Exceptional service in the national interest

Efficient IMEX Runge-Kutta integrators for the HOMME-NH dycore

Andrew J. Steyer, Sandia National Laboratories (SNL)

SAND2019-1815 C

Context

- E3SM atm. hydrostatic (nonstiff, HE) \rightarrow nonhydrostatic (stiff, HEVI).
- Horizontally explicit, vertically implicit (HEVI).
- Climate: atmosphere model runs close to CFL stability limit to chug through rather lengthy simulations.
- Need flexible methods for range resolutions and vert.-to-hor. aspect ratios.
- Purely imaginary eigenvalues. Want IMEX version of the KGU35 3rd order explicit Runge-Kutta (RK) method ^{1,2}:

0	0				
1/5	1/5				
1/5		1/5			
1/3			1/3		
2/3				2/3	
1	1/4				3/4
	1/4				3/4

¹I. Kinnmark and W. Gray, *One step integration methods with maximum stability regions*, Math. Comput. Simulation, XXVI (1984), pp. 84-92.

² I. Kinnmark and W. Gray, One step integration methods with third-fourth order accuracy with large hyperbolic stability limits, Math. Comput. Simulation, XXVI (1984), pp. 101-108. **IMEX for E3SM-HOMME**

HOMME-NH dycore

 θ_{v}

Laprise-like formulation of nonhydrostatic Euler equations ^{3,4}:

$$\begin{cases} \frac{D\mathbf{u}}{Dt} + \text{coriolis terms} + \left\{\frac{1}{\rho}\nabla p\right\}_{h} = 0, \quad \frac{Dw}{Dt} + g + \frac{1}{\rho}\frac{\partial p}{\partial z} = 0\\ \\ \frac{D\phi}{Dt} - gw = 0, \quad \frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla_{\eta} + \dot{\eta}\frac{\partial}{\partial \eta}\\ \\ \frac{\partial\Theta}{\partial t} + \nabla_{\eta} \cdot (\Theta \mathbf{u}) + \frac{\partial}{\partial \eta}(\dot{\eta}\Theta) = 0, \quad \Theta = \tilde{\rho}\theta_{v}\\ \\ \frac{\partial}{\partial t}(\tilde{\rho}) + \nabla_{\eta} \cdot (\tilde{\rho}\mathbf{u}) + \frac{\partial}{\partial \eta}(\dot{\eta}\tilde{\rho}) = 0 \end{cases}$$
$$\mathbf{u} = (u, v)^{T} - \text{horiz. vel.}, \quad \phi - \text{geopotential}, \quad \pi - \text{hydrostatic press.}\\ \\ w - \text{vert. vel.}, \quad g - \text{grav. constant}, \quad c_{p} - \text{thermo. constant}\\ \\ v - \text{virtual pot. temp.}, \quad \eta - \text{vertical coordinate}, \quad \tilde{\rho} - \text{pseudo density.} \end{cases}$$

³R. Laprise, *The Euler equations of motion with hydrostatic pressure as an independent variable*, Mon. Wea. Rev., 102 (1992), pp. 197-207.

⁴M. Taylor et al, *The E3SM non-hydrostatic atmosphere dynamical core*, Preprint. IMEX for E3SM-HOMME

HOMME-NH HEVI IMEX splitting

$$\begin{cases} \frac{D\mathbf{u}}{Dt} + \text{coriolis terms} + \left\{\frac{1}{\rho}\nabla p\right\}_{h} = 0\\ \frac{Dw}{Dt} + \left[g + \frac{1}{\rho}\frac{\partial p}{\partial z}\right] = 0\\ \frac{D\phi}{Dt} + \left[-gw\right] = 0\\ \frac{\partial\Theta}{\partial t} + \nabla_{\eta} \cdot (\Theta\mathbf{u}) + \frac{\partial}{\partial\eta}(\dot{\eta}\Theta) = 0, \quad \Theta = \tilde{\rho}\theta_{v}\\ \frac{\partial}{\partial t}(\tilde{\rho}) + \nabla_{\eta} \cdot (\tilde{\rho}\mathbf{u}) + \frac{\partial}{\partial\eta}(\dot{\eta}\tilde{\rho}) = 0 \end{cases}$$

HEVI splitting: boxed terms generate fast and vertically propagating acoustic waves that are implicitly treated, all other terms (including vertical advection) are expelicitly treated. Summer student (Cassidy Krause, U. of Kansas) will use this splitting as basis for split-exp-RK methods.

Spatial discretization

- Horizontal: 4th order mimetic spectral elements on cubed sphere⁵.
- Vertical: 2nd order mimetic SB81 with Lorenz staggering⁶.
- Terrain following hydrostatic pressure vertical coordinate η .

⁵M. Taylor and A. Fournier, A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229 (2010), pp. 5879-5895.

⁶A. Simmons and D. Burridge, An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates, Mon. Wea. Rev., 109 (1981), pp. 758-766. IMEX for E3SM-HOMME

Additive and IMEX RK methods

$$\dot{u} = \underbrace{n(u,t)}_{\leftarrow} + \underbrace{s(u,t)}_{\leftarrow}, \quad u(t_0) = u_0.$$

nonstiff terms stiff terms

An *r*-stage additive Runge-Kutta (RK) method with time step $\Delta t > 0$:

$$u_{m+1} = u_m + \Delta t \sum_{j=1}^r \left(b_j n(g_{m,j}, t_{m,j}) + \hat{b}_j s(g_{m,j}, \hat{t}_{m,j}) \right)$$

$$g_{m,i} = u_m + \Delta t \sum_{j=1}^r \left(A_{i,j} n(g_{m,j}, t_{m,j}) + \hat{A}_{i,j} s(g_{m,j}, \hat{t}_{m,j}) \right)$$

$$t_{m,j} := t_m + c_j \Delta t, \quad \hat{t}_{m,j} := t_m + \hat{c}_j \Delta t \quad i = 1, \dots, r \quad m = 0, 1, 2, \dots$$

Methods are represented using a double Butcher tableau:

$$\frac{c}{b^T} \frac{A}{\hat{b}^T} \frac{\hat{c}}{\hat{b}^T}$$

IMEX RK method: one tableau is implicit, the other is explicit.

