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 31 

Abstract 32 

In contrast to boreal winter when extratropical seasonal predictions benefit greatly from ENSO-33 

related teleconnections, our understanding of forecast skill and sources of predictability in 34 

summer is limited.  Based on 40 years of hindcasts of the Canadian Seasonal to Inter-annual 35 

Prediction System version 3 (CanSIPSv3), this study shows that predictions for the Northern 36 

Hemisphere summer are skillful more than six months in advance in several middle latitude 37 

regions, including eastern Europe−Middle East, central Siberia−Mongolia−North China, and the 38 

western United States.  These midlatitude regions of statistically significant predictive skill 39 

appear to be connected to each other through an upper tropospheric circum-global wave train. 40 

Although a large part of the forecast skill for the surface air temperature and 500 hPa 41 

geopotential height is attributable to the linear trend associated with global warming, there is 42 

significant long-lead seasonal forecast skill related to interannual variability.  Two additional 43 

idealized hindcast experiments are performed to help shed light on sources of the long-lead 44 

forecast skill using one of the CanSIPSv3 models and its uncoupled version. It is found that 45 

tropical ENSO related SST anomalies contribute to the forecast skill in the western United 46 

States, while land surface conditions in winter, including snow cover and soil moisture, in the 47 

Siberian and western United States regions have a delayed or long-lasting impact on the 48 

atmosphere, which leads to summer forecast skill in these regions. This implies that improving 49 

land surface initial conditions and model representation of land surface processes is crucial for 50 

further development of a seasonal forecasting system.   51 

 52 

 53 

Significance Statement 54 

      Useful seasonal predictions in the boreal summer middle latitude regions are of great value. 55 

In this study, we show that predictions for the boreal summer season are skillful more than six 56 

months in advance in several middle latitude regions, including eastern Europe−Middle East, 57 

central Siberia−Mongolia−North China, and the western United States. The forecast skill in these 58 

regions is associated with a circum-global teleconnection atmospheric circulation pattern. 59 

Sources of the long-lead forecast skill include the global warming related trend and anomalies in 60 

the ocean and land surface initial conditions.  It is found that the wintertime snow cover and soil 61 
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moisture in the Siberian and western United States regions have a delayed or long-lasting impact 62 

on the atmosphere, which leads to summer forecast skill. 63 

 64 

 65 

      66 

 67 

1. Introduction 68 

Dynamical seasonal predictions are routinely produced at many operational meteorological 69 

centers. Unlike numerical weather predictions that depend primarily on accurate description of 70 

atmospheric initial conditions, seasonal forecasts benefit from atmospheric interactions with 71 

more slowly varying climate system components, e.g., ocean, sea ice, and land surface.  The El 72 

Nino – Southern Oscillation (ENSO) phenomenon has long been identified as the most important 73 

source of predictability for seasonal predictions (e.g., Shukla et al. 2000; Derome et al. 2001; 74 

Yeh et al. 2018; Weisheimer et al. 2020). Changes of diabatic heating in the tropical Pacific 75 

associated with sea surface temperature (SST) anomalies of ENSO induce large-scale Rossby 76 

waves propagating into the middle and high latitudes, influencing the extratropical weather. 77 

Significant atmospheric response to ENSO and other forcing is usually found in the winter 78 

season in the Northern Hemisphere when the subtropical westerly jet is strong. For this reason, 79 

most previous seasonal prediction and predictability studies focused on the winter season (e.g., 80 

Kim et al., 2012; Scaife et al. 2014; Johnson et al. 2014; Butler et al. 2016). For example, ENSO 81 

is associated with the wintertime Pacific-North American (PNA) teleconnection pattern (e.g., 82 

Wallace and Gutzler 1981), which is likely responsible for the forecast skill of December-83 

January-February (DJF) 500-hPa geopotential height in that region (e.g., Shukla et al. 2000; 84 

Derome et al. 2001; Lin et al. 2020; Weisheimer et al. 2020).  85 

Less is known about the seasonal forecast skill and sources of predictability in the 86 

extratropical regions in the boreal summer season than winter. This does not mean that a forecast 87 

for the summer season is not as important. As a matter of fact, a useful seasonal prediction for 88 

the summer season is of great value to the public, and to many sectors such as agriculture, health, 89 

and energy, especially in the Northern Hemisphere middle latitude regions where the population 90 

is large. Summertime heatwaves make significant societal impacts (e.g., Changnon et al. 1996; 91 

Lin et al. 2022), and are becoming more frequent with global warming (e.g., Seneviratne et al. 92 
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2012). The probability and frequency of heatwaves are closely associated with summertime 93 

seasonal mean surface air temperature (e.g., Jia et al. 2022).   94 

In this study, we examine the summertime seasonal forecast skill in the Northern Hemisphere 95 

middle latitudes at lead times ranging from zero to nine months. Analysis is performed using the 96 

40-year hindcast output data from two global coupled models of the Canadian Seasonal to 97 

Interannual Prediction System version 3 (CanSIPSv3) which is being implemented in operations 98 

in early summer 2024. We show that seasonal forecasts for the boreal summer season are skillful 99 

in several middle latitude land regions a few months in advance. We explain the long-lead 100 

forecast skill and explore sources of predictability through idealized hindcast experiments.  101 

Section 2 describes the CanSIPSv3 models and data that we use in this study. Section 3 102 

presents the forecast skill in the boreal summer.  Section 4 presents the forecast skill for the 103 

hindcast with trends removed, so that contributions from trends and interannual variability are 104 

assessed.  In section 5, how the forecast skills in different middle latitude regions are connected 105 

to each other and to circulation patterns are analyzed. In section 6, sources of the long-lead 106 

summer time seasonal forecast skill and predictability are explored by performing two idealized 107 

hindcast experiments. A summary and discussion are given in Section 7. 108 

 109 

2. Models and data  110 

CanSIPSv3 is the third version of the Canadian Seasonal to Interannual Prediction System, 111 

which is recently developed for Innovation Cycle phase 4 (IC-4) of the Canadian Centre for 112 

