Disentangling atmospheric biases
in the tropical Atlantic in the CNRM climate
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Conclusions
* CNRM-CM5 AMIP simulation:

» Surface zonal wind bias in equilibrium with errors in the zonal gradients of geopotential,
temperature in the free troposphere, precipitation and associated convective sources.

Introduction

» Most coupled climate models have a warm SST bias and
westerly bias in the tropical Atlantic (e.g., Richter et al 2014,
Voldoire et al 2014)

> These biases have large impact on the regional atmospheric
and oceanic circulations.

> Various processes at play, possibly different for the equatorial
biases and those in the southeastern part of the basin: surface
cloud radiative effect, regional convective heating sources,
boundary layer wind mixing, coastal upwelling, barrier layers...

CMIP5 SST bias

* Short-term hindcasts:

» Reproduce the main features of CNRM-CM5 AMIP biases in the tropical Atlantic and allow for
cause and effect identification.

» Fast adjustment (~5 days) of the regional Walker circulation to the lack of convection in the
western part of the basin. This controls the development of other biases in the region.

» The deficit of precipitation in the western part of the basin is characterized by underestimated
surface evaporation (fast processes to be further investigated), which does not favor intense
convection in a convective parameterization based on moisture convergence closure.

Voldoire et al. (2014, Clim. Dyn.)

» The westerly wind bias is generally already present in AMIP simulations and has been
shown in some models to be instrumental in the development of the warm SST bias along the
Equator (e.g., Voldoire et al 2014)

» CNRM-CM5 exhibits this kind of behavi
NRM-CM3 exhibits this kind of behavior = This last point is partly confirmed by the results of the new CNRM-CM physics, which

has a convection parameterization based on a CAPE closure.

» Hydrostatic balance integrated over the vertical:

AMIP biases of CNRM-CM5 in the tropical Atlantic
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Hindcasts (TAMIP)

Cause and effect: use of short-term atmospheric hindcasts

» The Transpose-AMIP framework

= 20-day hindcasts, initialized every day of April 2007 at Oh UTC (30 members)

= April 2007 is rather neutral in terms of SSTs anomalies and CNRM-CM5 (AMIP) biases in the Tropical
Atlantic

= TInitialization from ERA-Interim for the atmosphere (so ERA-Interim is our reference for the dynamics
and thermodynamics).

= For continental surface, initial state derived from an offline simulation of the land surface model using a
forcing based on observations/reanalyses.

1. Correspondance between AMIP and TAMIP bias

Zonal wind bias at 1000 hPa - 2007

Hindcasts (TAMIP)
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= High correspondance between the AMIP and
TAMIP surface zonal wind biases after only ~5
days, both in terms of structure and intensity

= Geopotential and temperature gradients biases
develop even faster (not shown).
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Precipitation bias — 2007
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= The dry bias in the western part of the basin appears first. -_
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3. Surface evaporation, convective parameterization closure?
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