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The derivation of consistent sets of approximated This principle should not be violated even when the
equations in geophysical fluid dynamics, which has beequations are approximated, otherwise unphysical results
the subject of recent publications, is a challenging topie- i.e. inconsistent to leading order of approximation
We are therefore grateful t8taniforth and Whitg(2015 with the fundamental assumptions underlying Newtonian
for contributing to the clarification of some aspects of thatechanics — may be obtained from the approximated
derivation. We hope the following paragraphs will also hekguations. These fundamental assumptions are the absolute

clarifying these issues. nature of time, the existence of a law of inertia, and the

This reply is based on the following two main pointsquality between the rate of change, in an inertial frame,

which will be justified later on: of a particle’s momentum and the sum of physical forces
acting on it.

1. “dynamical consistency” should mean “consistency Equations obeying a principle of relativity are always

\t’;';?atnhem;uc?]i%riggﬂtal assumptions underlying NeWovariant under admissible coordinate transformatiohs. T
2. equations of motio,n in Newtonian mechanics may cgyariance of the equations may or may not be manifest.
. written in any admissible coordinate system in Whictg N Sa}ld to bga manifest when the governing equations
re written using tensors only. By construction, tensor

time is absolute. equations have the same form in all admissible coordinate
As shown in Charron and Zadra(2014 and further Systems. When covariant equations are _manipulated to
discussed here, the definition of consistency previoué@fm non-tensors (for example, by choosing non-tensor
proposed byWhiteetal. (2009 may contradict, underde_pendent varla_ble_s), covariance is no longer manifest. In
certain conditions, these two points. This is why we ha{fis case, the principle of relativity continues to be olatye
proposed what we believe to be a more fundamenmtthl_s is somewhat hidden by the form of the non-tensorial
definition of dynamical consistency. equations.

Let us consider the principle of relativity. It states In Newtonian mechanics, covariance is defined with
that the laws of physics are the same in all admissispect to synchronous coordinate transformations (eqs
coordinate systems. Even though the term “relativitf24)—(27) in Charronetal. 2014. Because time is
is often associated with Albert Einstein's theories, th@nsidered absolute, these are the most general coordinate
principle actually applies to Newtonian mechanics as wellansformations admissible in Newtonian mechahics
What could be referred to as the principle éwtonian  In sum, our point of view is that “obeying the principle
relativity’ may be regarded as a generalisation of tleé Newtonian relativity”, “covariance under synchronous
principle of Galilean relativity to non-inertial, curvilear
coord_lnates. The equations of motion of ﬂ{JIdS maoving mgeneral transformation of timia Newtonian mechanics
velocities much slower than the speed of light must obgy = At + B, whereA > 0 andB are real constants. The choide 1

the principle of Newtonian relativity. is equivalent to a change in the unit of time, aBd# 0 to a change in

the origin of time. The choicel < 0 implies a reversal of time, and is
- incompatible with the existence of irreversible processeh |s viscous
TThis expression is however not well established. We projitosere to effects and diffusion. One may choode= 1 and B = 0 without loss of
distinguish this concept from Galilean relativity. generality.
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coordinate transformations”, and “dynamical consisténcglescribing geodesic trajectories is
are equivalent concepts. This point of view is justified by th

fact that any approximation (geometric and/or dynamical) Du'  d%x? ; dzt dz”
of the governing equation Dt d2 T L at dr ®)
™., = —pht®, (1) where centrifugal and Coriolis terms are described hy

_ _ _ ) _and 2T .dx’ /dt, respectively (for the definition of*,
that remains covariant will automatically be consisteghq details on the notation. SE&arronet al.2014. In the
with the fundamental assumptions underlying Newtonigntext of the quasi-shallow approximation, a test pagticl
mechanics. Equivalently, any approximation that preseryest acted on by any physical forces does not follow any
the scalar property of the action functional for invisciddhi geodesic trajectory because the space-time geometry of
the quasi-shallow approximation is ill-defined: the Casol
S = —/d4x\/§p(K+I+<I>+UO) (2) terms appear to exist in a curved metric space that is
different from the metric space of all the other terms of

compatible with Newton’s fundamental assumptiong: (seeCharrqn and Zad(a 2914;ection 4, for details). .

(see Charronet al. 2014 Charron and Zadra 2012015 onsequently, inertial motion in the context of the quasi-

Zadra and Charron 201for definitions and details). shallow approximation cannot b_e defined. This implies
In certain cases, a given coordinate system may &t €ven when a test particle is not acted on by any

preferred for practical reasons. The equations of motionH ysmgl fOTCGS' It V\."" not follow a'patrl normr,s}lly def'ned
this coordinate system must nevertheless remain covariat??( Its Inertia. Indeflnab_le_, unphys_lca_l forces” come into
One of the consistency criteria proposed\bjite et al. P'ay- It is therefore difficult to justify the use of the
(2009 is the existence of a Lagrange’s form for thierms dynamlcglly consistent when referring to the quasi
momentum equations/Vhite et al. (2005 do not impose shallow approximation, or to any set qf non-covariant
constraints on the form of the Lagrangian. It is howev8PProximated equations of motion. This is precisely why
known that not all Lagrangians will lead to consistetY€ proposed a renewed definition of dynamical consistency

