Evaluation of errors in precipitation over Japan reproduced by the non-hydrostatic regional climate model (NHRCM)

Akihiko Murata¹, Hidetaka Sasaki¹, Hiroaki Kawase¹, Masaya Nosaka¹, Toshinori Aoyagi², Mitsuo Oh'izumi³, and Kazuo Saito¹

1: Meteorological Research Institute, 2: Japan Meteorological Agency, 3: Meteorological College

1. Introduction

- Background: Increase in horizontal resolution of Regional Climate Models (RCMs)
- Goal:

Evaluate the performance of a convection-permitting RCM, called NHRCM, in simulated precipitation in the present climate of Japan

2. Model and experimental design

NonHydrostatic Regional Climate Model (NHRCM; Sasaki et al. 2008), based on Japan Meteorological Agency NonHydrostatic Model (JMA-NHM; Saito et al. 2006)

Regions

* : statistically

significant at

5% level

- Evaluate the performance of Horizontal grid spacing: 2km a convection-permitting RCM. (without cumulus parameterization)
 - Square Prism Urban Canopy (SPUC: Aoyagi and Seino 2011)

Integration period: Sep 1980 – Aug 2000 (1-year time slice: Sep – next Aug)

3. Annual precipitation

- Calculate bias and RMSE
 - Samples: Data over a region
 - Compare errors between NHRCM02 and NHRCM05

In most regions, bias and RMSE for NHRCM02 are smaller than those for NHRCM05, although differences in bias are not statistically significant.

Model vs. Obs

- NHRCM02 simulation results have
 - A larger correlation coefficient
 - No outliers

4. Heavy precipitation

- Definition of heavy precipitation
 - The 99th percentile of hourly precipitation averaged over 20 years (Integration period)

* : statistically significant at 5% level

- In most regions, bias and RMSE for NHRCM02 are smaller than those for NHRCM05.
 - Differences in RMSE are statistically significant in some regions

Model vs. Obs

- NHRCM02 simulation results have
 - A fitted line showing no underestimates nor overestimates
 - A larger correlation coefficient

5. Topographic effects

Increase in the index of the improvement in the simulated precipitation with growing terrain complexity

6. Summary

- Evaluation of precipitation in the present climate reproduced by a convection-permitting regional climate model over Japan
 - Horizontal grid spacing: 2 km
- Improved reproducibility in precipitation, compared with the 5-km mesh model
 - Annual and heavy (99%ile of 1-h) precipitation
- Effects of topography
 - Improved reproducibility in precipitation in areas of complex topography

Acknowledgments: This work was conducted under the SOUSEI and TOUGOU Programs of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.