:
 - Table-maker’s problem
 - Use higher-precision calculations for full-precision output
 - Current code loses a digit or two
 - High-precision refinement is computationally slow
 - Extend to higher orders yet
 - Core method should extend to arbitrary order
 - Convergence becomes trickier — more iterations per element at 6th versus 1st order
 - Potential for diminishing returns
 - More generic spherical polygons
Conclusions

More future work

- Use the method in a proper numerical model
 - Rotation term requires computation of $\langle \vec{\Omega} \times \vec{u} \rangle$
 - Not everything is a flux
 - Finite element: what do high-order shape functions look like on this grid?

- Add constraints
 - Each generate rule has a few more degrees of freedom than required
 - Add optimization pass for e.g. “keep quadrature points inside the element”
 - Potential for more strongly-constrained rules
 - Multimoment FV-style: quadrature points are vertices plus one free node inside the element
References

