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The derivation of consistent sets of approximated
equations in geophysical fluid dynamics, which has been
the subject of recent publications, is a challenging topic.
We are therefore grateful toStaniforth and White(2015)
for contributing to the clarification of some aspects of that
derivation. We hope the following paragraphs will also help
clarifying these issues.

This reply is based on the following two main points,
which will be justified later on:

1. “dynamical consistency” should mean “consistency
with the fundamental assumptions underlying New-
tonian mechanics”;

2. equations of motion in Newtonian mechanics may be
written in any admissible coordinate system in which
time is absolute.

As shown in Charron and Zadra(2014) and further
discussed here, the definition of consistency previously
proposed byWhiteet al. (2005) may contradict, under
certain conditions, these two points. This is why we have
proposed what we believe to be a more fundamental
definition of dynamical consistency.

Let us consider the principle of relativity. It states
that the laws of physics are the same in all admissible
coordinate systems. Even though the term “relativity”
is often associated with Albert Einstein’s theories, this
principle actually applies to Newtonian mechanics as well.
What could be referred to as the principle ofNewtonian
relativity† may be regarded as a generalisation of the
principle of Galilean relativity to non-inertial, curvilinear
coordinates. The equations of motion of fluids moving at
velocities much slower than the speed of light must obey
the principle of Newtonian relativity.

†This expression is however not well established. We proposeit here to
distinguish this concept from Galilean relativity.

This principle should not be violated even when the
equations are approximated, otherwise unphysical results
— i.e. inconsistent to leading order of approximation
with the fundamental assumptions underlying Newtonian
mechanics — may be obtained from the approximated
equations. These fundamental assumptions are the absolute
nature of time, the existence of a law of inertia, and the
equality between the rate of change, in an inertial frame,
of a particle’s momentum and the sum of physical forces
acting on it.

Equations obeying a principle of relativity are always
covariant under admissible coordinate transformations. The
covariance of the equations may or may not be manifest.
It is said to be manifest when the governing equations
are written using tensors only. By construction, tensor
equations have the same form in all admissible coordinate
systems. When covariant equations are manipulated to
form non-tensors (for example, by choosing non-tensor
dependent variables), covariance is no longer manifest. In
this case, the principle of relativity continues to be obeyed,
but this is somewhat hidden by the form of the non-tensorial
equations.

In Newtonian mechanics, covariance is defined with
respect to synchronous coordinate transformations (eqs
(24)–(27) in Charronet al. 2014). Because time is
considered absolute, these are the most general coordinate
transformations admissible in Newtonian mechanics‡.

In sum, our point of view is that “obeying the principle
of Newtonian relativity”, “covariance under synchronous

‡In fact, the most general transformation of timet in Newtonian mechanics
is t̃ = At+B, whereA > 0 andB are real constants. The choiceA 6= 1

is equivalent to a change in the unit of time, andB 6= 0 to a change in
the origin of time. The choiceA < 0 implies a reversal of time, and is
incompatible with the existence of irreversible processes such as viscous
effects and diffusion. One may chooseA = 1 andB = 0 without loss of
generality.
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coordinate transformations”, and “dynamical consistency”
are equivalent concepts. This point of view is justified by the
fact that any approximation (geometric and/or dynamical)
of the governing equation

Tµν
:ν = −ρhµν

Φ,ν (1)

that remains covariant will automatically be consistent
with the fundamental assumptions underlying Newtonian
mechanics. Equivalently, any approximation that preserves
the scalar property of the action functional for inviscid fluids

S = −
∫

d4x
√
g ρ

(

K + I +Φ+ v0
)

(2)

will always lead to approximated equations of motion
compatible with Newton’s fundamental assumptions
(seeCharronet al. 2014; Charron and Zadra 2014, 2015;
Zadra and Charron 2015, for definitions and details).

In certain cases, a given coordinate system may be
preferred for practical reasons. The equations of motion in
this coordinate system must nevertheless remain covariant.

One of the consistency criteria proposed byWhiteet al.
(2005) is the existence of a Lagrange’s form for the
momentum equations.Whiteet al. (2005) do not impose
constraints on the form of the Lagrangian. It is however
known that not all Lagrangians will lead to consistent
equations of motion (see for exampleDirac 1964). To
generate covariant equations of motion, a Lagrangian must
be a scalar under admissible coordinate transformations (see
Zadra and Charron 2015). Therefore, we conclude that this
criterion ofWhiteet al. (2005) is incomplete.

The need for a renewed definition of dynamical con-
sistency emerged after an analysis of the non-traditional
shallow-atmosphere approximation (in short, the quasi-
shallow approximation,Tort and Dubos 2014; Staniforth
2015). The quasi-shallow equations are compatible with
the consistency criteria ofWhiteet al.(2005). However, the
Lagrangian resulting from the quasi-shallow approximation
is not a scalar under synchronous coordinate transforma-
tions (Charron and Zadra 2014). Consequently, it does not
lead to covariant equations of motion§ consistent with the
fundamental assumptions underlying Newtonian mechan-
ics.