Meteorological and Environmental Prediction (CCMEP) of Environment and Climate Change 113 

Canada (ECCC) and is being implemented in operations in early summer 2024. Like CanSIPSv2 114 

(Lin et al. 2020), CanSIPSv3 consists of two global coupled models, GEM5.2-NEMO and 115 

CanESM5.1, and thus is a multi-model ensemble system. With each model, 20-member hindcasts 116 

of 40 years (1981-2020) are made starting from the beginning of each month with a range of 12 117 

months. Of the 20 ensemble members, 10 are initialized on the 1st of the month and the other 10 118 

five days before. For example, for the hindcast of January 1, 2000, 10 members are initialized at 119 

00Z January 1, 2000, and 10 members start at 00Z December 27, 1999. GEM5.2-NEMO is an 120 

upgraded version of GEM-NEMO in CanSIPSv2 and GEM5.1-NEMO in CanSIPSv2.1, which are 121 

described in detail in Lin et al. (2020; 2021) and Sospedra-Alfonso et al. (2024). Its most basic 122 
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features and major changes are outlined below. CanCM4i in CanSIPSv2.1 is replaced by 123 

CanESM5.1 in CanSIPSv3.   124 

 125 

a. GEM5.2-NEMO 126 

Developed at Recherche en Prévision Numérique (RPN), GEM5.2-NEMO is a fully coupled 127 

global model. Its atmospheric component is the Global Environmental Multiscale (GEM) model 128 

(Côté et al. 1998; Girard et al. 2014), which is the operational Numerical Weather Prediction 129 

(NWP) model at ECCC. The GEM version 5.2 in CanSIPSv3 has a Yin-Yang grid and is 130 

configured with a horizontal resolution of 1 degree and 85 vertical levels. For the land surface 131 

module, the ISBA scheme (Noilhan and Planton 1989; Noilhan and Mahfouf 1996) is applied. Soil 132 

moisture is represented in two layers with a 10 cm upper layer and a location dependent deep layer.  133 

The ocean component is NEMOv3.6 on the ORCA1 grid with a nominal horizontal resolution 134 

of 1° × 1° (1/3° meridionally near the equator) and 50 vertical levels. The CICE 6.0 model is used 135 

for the sea ice component with five ice-thickness categories.  136 

In the hindcast, the atmospheric initial conditions are based on the European Centre for 137 

Medium-Range Weather Forecasts (ECMWF) reanalysis version 5 (ERA5; Hersbach et al. 2020). 138 

Random isotropic perturbations are added to the reanalysis fields to create initial conditions for 139 

different ensemble members with a similar method to that in the ECCC monthly forecast system 140 

(Lin et al. 2016). The ORAS5 reanalysis (Zuo et al. 2015) is used to initialize the 3-D ocean 141 

temperature, salinity, and currents, as well as sea surface height and sea ice thickness. The sea ice 142 

concentration is initialized with Had2CIS (Lin et al. 2020), which consists of HadISST2.2 143 

(Titchner and Rayner 2014) combined with the Canadian Ice Service data (Tivy et al. 2011). The 144 

land surface initial conditions in the hindcast come from an offline historical run of the Surface 145 

Prediction System (SPS), which is the same ISBA surface scheme as in the GEM model (Carrera 146 

et al. 2010),  forced by the near-surface atmospheric and the precipitation fields of the ERA5 147 

reanalysis. The greenhouse gas (GHG) concentrations are prescribed for each hindcast year as 148 

observed annual globally averaged values that are assembled at RPN from several sources 149 

including the World Meteorological Organization Greenhouse Gas Bulletin 150 

(https://wmo.int/publication-series/greenhouse-gas-bulletin).  151 

 152 

b. CanESM5.1 153 

https://journals.ametsoc.org/view/journals/wefo/35/4/wafD190259.xml#bib77
https://journals.ametsoc.org/view/journals/wefo/35/4/wafD190259.xml#bib78
https://journals.ametsoc.org/view/journals/wefo/35/4/wafD190259.xml#bib10
https://journals.ametsoc.org/view/journals/wefo/35/4/wafD190259.xml#bib10
https://wmo.int/publication-series/greenhouse-gas-bulletin
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CanESM5.1 derives from the Canadian Earth System Model version 5 (Swart et al. 2019) in 154 

the form of the p1 variant described in Sigmond et al. (2023), which is a fully coupled ocean-155 

atmosphere-land-sea ice climate model developed at the Canadian Centre for Climate Modelling 156 

and Analysis (CCCma). The atmospheric component has a horizontal T63 spectral resolution 157 

(approximately 2.8°) with 49 hybrid vertical coordinate levels. CanESM5.1 employs version 3.6.2 158 

of the Canadian Land Surface Scheme (CLASS; Verseghy 2000) and the Canadian Terrestrial 159 

Ecosystem Model (CTEM).  160 

The ocean component is NEMOv3.4.1 on the ORCA1 grid with a nominal horizontal 161 

resolution of 1° × 1° (1/3° meridionally near the equator) and 45 vertical levels. The LIM2 model 162 

(Fichefet and Morales Maqueda 1997) is used for the sea ice component. 163 

In the hindcast, the initial conditions of atmosphere, ocean, land, and sea ice come from 164 

assimilation coupled runs with the atmosphere, ocean and sea ice concentration nudged to the 165 

ERA5 and ORAS5 reanalysis, and Had2CIS, respectively, and the sea ice thickness constrained to 166 

values derived from the SMv3 statistical model of Dirkson et al. (2017). A set of parallel 167 

assimilation runs starting from different dates are performed to generate initial conditions for 168 

different ensemble members. The GHG concentrations are prescribed in the hindcast as the CMIP6 169 

historical (omitting volcanic forcing from eruptions that occur after initialization) and the SSP2-170 

45 scenarios. 171 

A novel aspect of the CanESM5.1 hindcasts is the introduction of tendency correction terms 172 

in the prognostic equations for atmospheric wind, temperature, and humidity, together with ocean 173 

temperature and salinity. These cyclostationary corrections are derived as described in Kharin and 174 

