5th WGNE workshop on systematic errors in weather and climate models, Montréal, Québec, Canada Comparing CAM5 and Superparameterized CAM5 simulations of summer precipitation characteristics over

continental East Asia Yi ZHANG. Haoming CHEN

Chinese Academy of Meteorological Sciences, Beijing, China Email: zhange@camscma.cn, 46 Zhongguancun South St. Beijing, China, 100081

Changes in mean precipitation (precip) amount and frequency(freq)-intensity curves
Southen China: Mean precip increases, freq drops in the weak precip regime, but increases in the intense precip regime
East of Tibetan Plateau: Mean precip decreases, freq drops over the entire intensity spectrum

Major Differences in Diurnal cycles

Map figures:

Delays in precipitation peak time from CAM5 to SPCAM5 at afternoon precipitation regimes, e.g. Southern China.

Line figures (over southern China):

CAM5: Precipitation peak in phase with the

CAPE peak

SPCAM5: Precipitation peak lags behind the

CAPE peak

Comparing Heat and moisture budgets

(Top) Diurnal progression of Q1-Qrad (cross section); (Bottom) Diurnal progression of Q2 (cross section)

SPCAM5 shows a progressive increase in heating rates (top) and a more evident surface drying (bottom), which indicates more abundant shallow cumuli before intense convection starts. This signal is not so evident in conventional GCM like CAM5.

Conclusions on model differences

SPCAM has a more evident transition stage from shallow to deep convection, which delays the afternoon precipitation peak and enhances the intense precipitation, leading to more realistic frequency-intensity distributions and overall climate