To illustrate how non-covariant equations are incompati-
ble with Newton’s fundamental assumptions, consider the
following example: the law of inertia states that a test
particle not acted on by any physical forces (gravitational,
electromagnetic, resulting from pressure gradients and vis-
cous effects, etc.) follows a path defined by a geodesic
trajectory. In Euclidean geometry, this trajectory is a straight
line when viewed by an observer at rest within another
inertial frame. In curved geometry (i.e. when geometric
approximations are applied,Charron and Zadra 2014), this
trajectory is not necessarily a straight line¶. For example, it
can be shown that it is generally a spiral under the traditional
shallow-atmosphere approximation. When arbitrary, time-
dependent, curvilinear coordinates are used, the equation

§Staniforth and White(2015) suggest that the quasi-shallow equations
could be covariant based on a submitted manuscript by T. Dubos.Dr Dubos
has kindly sent us a copy of that manuscript. We believe there are problems
in his demonstration and that the quasi-shallow equations remain non-
covariant as shown inCharron and Zadra(2014).
¶The law of inertia in curved geometry is an extension of Newton’s law of
inertia which, strictly speaking, exists in Euclidean space-time.

describing geodesic trajectories is

Dui

Dt
=

d2xi

dt2
+ Γ

i
µν

dxµ

dt

dxν

dt
= 0, (3)

where centrifugal and Coriolis terms are described byΓi
00

and 2Γi
0jdx

j/dt, respectively (for the definition ofΓi
µν

and details on the notation, seeCharronet al. 2014). In the
context of the quasi-shallow approximation, a test particle
not acted on by any physical forces does not follow any
geodesic trajectory because the space-time geometry of
the quasi-shallow approximation is ill-defined: the Coriolis
terms appear to exist in a curved metric space that is
different from the metric space of all the other terms of
the momentum equations. Therefore, there are no defined
Γi
µν (seeCharron and Zadra 2014, section 4, for details).

Consequently, inertial motion in the context of the quasi-
shallow approximation cannot be defined. This implies
that even when a test particle is not acted on by any
physical forces, it will not follow a path normally defined
by its inertia. Indefinable, unphysical “forces” come into
play. It is therefore difficult to justify the use of the
terms “dynamically consistent” when referring to the quasi-
shallow approximation, or to any set of non-covariant
approximated equations of motion. This is precisely why
we proposed a renewed definition of dynamical consistency
based on the concept of covariance.

The two criteria by Whiteet al. (2005) to define
consistency (existence of a Lagrange’s form for the
momentum equations, and conservation properties for axial
angular momentum, energy, and potential vorticity) are
not necessarily independent from each other. Conservation
laws usually follow from symmetries of the Lagrangian
(more generally, of the action functional). In the case of
geophysical fluids, if the gravitational potential has no
space-time symmetries, angular momentum and energy
are not conserved quantities. Still, if the Lagrangian is a
scalar, the resulting equations of motion will be covariant
and dynamical consistency will be obeyed even though
these equations do not satisfy conservation principles for
axial angular momentum and energy (Charron and Zadra
2015). Whiteet al. (2005) have limited their definition
of consistency to axially symmetric and time-independent
gravitational potentials (which arguably cover most current
applications in geophysical fluid dynamics).

As noted by Staniforth and White(2015), applying
either the criteria proposed byWhiteet al. (2005) or the
covariance criterion proposed byCharron and Zadra(2014,
2015) may result, under specific conditions, in the same
equations of motion under a given approximation. These
conditions are:

1. the approximated action functional remains a scalar
under synchronous coordinate transformations;

2. the gravitational potential and metric tensor exhibit
the space-time symmetries needed for axial angular
momentum and energy conservation.

The second condition becomes necessary only if one
imposes the conservation criterion ofWhiteet al. (2005).
Recall that the covariance criterion does not require
such a constraint. In sum, compared with the criteria
of Whiteet al. (2005), the covariance criterion for
defining consistency imposes a single constraint on the
approximated action functional (i.e. the approximatedS
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obtained starting from Eq. (2) must remain a scalar), but
does not specify any conservation constraints (conservation
equations follow from symmetries of the approximated
Lagrangian).

In their comments,Staniforth and White(2015) have
written: “Working in a geopotential coordinate system,
CZ1 show that, for the two non-hydrostatic equations sets,
covariance implies axial angular momentum, energy, and
potential vorticity conservation principles.” There are two
issues in this statement that require clarification. Firstly,
the conditions leading to those conservation principles
were studied byCharron and Zadra(2014) in arbitrary
coordinates, not specifically in geopotential coordinates.
Secondly and as specified earlier, it is the symmetries
that imply the conservation laws, not the covariance.
Symmetries and covariance are independent properties.

Finally, Staniforth and White(2015) have mentioned that
they struggle to understand why one would wish to trans-
form geopotential coordinates to other coordinate systems.
There is at least one practical reason one would wish to
do so — aside from the theoretical arguments for having
transformable governing equations, as discussed earlier.
Most numerical weather prediction and climate models
employ terrain-following coordinates. These are not geopo-
tential coordinates, and a transformation from geopotential
to terrain-following coordinates is needed to write the
governing equations of these models. Should one take
the quasi-shallow equations and attempt to transform their
geopotential coordinates to terrain-following coordinates,
would they remain dynamically consistent according to the
criteria of Whiteet al. (2005)? We believe it is impossible
to answer this question affirmatively because there is no
systematic and unambiguous way of transforming these
equations since they are not covariant.
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