Scinocca (2012) from nudging runs similar to those that provide the initial conditions, but with 175 

nudging coefficients adjusted to minimize biases in runs with the tendency corrections applied. 176 

This generally reduces climatological biases in the hindcasts, and generally improves their skill. 177 

 178 

 179 

c. Verification data and analysis methods 180 

We use ERA5 reanalysis as the verification and analysis data, which include monthly mean 2-181 

m temperature (T2m), 500-hPa and 200-hPa geopotential height (Z500 and Z200), precipitation 182 

rate (PR), and sea surface temperature (SST). For simplicity, hereafter the reanalysis data are 183 
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referred to as observations. Both the observation and model data are interpolated into a 2.5° ×2.5° 184 

resolution before the analysis.  185 

As a measure for deterministic seasonal forecast skill, we use temporal anomaly correlation 186 

coefficient (ACC) between the seasonally averaged observational and ensemble mean forecast 187 

anomalies over the 40 years of hindcast. A Student’s t test is used to assess the statistical 188 

significance for the grid-point ACC skill.  The effective number of degrees of freedom is reduced 189 

by the autocorrelation of the time series as estimated according to Bretherton et al. (1999).  190 

The Continuous Ranked Probabilistic Skill Score (CRPSS; e.g., Bradley and Schwartz 2011; 191 

Wilks 2011) is calculated as probability skill of the ensemble seasonal forecast. CRPSS measures 192 

the fractional improvement in error of the forecast distribution relative to a forecast based on the 193 

observed climatology. Here it is calculated following the methodology as described in Kharin et 194 

al. (2017). The statistical significance of CRPSS is obtained based on a bootstrapping resampling 195 

method. 196 

 197 

d. Idealized hindcast experiments 198 

To explore sources of predictability and explain the long-lead seasonal forecast skill in the 199 

summertime Northern Hemisphere middle latitudes, two idealized hindcast experiments are 200 

performed, both initialized at the beginning of February. As in the hindcast, each experiment 201 

produces 12-month integrations of 20 members over 40 years of 1981-2020.  202 

In the first experiment (Exp 1), GEM5.2-NEMO, one of the coupled models in CanSIPSv3, is 203 

used.  The objective of this experiment is to study the contribution of ocean and sea ice initial 204 

conditions. Therefore, realistic ocean and sea ice initial conditions that are the same as in the 205 

GEM5.2-NEMO hindcast are utilized. For the atmosphere and land, however, the forecasts of 39 206 

years, from 1981 to 2020 excluding 1991, start from the February 1991 initial condition, which is 207 

that of February 1, 1991, for 10 members and January 27, 1991, for the other 10 members. For the 208 

1991 forecast, the initial conditions of February 1990 are used. In this way, there would be no 209 

contribution to the forecast skill from atmosphere and land initial conditions. The forecast skill 210 

would mainly come from the initial conditions of the ocean and sea ice. 211 

In the second experiment (Exp 2), we aim to isolate the contribution of land surface conditions 212 

at the beginning of February to the forecast skill of Northern Hemisphere middle latitudes in 213 

summer, by excluding the impact of ocean and sea ice. For this purpose, we use the uncoupled 214 
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atmospheric model, GEM5.2, which is the atmospheric component of GEM5.2-NEMO. The initial 215 

conditions for the atmosphere and land are realistic, which are the same as in the GEM5.2-NEMO 216 

hindcast, but the initial SST and sea ice concentration are quickly (in 15 days) relaxed to prescribed 217 

climatological SST and sea ice concentration. Therefore, seasonal forecast skill with several month 218 

lead time, if any, would mainly come from land surface initial conditions. While there is 219 

interannual variability in the atmospheric initial conditions, its influence can be expected to vanish 220 

over a period of a few weeks, with any longer-term influences such as from the Quasi-Biennial 221 

Oscillation expected to be minor. 222 

Atmospheric trends over the 40 years of hindcast may come from trends in the initial conditions 223 

and be generated in the model integration because of changes in the specified GHG concentrations. 224 

In the case of Exp 1, trends are introduced from the ocean and sea ice initial conditions and are 225 

generated by radiative forcing of the specified yearly GHG concentrations. In Exp 2, we use 226 

constant GHG concentrations (e.g., 380 ppm of CO2) for all the 40 years, so that the main source 227 

of trends in the summertime seasonal means in this experiment would be the land surface initial 228 

condition. 229 

 230 

3. Seasonal mean forecast skill of JJA 231 

We start by looking at the forecast skill of JJA seasonal mean T2m for the hindcasts at different 232 

lead times. Shown in Fig. 1 is the anomaly correlation skill of ensemble mean forecasts for JJA 233 

T2m by the two CanSIPSv3 models over the Northern Hemisphere land at lead times of one 234 

(initialized on May 1) to four (initialized on February 1) months. Significant forecast skill is seen 235 

in the middle latitudes, with high values mainly in three regions: eastern Europe and Middle East; 236 

Siberia-Mongolia-North China; and the western United States. Relatively larger positive 237 

correlations are also found near eastern Canada. It is interesting that the skill distribution and 238 

strength are almost independent of lead time. Skillful T2m seasonal predictions are obtained for 239 

the summertime Northern Hemisphere middle latitudes several months in advance. The two 240 

CanSIPSv3 models have very similar behavior and performance, indicating that the long lead 241 

forecast skill is not model dependent but likely determined by the fundamental nature of the 242 

climate system. When the ensemble forecasts of the two CanSIPSv3 models are combined, the 243 

skill is enhanced with a similar distribution (Fig. S1), consistent with previous studies showing 244 
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that a multi-model forecast outperforms individual models (e.g., Krishnamurti et al. 1999; Kharin 245 

et al. 2009; Becker et al. 2014).  246 

Not only does the ensemble mean deterministic forecast show long-lead skill, but similar 247 

results are also obtained from the CRPSS skill of probabilistic forecasts (Fig. 2).  248 

Based on the Geophysical Fluid Dynamics Laboratory (GFDL) SPEAR seasonal prediction 249 

system, Jia et al. (2022) reported that the seasonal prediction of North American summertime heat 250 

extremes is skillful several months in advance. A similar result of long lead forecast skill of JJA 251 