; ; : based on the concept of covariance.
equations of motion (see for exampl&rac 1964. To o ; )
generate covariant equations of motion, a Lagrangian musTh.e two  criteria by th|teet al. (200,3 fto deffme h
be a scalar under admissible coordinate transformatiees ((2NSistency (existence of a Lagrange's form for the

Zadra and Charron 20).5Therefore, we conclude that thignomentum equations, and conservation properties for axial
criterion of White et al. (2009 is incomplete. angular momentum, energy, and potential vorticity) are

The need for a renewed definition of dynamical cofot necessarily independent from each other. Conservation

sistency emerged after an analysis of the non-traditiof@'s usually follow from symmetries of the Lagrangian
shallow-atmosphere approximation (in short, the qua jpore generally, of Fhe action fun_ctlonal). In the case of
shallow approximationTort and Dubos 20%4Staniforth 9€0Physical fluids, if the gravitational potential has no
2019. The quasi-shallow equations are compatible wifipace-time symmetries, angular momentum and energy
the consistency criteria df/hite et al. (2005. However, the are not conserved quantities. Still, if the Lagrangian is a

Lagrangian resulting from the quasi-shallow approxim*atiécalar' the r_esulting t_equations _of motion will be covariant
nd dynamical consistency will be obeyed even though

is not a scalar under synchronous coordinate transforrFL _ : . S
tions (Charron and Zadra 2014Consequently, it does notthese equations do not satisfy conservation principles for

lead to covariant equations of motfononsistent with the Xial angular momentum and energgharron and Zadra

fundamental assumptions underlying Newtonian mechap1d- Whiteetal. (2009 have limited their definition
ics. of consistency to axially symmetric and time-independent

To illustrate how non-covariant equations are incompagravitational potentials (which arguably cover most catre
ble with Newton’s fundamental assumptions, consider tABPlications in geophysical fluid dynamics). _
following example: the law of inertia states that a testAS noted by Staniforth and White (2019, applying
particle not acted on by any physical forces (gravitation&Ither the criteria proposed By/hite et al. (2003 or the
electromagnetic, resulting from pressure gradients asd \govariance criterion proposed harron and Zadr2014
cous effects, etc.) follows a path defined by a geode&f¢l9 may result, under specific conditions, in the same
trajectory. In Euclidean geometry, this trajectory is aigint ©duations of motion under a given approximation. These
line when viewed by an observer at rest within anothepnditions are:
inertial frame. In curved geometry (i.e. when geometric
approximations are applie@harron and Zadra 20}4this
trajectory is not necessarily a straight lfnéor example, it
can be shown that itis generally a spiral under the tradition
shallow-atmosphere approximation. When arbitrary, time-
dependent, curvilinear coordinates are used, the equation

The second condition becomes necessary only if one
§Staniforth and White(2015 suggest that the quasi-shallow equationNpOses the conservation criterion \bfhite et al. (2009.
could be covariant based on a submitted manuscript by T. Divd3ubos  Recall that the covariance criterion does not require
has kindly sent us a copy of that manuscript. We believe therprablems g ch a constraint. In sum, Compared with the criteria

in his demonstration and that the quasi-shallow equationsire non- . . s
covariant as shown iGharron and Zadré2014). of Whiteetal. (2005, the covariance criterion for

9The law of inertia in curved geometry is an extension of Nevgttaw of defining ConSiStenCy imposes a.Single ConStrai_nt on the
inertia which, strictly speaking, exists in Euclidean sptime. approximated action functional (i.e. the approximatged

will always lead to approximated equations of motiorg‘e momentum equations. Therefore, there are no defined

1. the approximated action functional remains a scalar
under synchronous coordinate transformations;

2. the gravitational potential and metric tensor exhibit

the space-time symmetries needed for axial angular

momentum and energy conservation.
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obtained starting from Eg2f must remain a scalar), but

does not specify any conservation constraints (conservati
equations follow from symmetries of the approximated
Lagrangian).

In their comments,Staniforth and White(2015 have
written: “Working in a geopotential coordinate system,
CZ1 show that, for the two non-hydrostatic equations sets,
covariance implies axial angular momentum, energy, and
potential vorticity conservation principles.” There aveot
issues in this statement that require clarification. Hjisstl
the conditions leading to those conservation principles
were studied byCharron and Zadrg2014) in arbitrary
coordinates, not specifically in geopotential coordinates
Secondly and as specified earlier, it is the symmetries
that imply the conservation laws, not the covariance.
Symmetries and covariance are independent properties.

Finally, Staniforth and Whit¢2015 have mentioned that
they struggle to understand why one would wish to trans-
form geopotential coordinates to other coordinate systems
There is at least one practical reason one would wish to
do so — aside from the theoretical arguments for having
transformable governing equations, as discussed earlier.
Most numerical weather prediction and climate models
employ terrain-following coordinates. These are not geopo
tential coordinates, and a transformation from geopaénti
to terrain-following coordinates is needed to write the
governing equations of these models. Should one take
the quasi-shallow equations and attempt to transform their
geopotential coordinates to terrain-following coordesat
would they remain dynamically consistent according to the
criteria of White et al. (2009? We believe it is impossible
to answer this question affirmatively because there is no
systematic and unambiguous way of transforming these
equations since they are not covariant.
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