South Asian Monsoon Precipitation in CMIP5: Linking Biases and Inter-model Spread to Model Representation of **Tropical Convection**

L. Ruby Leung¹, Samson Hagos¹, Moetasim Ashfaq², and Karthik Balaguru¹

¹Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA ²Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN

Proudly Operated by Battelle Since 1965

1. Large model biases and spread

► What are the sources of biases in the CMIP5 South Asian monsoon precipitation and inter-model spread in projected future changes?

2. Convection over the Equatorial Indian Ocean may hold the key

- ► Tropospheric warming from excess precipitation in the Equatorial Indian Ocean (EIO) induces a northeasterly low level anomalous flow that counters the monsoon circulation and moisture transport
- ► Model biases are more of an atmosphere rather than coupled problem

Moisture Wind divergence

3. Divergence and precipitation in the tropics

From conservation of mass:

$$-\frac{1}{g} \int_{ps}^{pt} q(\nabla \cdot \mathbf{v})_d dp = \frac{1}{g} \int_{ps}^{pt} q(\frac{\partial \omega}{\partial p})_d dp$$

From conservation of energy and the weak temperature gradient in the tropics: $\mathbf{v} \cdot \nabla T - S_p \omega = \frac{\mathbf{J}_d}{C_p}$

Diabatic heating is dominated by latent heating in the tropics

$$\mathbf{J}_d \simeq P \hat{\mathbf{j}}_d(p)$$

Divergence and precipitation are strongly linked:

4. Precipitable water and precipitation

From conservation of moisture and partitioning the divergence into deep convection and subsidence:

$$P = E - \frac{1}{g} \int_{ps}^{pt} q(\nabla \cdot \mathbf{v})_s dp - \frac{1}{g} \int_{ps}^{pt} q(\nabla \cdot \mathbf{v})_d dp - \frac{1}{g} \int_{ps}^{pt} \mathbf{v} \cdot \nabla q dp$$

Using the linear relationship between moisture divergence and precipitation:

$$-\frac{1}{g} \int_{ps}^{pt} q(\nabla \cdot \mathbf{v})_d dp \simeq \alpha_d P + \beta_d \quad -\frac{1}{g} \int_{ps}^{pt} q(\nabla \cdot \mathbf{v})_s dp \simeq \alpha_s P + \beta_s$$

A normalized pw and p relationship analogous to the non-normalized pw and *p* relationship:

$$pr_N = \frac{1}{(1 - pw_N)}$$

5. Divergence and precipitation in the **Equatorial Indian Ocean**

6. Divergence and Precipitation in the equatorial Indian Ocean

7. A bimodal distribution of models

- ► Models that effectively utilize moisture from local convergence produce more precipitation in the EIO, hence weak monsoon, than models that rely on moisture supply from evaporation and advection
- ► The steep curve explains the large inter-model spread as small changes in pw_N leads to large changes in pr_N when pw_N is close to 1

8. A bimodal distribution of models

- As a consequence of the steep P vs. PW curve, the spread in the simulated precipitation over the EIO increases with the precipitable water
- ► In a warmer climate, the spread of PW increases, so the spread P also increases

9. Predictive power of pw_N on model biases and inter-model spread

- \blacktriangleright Models with pw_N above the median value have weak monsoon (red) and vice versa (blue)
- Most of the spread in projected changes in monsoon rainfall is

10. Convection permitting modeling in a global variable resolution model

MPAS-CAM5 simulations at 4 km - 32 km

11. Convection permitting modeling in a global variable resolution model

- ► Turning off CP leads to some improvements in simulating MJO, cloud characteristics, rain rates, and P vs PW
- ▶ But for climate simulations, scale-aware parameterizations are needed in global variable resolution models the spread also increases

Present day precipitation (mm/day)

Summary

- CMIP5 model biases in simulating South Asian monsoon rainfall are linked to convection in the equatorial Indian Ocean
- ▶ In the equatorial Indian Ocean, there is a bimodal distribution of models with high pw_N and high pr_N vs. low pw_N and low pr_N , as pw_N and pr_N are related by a non-linear relationship
- $\triangleright pw_N$ has predictive power for model simulated monsoon rainfall and inter-model spread
- $\triangleright pw_N$ is determined by the relative depths of divergence and moisture, which are associated with how convective parameterizations distribute moisture and latent heating vertically
- Convection permitting modeling may improve simulations of convection, but scale-aware parameterizations are needed in a global variable resolution modeling framework in which CPM is computationally feasible

Acknowledgments

This research is supported by the US Department of Energy Office of Science as part of Regional and Global Climate Modeling program.