T2m in the western United States presented here was found in their study. This indicates that 252 

common sources of skill for the summer T2m forecast in that region are captured in all the 253 

CanSIPSv3 and SPEAR models. 254 

 255 

 256 

 257 

Figure 1 Correlation between the observed seasonal mean T2m anomaly and its ensemble mean forecast for the 258 

target season of JJA over the Northern Hemisphere land obtained from 40-year hindcasts of GEM5.2-NEMO 259 

(left) and CanESM5.1 (right). The hindcasts are initialized on (a and b) May 1, (c and d) April 1, (e and f) March 260 

1, and (g and h) February 1. Stippling indicates that the correlation is statistically significant at the 0.05 level 261 

based on a Student’s t test. The dark-lined boxes in (a) outline the three regions that will be further analyzed and 262 

discussed.     263 

 264 

For the forecast of JJA seasonal mean precipitation rate (Fig. 3), the anomaly correlation skill 265 

is weaker than that of T2m. However, comparing to Fig. 1, we do see relatively high PR forecast 266 

skill over the regions where the T2m skill is high at a lead time of one to four months, and the two 267 
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CanSIPSv3 models agree with each other.  Therefore, there is also appreciable long-lead forecast 268 

skill for JJA seasonal mean precipitation in the middle latitudes.  269 

 270 

 271 

Figure 2 Same as Fig. 1, but for CRPSS. Stippling indicates that the CRPSS is significantly greater than 0 at the 272 

0.05 level based on a bootstrapping resampling method.  273 

 274 

 275 

 276 

Figure 3 Same as Fig. 1, but for JJA precipitation rate.  277 

 278 
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The anomaly correlation skill of JJA Z500 by the CanSIPSv3 models is presented in Fig. 4 279 

over the Northern Hemisphere. Again, the forecast is skillful at a long lead time and the two models 280 

behave similarly. In the middle latitudes, there appear to exist five centers of higher skill values 281 

that tend to form a wave train around the globe. In addition to the three centers over the continents 282 

that correspond to the T2m skill, two oceanic centers can be found, one over the North Pacific and 283 

the other over the western North Atlantic. Similar wave-train like JJA Z500 skill distribution was 284 

observed in CanSIPSv2 for the 1-month lead forecast (Lin et al. 2020). It is likely that the zonal 285 

distribution of summertime middle latitude forecast skill is associated with a circum-global 286 

teleconnection pattern (CGT; e.g., Branstator 2002; Ding and Wang 2005; Beverly et al. 2019). 287 

We will come back to this point in section 5. 288 

 289 

 290 

Figure 4 Correlation between the observed seasonal mean Z500 anomaly and its ensemble mean forecast for the 291 

target season of JJA over the Northern Hemisphere obtained from 40-year hindcasts of GEM5.2-NEMO (left) 292 

and CanESM5.1 (right). The hindcasts are initialized on (a and b) May 1, (c and d) April 1, (e and f) March 1, 293 

and (g and h) February 1. Stippling indicates that the correlation is statistically significant at the 0.05 level based 294 

on a Student’s t test. 295 

 296 

 In the above discussions, the spatial distribution of JJA skill is presented for the forecasts at 297 

lead times of one to four months. To understand the dependence of forecast skill on lead time and 298 
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season in the Northern Hemisphere middle latitudes, three midlatitude regions of higher forecast 299 

skill of JJA T2m are selected as outlined by the dark-lined boxes in Fig. 1a. They are Region 1: 300 

eastern Europe and Middle East, 30°-60°E, 30°-50°N; Region 2: Siberia-Mongolia-North China, 301 

80°-110°E, 35°-60°N; Region 3: western United States, 125°-95°W, 30°-45°N.  Anomaly 302 

correlation skill of seasonal mean (three-month average) T2m is averaged over the land grid cells 303 

of each region for all the lead times and all seasons with the 40-year hindcasts initialized every 304 

month. Figure 5 provides a summary of the area-averaged correlation skill of the seasonal mean 305 

T2m for the two CanSIPSv3 models, which shows the area-averaged anomaly correlation skill as 306 

a function of lead time and target season for each region. As can be seen, for all three regions, the 307 

T2m forecast skill tends to peak around the summer seasons. Statistically significant forecast skill 308 

for the summer seasons (e.g., JJA and JAS) is obtained for all lead times from zero to nine months, 309 

the maximum lead time for a 12 month seasonal forecast.  For the target season of JJA, for 310 

example, the nine-month lead forecast starts from September 1 of the previous year. Therefore, in 311 

these midlatitude regions, summertime seasonal mean T2m anomalies can be predicted with higher 312 

skill more than half a year in advance.  The same conclusion can be made with the area averaged 313 

CRPSS of the seasonal mean T2m (Fig. S2).  314 

 315 
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 316 

Figure 5 Area averaged anomaly correlation skill of seasonal mean T2m as a function of target season 317 

(horizontal axis) and lead time (vertical axis). Left panels are for GEM5.2-NEMO, and right panels for 318 

CanESM5.1. (a) and (b) are for area averaged correlation in Region 1, (c) and (d) in Region 2, and (e) and (f) 319 

in Region 3. Stippling indicates that the area-averaged correlation is significantly greater than 0.3 at the 0.05 320 

level based on a bootstrapping resampling method. 321 

 322 

4. Contribution of trends and interannual variability 323 

Trends related to climate change influence seasonal forecast skill. Trends were shown to be 324 

among the most important predictors in statistical predictions of monthly and seasonal 325 

temperatures in North America (e.g., Peng et al. 2012; Johnson et al. 2014). In dynamical seasonal 326 

predictions, trends are introduced through initial conditions of the atmosphere, land, ocean, and 327 
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sea ice, and can be generated by radiative forcing of greenhouse gases in the model. Seasonal 328 

forecast skill in general benefits from a realistic representation of trends (e.g., Doblas-Reyes et al., 329 