HOMME-NH stage equations

HEVI simplifies solution of HOMME-NH RK stage equations:

$$s(q) = (0, 0, -g(1-\mu), gw, 0, 0)^T, \quad \mu = \frac{\partial p}{\partial \eta} / \frac{\partial \pi}{\partial \eta}, \quad n(q) := \text{everything else.}$$

$$\begin{cases} g_{m,j}^{w} = E_{m,j}^{w} + \Delta t g \hat{A}_{j,j} (1 - \mu_{m,j}) \\ g_{m,j}^{\phi} = E_{m,j}^{\phi} + \Delta t g \hat{A}_{j,j} g_{m,j}^{w} \end{cases}, \quad m \in \mathbb{N}, \quad j = 1, \dots, r$$

Newton solve for $g_{m,j}^{\phi}$ then set $g_{m,j}^{w} = (g_{m,j}^{\phi} - E_{m,j}^{\phi})/(g\Delta t \hat{A}_{j,j})$.

- Embarrassingly parallel full Newton to machine precision (typically takes 2-4 iterations).
- Direct tridiagonal solves with Lapack.
- Implicit stage costs roughly 50 % of an explicit function evaluation.

IMKG methods

- Assume $c_j = a_j + b_{j-1}$ and $\hat{c}_j = \hat{a}_j + \hat{b}_{j-1} + \hat{d}_i$ for $j \ge 1$.
- IMKG2 methods (second order) have b_j ≡ b̂_j ≡ 0, IMKG3 methods (third order) must have at least b_{r-1}, b̂_{r-1} ≠ 0 and b̂_j ≡ b_j.⁷
- Explicit method has Kinnmark and Gray optimal stability on the imaginary axis, implicit method is I-stable.
- Methods are low storage (2- or 3-registers).

⁷ A. Steyer, C. Vogl, M. Taylor, and O. Guba, *Efficient IMEX Runge-Kutta methods for nonhydrostatic dynamics*. Preprint. To appear on Arxiv. IMEX for E3SM-HOMME

Example

The IMKG343a method:

0	0				0	0			
1/4	1/4				-1/3	0	-1/3		
2/3	0	2/3			2/3	0	-1/3	1	
2/3	1/3		1/3		2/3	1/3		-2/3	1
1	1/4			3/4	1	1/4			3/4
	1/4			3/4		1/4			3/4

Third order accurate, explicit method has CFL \approx 2.85, implicit method is I-stable, coupled IMEX stability has CFL \approx 2.5.

HEVI and fast-slow wave stability

10

Test equation for HEVI or fast-wave-slow-wave IMEX splitting 8 :

$$\dot{u} = -ik_x Nu - ik_z Su, \quad N = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right], S = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right].$$

 k_x and k_z are horizontal and vertical wave numbers, $K_x := \{k_x\}, K_z \in \{k_z\}$.

 $u_{m+1} = R_H(\Delta t k_x, \Delta t k_z)u_m$, IMEX RK solution

HEVI or H-stability region:

 $S_H := \{(x, z) : \text{ eigenvalues of } R_H(x, z) \text{ all have modulus at most } 1\}.$

 Δt is a stable time-step if $\Delta t(K_x \times K_z) \subseteq S_H$

⁸ S.-J. Lock, N. Wood, and H. Weller Numerical analyses of Runge-Kutta implicit-explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models. Q. J. Roy. Meteor. Soc., pp. 1654-1669. IMEX for E33M-HOMME

Getting to the hydrostatic time-step

- Goal: Run NH-model with a hydrostatic time-step.
- Optimal case: S_H is a "trunk" with width equal to explicit stability limit; stability is enforced by ensuring $\Delta t K_x$ is contained in the stability region of the explicit method.
- Sub-optimal case: S_H is a "shrub" with slope small less than $\gamma = \min(K_z \cap (0, \infty)) / \max(K_x)$.

Figure: Dots represent $\Delta t(K_x \times K_z)$, brownish region is a trunk, green region is a shrub with slope less than γ .

H-stability of IMKG232a-b

Figure: H-stability regions of the IMKG232b (left) and IMKG242b (right) methods. Max. stable time-steps at v-to-h aspect ratios $\approx 1/100$, $\approx 1/10$, and ≈ 1 : IMKG232b 200, 17.5, 1.75; IMKG242b 225, 27.5, 2.5.

Convergence study

Methods implemented with HOMME-ARKode interface⁹: Thanks Chris Vogl, Carol Woodward, David Gardner (LLNL), Dan Reynolds (SMU)!

Figure: Error in solution of 5 hour run of DCMIP 2012 non-hydrostatic gravity wave test case, 1.25km horizontal resolution, 20 vertical levels.

⁹C. Vogl, A. Steyer, D. Reynolds, P. Ullrich, and C. Woodward, *Evaluation of Implicit-Explicit Additive Runge-Kutta Integrators for the HOMME-NH Dynamical Core*. arxiv:1904.10115 IMEX for E3SM-HOMME 13

Time trials

Questions????