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1. Motivation
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simulations can capture characteristics of MCSs and
sensitivity to model parameterizations
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variable resolution framework and address modeling

~| = Thom: 4.6 (29 -| = Thom: 7.2 (-6%)

—
($)]
|
-
(3}
|

B showed small improvements in simulating propagating features

1.0
I OBS 4 km 8 km 8 km - tau

(a) OBS (b) MPV4km (c) MPV8km
et ] e L

o :
($)}
T T I T T T T T T T

Total Convective Resolved

lllll

o
(=)

Conv. Vol Rain-rate (x10" kg h™")
>
[

Strat. Vol Rain-rate (x10" kg h™")

challenges . . | | E
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 = | o o o
Normalized Time Normalized Time 2 g
3. Regional convection permitting Vol . =rainrateX area e | =)
simulations » OBS: stratiform rain accounts for 63% total rain volume Boe ° ° )
» WREF simulations with 4 km horizontal grid spacing and 65 vertical levels » Convective Vol, ;.4 Morr: +28%, Thom:+2% B8 8088 4085 80 st ey C R o
» Summer season (JJA) simulations initialized on May 1 for 2011 and » Stratiform Vol, ;... Morr: -25%, Thom: -6% "0 *‘°"1;n'::§§e”"*‘°
2012 driven by GFS reanalysis » Partitioning of convective vs. stratiform rain has implications to I
» Cumulus parameterization is turned off; two microphysics the latent heating profile and large-scale circulation
parameterizations are compared — Morrison and Thompson
Model Domain 12. Large sensitivity of rain rates
45"_#& ‘ .-' ﬂi 8. Explorlng a gIOb_aI varlab_le. reso.lutlon ] » All MPAS simulations produced significantly lower frequency of high
f Evaluatio ~ ;4 4 model for convection permlttlng simulations rain rates compared to the WRF simulation at 4 km

g2

g

» MPAS at 8 km resolution with variable tau is more skillful compared to
simulations with fixed tau

» The non-hydrostatic MPAS dynamical core has been coupled to the
physics package of Community Atmosphere Model (MPAS-CAMS) for
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4-32 km mesh

Radar coverage

» NASA Goddard satellite data
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» NSSL MRMS National Radar Product
B 3-D Mosaic Reflectivity data
B Ax =1 km, 31 vertical level: 0.5-18km
B Q2 gauge bias-adjusted 1-hourly rainfall
B All radar data regridded to 4 km

» Partition into convective/stratiform based on
intensity and texture of radar echo

» Same method applied to model simulated
radar reflectivity
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13. Summary
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» Regional convection permitting simulations with WRF are
skillful in capturing MCSs and diurnal precipitation in Central
9. Numerical experiments US, despite some sensitivity to microphysics

parameterizations

» For short forecast simulations, MPAS-CAM5 and MPAS-WRF
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simulations are comparable, and increasing resolution leads
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