2006; Liniger et al., 2007; Boer, 2009). Trends tend to be predictable, whereas predicting the 330 

interannual variability is more challenging. In this section, we try to identify the part of 331 

summertime seasonal forecast skill that arises from the interannual variability and is independent 332 

of the trend by detrending the hindcast and verification data.  333 

 334 

 335 

Figure 6 Same as Fig. 1, but for detrended seasonal mean T2m.  336 

 337 

 338 

The correlation skill calculated for the detrended JJA seasonal mean T2m anomalies is 339 

illustrated in Fig. 6. The skill is considerably weaker than when the trend is retained.  This indicates 340 

that trends contribute to a large part of the JJA seasonal mean T2m skill discussed above, e.g., 341 

Figs. 1 and 5. However, there is still statistically significant long lead forecast skill for the JJA 342 

T2m in the middle latitudes that is associated with the interannual variability. This is especially 343 

clear for the Siberia-Mongolia-North China region (Region 2) and the western US (Region 3), 344 

where both CanSIPSv3 models produce skillful predictions at all the lead times from one to four 345 

months. On the other hand, in the eastern Europe and Middle East region (Region 1), statistically 346 

significant forecast skill of detrended JJA T2m can only be found for the forecasts from May 1 (1-347 

month lead) in both models (Fig. 6a and b), and April 1 (2-month lead) in GEM5.2-NEMO (Fig. 348 
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6c). At a longer lead time, there is little forecast skill in Region 1 that is associated with the 349 

interannual variability.   350 

The correlation skill of the detrended JJA Z500 anomaly for the two CanSIPSv3 models at 351 

lead times from 1 to 4 months is shown in Fig. 7.  Two maximum skill centers are seen over the 352 

Siberian region and the western United States, corresponding to the T2m skill in Regions 2 and 3, 353 

respectively (Fig. 6). Statistically significant skill of detrended summertime Z500 is also found 354 

over the North Pacific and western North Atlantic areas, indicating that as in the Siberian and 355 

western United States regions there is a significant part of the Z500 skill observed in Fig. 4 over 356 

the oceanic regions coming from the interannual variability. 357 

 358 

 359 

Figure 7 Same as Fig. 4, but for detrended seasonal mean Z500. 360 

 361 

As for the correlation skill of detrended JJA precipitation anomaly (Fig. S3), the distribution 362 

is similar to that with the trend retained as in Fig. 4. The trend has a small influence on the JJA 363 

seasonal mean precipitation forecast in the western United States, where the detrended correlation 364 

skill is statistically significant although slightly weaker than that in Fig. 4 for a lead time as long 365 

as three months (March 1 start). This indicates that the interannual variability of JJA precipitation 366 
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in this region is predictable up to three months in advance. Over the Eurasian continent, the 367 

detrended forecast skill of JJA precipitation is less well organized and weaker than that including 368 

the trend for a forecast more than one month in advance.  369 

In summary, forecast skill of JJA T2m in Region 1 at a lead time longer than two months as 370 

observed in Figs. 1 and 5 appears to mainly result from the trend, while that in Regions 2 and 3 371 

includes contributions from both the trend and interannual variability. In Region 3 the interannual 372 

variability of summertime T2m, Z500 and precipitation all have a long-lead forecast skill, whereas 373 

in Region 2 forecasting the interannual variation part of JJA precipitation anomaly is not skillful 374 

at a lead time longer than one month in contrast to T2m and Z500.  375 

 376 

5. Link to tropospheric circulation patterns 377 

We have so far demonstrated that the summertime seasonal mean atmospheric condition in 378 

three middle latitude land regions can be predicted with some skill several months in advance. In 379 

this section, through diagnostic analysis of the ERA5 reanalysis, we investigate how the T2m 380 

variability in these three regions is interconnected and associated with the tropospheric circulation. 381 

Figure 8 shows the correlations of area-averaged JJA seasonal mean T2m anomalies in Regions 382 

1, 2 and 3 with the JJA T2m anomalies at every grid point. To assess the contribution of interannual 383 

variability, the calculation is repeated with detrended data (right panels). As is evident from Fig. 384 

8, JJA T2m anomalies in the three regions are positively correlated to each other. The correlation 385 

is stronger, and the centers are more consistent when trends are retained (Fig. 8 left panels) than 386 

when only the interannual variability part is considered (Fig. 8 right panels). As JJA seasonal mean 387 

T2m anomalies in these three regions are connected, it is likely that they are a result of the same 388 

process. Trends appear to strengthen the connection among the three regions. When only the 389 

interannual variability is considered, the correlations between Regions 1 and 2 and between 390 

Regions 2 and 3 are statistically significant, but that between Regions 1 and 3 is relatively weak 391 

(Table 1). 392 

 393 
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 394 

Figure 8 Correlation between area averaged JJA T2m anomalies in (a) Region 1, (c) Region 2, and (e) Region 3 395 

with JJA T2m anomaly at every land grid point based on the ERA5 reanalysis from 1981 to 2020. The panels 396 

on the right (b, d and f) are the same as the left but with detrended JJA T2m anomalies.  Stippling indicates that 397 

the correlation is statistically significant at the 0.05 level based on a Student’s t test. The dark-lined box in each 398 

panel outlines the base region.   399 

  400 

 R1-R2 R1-R3 R2-R3 

with trend 0.78 0.69 0.74 

detrended 0.36 0.30 0.42 

 401 

Table 1 Cross-correlations of the area-averaged JJA T2m anomalies in Regions 1, 2 and 3. Numbers in bold are 402 

statistically significant at the 0.05 level based on a Student’s t test. 403 

 404 

To see how the T2m variability in Regions 1, 2 and 3 is associated with the upper 405 

tropospheric circulation, area averaged JJA T2m anomalies are correlated with JJA Z200 at every 406 

grid point with and without trends (Fig. 9). From the correlation maps, a middle latitude wave train 407 

with wavenumber 5 or 6 along the jet stream can be discerned that looks like the observed circum-408 

global teleconnection pattern (e.g., Branstator 2002; Ding and Wang 2005; Ding et al. 2011). The 409 

positive centers of the wave train which represent Z200 ridges are located near midlatitude eastern 410 

Europe, Siberia, and the western United States, in addition to those over the North Pacific and 411 

North Atlantic. With the trend removed (Fig. 9 right panels), the Z200 correlation appears to have 412 

the same distribution as that including the trend, but the magnitude is reduced. This indicates that 413 

the trend itself has a circum-global teleconnection structure in the upper troposphere that is 414 
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associated with localized T2m anomalies in the middle latitudes. Teng et al. (2022) demonstrated 415 

that indeed the warming trend pattern over the Northern Hemisphere middle latitudes in boreal 416 

summer of 1979-2020 is characterized by hot spots in the land regions including Europe, central 417 

Siberia and Mongolia, and west coast of North America, which is accompanied by a chain of 418 

anomalous high-pressure ridges of an upper tropospheric circum-global Rossby wave train. They 419 

suggested that the circulation trend pattern is associated with fluctuations of the Atlantic multi-420 

decadal variability and the interdecadal Pacific oscillation, as well as contribution from 421 

interactions with atmospheric synoptic-scale transients.  422 

 On the interannual time scale, our analysis shows that the T2m variability in the three 423 

analyzed regions is also closely connected to a circum-global wave train which has the same 424 

pattern as the trend (Fig. 9 right panels). It is possible that some similar mechanisms are responsible 425 

for the generation of the middle-latitude circulation pattern both in the trend and on the interannual 426 

time scale. The boreal summer circum-global teleconnection pattern was observed to be related to 427 

interannual variability of tropical and extratropical forcing. For example, this pattern was found to 428 

be associated with diabatic heating anomalies of the Indian summer monsoon (e.g., Ding and 429 

Wang 2005; Lin 2009; Ding et al. 2011), and with land temperature anomalies of the Tibetan 430 

Plateau (Xue et al. 2022).  431 

 432 

 433 

Figure 9 Correlation between area averaged JJA T2m anomalies in (a) Region 1, (c) Region 2, and (e) Region 3 434 

with JJA Z200 anomaly at every land grid point based on the ERA5 reanalysis from 1981 to 2020. The panels 435 
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on the right (b, d and f) are the same as the left but with detrended data.  Stippling indicates that the correlation 436 

is statistically significant at the 0.05 level based on a Student’s t test.   437 

 438 

6. Sources of predictability 439 

In this section, we attempt to explain the long lead forecast skill in the summertime Northern 440 

Hemisphere middle latitudes as observed above and explore sources of predictability through 441 

idealized hindcast experiments. As described in detail in section 2, two experiments are conducted, 442 

Exp 1 with the GEM5.2-NEMO coupled model and Exp 2 with the uncoupled GEM5.2 443 

atmospheric model. The objective is to answer the question of what processes are essential for the 444 

model to produce skillful long-lead predictions for the boreal summer season in the middle 445 

latitudes.  446 

Shown in Fig. 10a is the anomaly correlation skill of JJA seasonal mean T2m anomaly of Exp 447 

1 at a 4-month lead time. As the atmosphere and land are initialized with conditions different from 448 

the current year, the forecast skill mainly comes from the initial conditions of the ocean and sea 449 

ice, as well as GHG concentration changes. Statistically significant skill is seen in the Northern 450 

Hemisphere middle latitudes, with maximum values in the regions of eastern Europe-Middle East, 451 

Siberia-Mongolia-North China, and the western United States.  Compared to the GEM5.2-NEMO 452 

hindcast initialized on February 1 (Fig. 1g), the skill of Exp 1 has a very similar distribution but 453 

weaker in the three regions of interest. The skill due to interannual variability, i.e., the detrended 454 

skill (Fig. 10b), is not statistically significant in Region 1, and weaker in Regions 2 and 3 than that 455 

of the GEM5.2-NEMO hindcast (Fig. 6g). This indicates that the ocean and sea ice initial 456 

conditions contribute to the long-lead summertime forecast skill in the middle latitude regions, but 457 

they are not the only contributing factors. 458 

 459 

 460 
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Figure 10 Anomaly correlation skill of JJA seasonal mean T2m of (a) Exp 1 and (b) Exp 2. Both hindcasts are 461 

initialized on February 1. (b) and (d) are corresponding correlation skill of detrended T2m. Stippling indicates 462 

that the correlation is statistically significant at the 0.05 level based on a Student’s t test.  463 

 464 

Figure 10 (c) and (d) are anomaly correlation skill of JJA T2m of Exp 2 with and without the 465 

trend, respectively. As described in section 2, this experiment is conducted using the uncoupled 466 

GEM5.2 atmospheric model with specified climatological SST and sea ice concentration, thus the 467 

only source of long-lead forecast skill is the land surface initial condition. When the trend is 468 

retained (Fig. 10c), statistically significant JJA T2m skill is found in all the three regions of 469 

interest, like in the GEM5.2-NEMO hindcast (Fig. 1g) and Exp 1 (Fig. 10a). For the interannual 470 

variability component, the detrended part (Fig. 10d), skillful JJA T2m forecasts are obtained in 471 

Regions 2 and 3, consistent with the GEM5.2-NEMO hindcast (Fig. 6g). In fact, the magnitude of 472 

correlation skill in Regions 2 and 3 of Exp 2 (Fig. 10d) is comparable to that of the GEM5.2-473 

NEMO hindcast (Fig. 6g), indicating that the land surface initial condition contributes greatly to 474 

the interannual variability component of the long-lead forecast skill in these two regions. 475 

Trends are introduced to Exp 1 through ocean and sea ice initial conditions and generated by 476 

radiative forcing due to changes in greenhouse gas concentrations during the 40-year hindcast 477 

period. In Exp 2, as the greenhouse gas concentration is fixed, trends originate only from initial 478 

conditions of land surface, including snow cover and soil moisture. The above analysis shows that 479 

the long-lead summertime forecast skill in Region 1 results mainly from the trend. In Regions 2 480 

and 3, the forecast skill is associated with the interannual variability of the ocean and sea ice (Exp 481 

1), and land surface (Exp 2), and is enhanced by the trend.  482 

Next, we further investigate the processes that are responsible for the long-lead JJA forecast 483 

skill of the interannual variability in Regions 2 and 3. To assess the contribution of SST, area 484 

averaged detrended JJA T2m anomalies in Regions 2 and 3 are correlated with SST anomalies in 485 

March-April-May (MAM) for the observations and for the Exp 1 forecasts, which are shown in 486 

Fig. 11. The observed JJA T2m anomalies in Region 2 are not found to be strongly correlated with 487 

MAM SST (Fig, 11a), whereas in the Exp 1 forecast there are strong negative correlations in the 488 

tropical Pacific with a pattern similar to that of ENSO-correlated SST anomalies (Fig. 11b). This 489 

indicates that the model overestimates the Region 2 T2m response to SST anomalies, although the 490 

ensemble averaging may enhance the correlations by filtering out the noise. The lack of significant 491 

forecast skill of Exp 1 in Region 2 (Fig. 10b) is likely due to this disagreement between the model 492 
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and observations. On the other hand, in Region 3, both the observed (Fig. 11c) and model forecast 493 

(Fig. 11d) JJA T2m anomalies are significantly correlated with MAM SST anomalies in the 494 

tropical eastern Pacific, i.e., a positive JJA T2m anomaly in the western US is associated with a 495 

La Nina-type tropical SST anomaly in MAM. This contributes to the skillful long-lead JJA forecast 496 

in Exp 1 for the interannual variability in Region 3 (Fig. 10b). Therefore, the ENSO-like SST 497 

anomaly in spring is an important source of forecast skill in JJA in the western United States 498 

region. It is a little surprising to note that cold SST off the coast of the western USA is associated 499 

with warm summers over the adjacent land area. This suggests that a La Nina SST is forcing a 500 

circulation anomaly, resulting in warm temperature over the land. The cold SST off the coast is 501 

likely just a response to the circulation anomaly and has little impact on the T2m over the land. 502 

 503 

 504 

Figure 11 Correlation between observed MAM SST and area-averaged JJA T2m in (a) Region 2, and (c) Region 505 

3; Correlation between Exp 1 forecast MAM SST and area-averaged JJA T2m in (b) Region 2, and (d) Region 506 

3. The calculation is done for detrended anomalies. Stippling indicates that the correlation is statistically 507 

significant at the 0.05 level based on a Student’s t test.  508 

 509 

The contribution of land surface processes to the long-lead summertime forecast skill is 510 

assessed using the hindcast output of Exp 2. To answer the question of what land surface anomalies 511 

in the February 1 initial condition lead to summertime T2m anomalies in Regions 2 and 3, 512 

correlations are calculated between area averaged detrended JJA T2m anomalies in these two 513 

regions in Exp 2 and the snow amount, measured as snow water equivalent (SWE), and upper layer 514 

soil moisture in the February 1 initial condition, which is shown in Fig. 12. As can be seen, the 515 

JJA T2m anomalies in Region 2 and Region 3 are negatively correlated with the initial snow 516 
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amount and soil moisture in the Siberian, and North American regions, respectively. The area-517 

averaged snow amount and soil moisture are positively correlated at 0.48 and 0.55 in Regions 2 518 

and 3, respectively, indicating that more (less) snow is associated with wetter (drier) soil. The 519 

correlation maps of Fig. 12 indicate that summertime predicted warm (cold) anomalies in these 520 

two regions can be traced back several months earlier to localized land surface conditions of below 521 

(above) normal snow amount and soil moisture.    522 

 523 

 524 

Figure 12 Correlation between February 1 (a and b) SWE, (c and d) upper layer soil moisture and Exp 2 forecast 525 

area averaged JJA T2m in Region 2 (left panels), and Region 3 (right panels). The calculation is done for 526 

detrended anomalies. Stippling indicates that the correlation is statistically significant at the 0.05 level based on 527 

a Student’s t test.  528 

 529 

Figure 13 shows the correlation between February 1 snow amount and seasonal mean T2m in 530 

MAM and JJA at each grid point in the observations and Exp 2 forecast. February 1 snow amount 531 

is negatively correlated with MAM T2m in the observations in the middle latitude Europe and 532 

North America (Fig. 13a). When it is correlated with JJA T2m, statistically significant negative 533 

correlations are seen over Regions 2 and 3 (Fig. 13b). Reduced (increased) winter snow amount in 534 

these two regions leads to localized warm (cold) summertime T2m anomalies. Similar associations 535 

of MAM and JJA T2m with winter snow amount are also observed in Exp 2 (Fig. 13c and d), 536 

although the model tends to overestimate this relationship compared to the observations. It is 537 

interesting to note that the impact of February 1 SWE on MAM T2m over the northern part of 538 

Region 2 is weak (Fig. 13a and c), when T2m is cold and the ground is covered with snow. The 539 

impact becomes strong in JJA (Fig. 13b and d) when the snow melts. Perhaps not surprisingly, an 540 
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anomalously high (low) winter snow amount tends to lead to a longer (shorter) melting period and 541 

a cooler (warmer) summer. This suggests that anomalous winter snow amount over the Siberian 542 

and western United States regions has a delayed or long-lasting impact on the surface air 543 

temperature, which gives rise to the long-lead forecast skill.  544 

 545 

 546 

Figure 13 Temporal correlation between February 1 SWE and the ERA5 seasonal mean T2m in (a) MAM, and 547 

(b) JJA at each grid point. Correlation between February 1 SWE and the Exp 2 forecast seasonal mean T2m in 548 

(c) MAM, and (d) JJA. The calculations are calculated for detrended anomalies. Stippling indicates that the 549 

correlation is statistically significant at the 0.05 level based on a Student’s t test.  550 

 551 

7. Summary and discussion 552 

In this study, we analyze the seasonal forecast skill based on 40-year hindcast output from two 553 

global coupled models in the CanSIPSv3 seasonal prediction system, with emphasis on the 554 

Northern Hemisphere middle latitude land areas in the summer season. The main findings are 555 

summarized below:  556 

• Seasonal predictions for the summer season are skillful more than six months in 557 

advance in several Northern Hemisphere middle latitude land regions, including 558 

eastern Europe-Middle East (Region 1), Siberia-Mongolia-North China (Region 2), 559 

and the western Unites States (Region 3). 560 

• The forecast skill of surface air temperature in these regions tends to peak in boreal 561 

summer seasons regardless of the lead time.  562 

• Although a large part of the seasonal forecast skill of JJA T2m and Z500 in the Northern 563 

Hemisphere middle latitudes comes from the trend associated with global warming, 564 
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there is statistically significant long-lead seasonal forecast skill that is associated with 565 

the interannual variability, especially in Regions 2 and 3.  566 

• The forecast skill centers tend to be connected to each other through an upper 567 

tropospheric circum-global teleconnection wave train.  568 

• Several sources of predictability for the long-lead summertime seasonal forecast are 569 

identified from two idealized hindcast experiments using the GEM5.2-NEMO coupled 570 

model and its uncoupled atmospheric component. The trend is not only the main 571 

contributor to the skill in Region 1 (eastern Europe and Middle East), but also helps to 572 

enhance the forecast skill in Regions 2 and 3. An ENSO-like tropical SST anomaly is 573 

an important source of skill for the JJA season in the western United States (Region 3). 574 

Land surface conditions in winter, including snow amount and soil moisture, in the 575 

Siberian and western US regions have a delayed or long-lasting impact on the 576 

atmosphere, which leads to summer forecast skill of interannual variability in these 577 

regions. 578 

 579 

Our analysis shows that JJA seasonal forecast skill benefits from trends. By looking at the 580 

40-year JJA T2m trend in the ERA5 reanalysis (e.g., Fig. 14a; Fig. 1a of Teng et al. 2022), we can 581 

see that the observed trend itself has a distribution similar to the JJA forecast skill (Fig. 1) with 582 

positive centers in the Northern Hemisphere middle latitude land regions, collocated with Regions 583 

1, 2 and 3.  In the two CanSIPSv3 models, the forecast JJA T2m trend does not seem to depend on 584 

lead time. Both models produce warming trends in the middle latitude land regions. Figure 14 585 

shows the forecast JJA T2m trend from the hindcasts initialized on February 1. The negative trend 586 

in the middle North Atlantic is likely associated with the problem of the ocean initial conditions 587 

of the Atlantic Meridional Overturning Circulation in the ORAS5 reanalysis, which is used in both 588 

CanSIPSv3 models, as is reported in Tietsche et al. (2020). GEM5.2-NEMO appears able to 589 

reproduce the distribution of the observations, with relatively large positive trend values in 590 

Regions 1, 2, and 3 (Fig. 14c). The amplitude of the trend at the centers in GEM5.2-NEMO, 591 

however, is underestimated. In CanESM5.1, the JJA T2m trend seems overestimated in the middle 592 

latitude land regions (Fig. 14e).  A large part of the JJA T2m trend in GEM5.2-NEMO comes from 593 

the ocean and sea ice initial condition and GHG forcing (Fig. 14b). The warming over the Barents 594 

– Kara Seas area is likely associated with sea ice loss. The land surface initial condition contributes 595 
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to the localized warming centers in Regions 1, 2 and 3 (Fig. 14d). By adding the trend in Exp 1 596 

and Exp 2, Figure 14f shows that the contribution to the trend from the ocean and sea ice is largely 597 

independent of that from the land surface, as their sum is close to that of GEM5.2-NEMO hindcast 598 

(Fig. 14c). Improvement of trend representation in the models will likely further improve the JJA 599 

forecast skill in the Northern Hemisphere middle latitudes.  600 

 601 

 602 

Figure 14 (a) JJA T2m trend in ERA5 reanalysis. JJA T2m trends from ensemble mean forecast obtained from 603 

40-year hindcasts of (c) GEM5.2-NEMO, (e) CanESM5.1, (b) Exp 1, and (d) Exp 2.  The hindcasts are initialized 604 

on February 1.  (f) Sum of JJA T2m trend in Exp 1 and Exp 2. Unit: °C in 40 years. Stippling indicates that the 605 

linear trend is statistically significant at the 0.05 level based on a Student’s t test. 606 

 607 

The middle latitude regions of higher JJA forecast skill appear connected to each other and 608 

associated with a circum-global teleconnection (CGT) pattern. The CGT was observed in previous 609 

studies in the boreal summer associated with the trend and on the interannual time scale. The 610 

fluctuations of the Atlantic multi-decadal variability and the interdecadal Pacific oscillation were 611 

found to be correlated with the CGT (e.g., Teng et al. 2022). Teng and Branstator (2019) 612 

hypothesized that climate change can alter the basic circulation state and thereby enhance CGT as 613 

quasi-stationary Rossby waves by increasing their resonance. The CGT was found to be linked to 614 

forcing of the Indian summer monsoon (e.g., Ding and Wang 2005; Lin 2009), North American 615 

soil moisture (Teng et al. 2019), and Tibetan Plateau land temperature (Xue et al. 2022). From the 616 
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current study, we show that the boreal summer CGT which is accompanied with the JJA forecast 617 

skill can be generated from ocean, sea ice and land surface initial conditions in the previous winter 618 

season. For example, as seen in Fig. 14d, trends from the winter land surface condition can result 619 

in a JJA T2m trend that resembles that associated with the CGT pattern. The winter land surface 620 

condition itself is likely influenced by climate change. How the sea ice loss contributes to the CGT 621 

trend is also of great interest. An improved understanding of the CGT dynamics is certainly helpful 622 

for seasonal predictions in the boreal summer.  623 

A further interesting result from this study is that the land surface conditions, including 624 

snow amount and soil moisture, in winter or spring has a delayed or long-lasting impact on the JJA 625 

forecast skill in the middle latitude land regions. This implies that accurate land surface initial 626 

conditions and model representations of these land surface processes are crucial elements of 627 

seasonal forecasting systems and provide promising avenues for improving skill. Further studies 628 

are needed to better understand these processes and their contributions to predictability.  629 

 630 
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