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Abstract. This manuscript summarizes the outcome of the focus groups at The f(A)bulous workshop on matrix4

functions and exponential integrators, held at the Max Planck Institute for Dynamics of Complex Technical Systems in5

Magdeburg, Germany, on 25–27 September 2023. There were three focus groups in total, each with a different theme:6

knowledge transfer, high-performance and energy-aware computing, and benchmarking. We collect insights, open7

issues, and perspectives from each focus group, as well as from general discussions throughout the workshop. Our8

primary aim is to highlight ripe research directions and continue to build on the momentum from a lively meeting.9
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The “f(A)b” community consists of researchers who develop, study, or use computational13

methods for computing the action of a matrix function on one or more vectors. These vectors14

can be considered either as a sequence of individual vectors or as a concatenation (block vector).15

A scalar function f can be evaluated at a square matrix A in a natural way that preserves many16

interesting properties of f . Formally, f(A) can be defined by means of the Jordan canonical17

form of A, the Taylor series expansion of f , its Cauchy integral representation, or Hermite18

interpolation [51, Chapter 1]. If f is analytic in a region that contains the spectrum of A, then19

these definitions are all equivalent.20

In numerical linear algebra, the expression “computing matrix functions” denotes two21

very different tasks:22

T1. f(A), i.e., the evaluation of the function f at the m×m matrix A, which will produce23

an m×m matrix; and24

T2. f(A)b, i.e., the computation of the action of f(A) on the m × n matrix b, where25

n ≪ m, which will produce an m× n matrix.26

In theory, any algorithm applicable to T1 can be used for T2 prior to a matrix–matrix product27

with b. In many practical applications, however, the matrix A is large and sparse, and the28

dense matrix f(A) becomes impossible to store explicitly. Some applications also require29

a linear combination of the action of multiple functions on different vectors, rendering this30

approach intractable.31

A prime example of such types of problems is exponential time integrators [56, 63], a
class of numerical methods for solving ordinary differential equations (ODEs) of the form

d

dt
u(t) = F

(
u(t)

)
, u(t0) = u0.(0.1)

Differential equations in this form appear in many areas of natural and social sciences. In32

the majority of applications, the variable u(t) represents an unknown dynamic quantity, t is33

the independent variable, and F describes the dynamics of the system. Different types of34
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exponential integrators can be derived by optimizing the coefficients of an “ansatz” of the form35

(0.2) φ0(A)v0 + φ1(A)v1 + φ2(A)v2 + ...+ φp(A)vp,

where the so-called φ-functions can be defined by the Taylor series

φk(A) =

∞∑
i=0

Ai

(i+ k)!
.

In other words, the ansatz eq. (0.2) is just a linear combination of exponential-like functions36

evaluated at A that act on a set of vectors. Computationally, evaluating φi(A)vi is the most37

expensive step in exponential time integrators, and it has therefore been the subject of a38

considerable amount research.39

0. The workshop. In September 2023, members of the f(A)b community met at the40

Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany,41

to attend the first “f(A)bulous workshop on matrix functions and exponential integrators”,142

organized by Kathryn Lund, Stéphane Gaudreault, and Marcel Schweitzer. The event featured43

traditional-style scientific talks covering recent algorithmic advances as well as applications,44

but a significant portion of the two and a half days was reserved for moderated discussion45

sessions.46

For these sessions, the workshop participants split into three focus groups (each led by47

one of the organizers of the workshop) in order to consider a broad challenge the community48

is facing, and they spent one afternoon looking at the issue and assembling potential solutions.49

For each group, a list of key questions was provided to foster and stimulate a lively—but also50

focused—discussion. For the guiding slides with questions, see [43].51

The next day, each group reported the main discussion points to the other attendees,52

and the floor was then opened for further comments and questions. Several participants (in53

particular, Thomas Mach and Yannis Voet) took thorough notes on the discussions and shared54

them with other participants via the workshop website.55

The three challenges that were selected for these focus groups were as follows:56

1. knowledge transfer between the “f(A)b community” and researchers from other57

areas (moderated by Marcel Schweitzer),58

2. high-performance and energy-aware computing (moderated by Stéphane Gaudreault),59

and60

3. benchmark problems and FAIR comparisons (moderated by Kathryn Lund).61

The next three sections of this report summarize the main conclusions of the three focus62

groups and the main points that were raised in the discussion that ensued.63

1. Knowledge transfer. The first group looked at ways to ensure that the algorithms64

developed within the community can reach the end users who need them.65

As discussed before, items T1 and T2 are fundamentally different from a computational66

perspective, and they generally require different techniques. In particular, when only f(A)b is67

sought, computing f(A) is typically an unduly expensive and totally unnecessary step.68

Anecdotal evidence suggests that the distinction between the two problems is not as69

clear outside the f(A)b community, and that researchers that wish to compute f(A)b in an70

application domain often rely on the simple (but extremely inefficient) approach of multiplying71

b by f(A) after having computed the latter explicitly.72

There are several reasons behind this phenomenon. For one, there is no recent, authorita-73

tive source summarizing the existing methods for evaluating f(A)b. The only comprehensive74

1https://indico3.mpi-magdeburg.mpg.de/event/30/
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survey of the literature [40] is now over 16 years old and does not reflect the breadth of75

methods currently available; more recent surveys and a thesis [46, 47, 69] only deal with76

Krylov subspace methods and focus especially on limited-memory scenarios. The situation77

is similar for exponential integrators, where the last comprehensive survey [56] is 14 years78

old. This is in stark contrast to the literature on f(A), which boasts a book [51],2 a survey79

paper dedicated to computational aspects [52], and even a survey of existing software, which80

is periodically updated (and also includes software for f(A)b) [28, 53, 54].81

An additional obstacle in knowledge transfer is the absence of f(A)b in the standard82

academic curriculum. In effect, most practitioners learn about the topic either during their grad-83

uate studies or through self-study, and their learning is hindered by the lack of a comprehensive84

review or textbook.85

For most functions f of interest, it is relatively easy to find robust and efficient software86

toolboxes to evaluate f(A). These are available for most programming environments and87

work out-of-the-box for a large selection of test problems. The situation is very different in88

the f(A)b case, as the performance of the algorithm depends on a number of factors, and,89

with the software currently available, a certain level of experience is needed to find the right90

combination of parameters for a given computation.91

In most cases, the missing cornerstone is a reliable stopping criterion. A stopping criterion92

requires a way of measuring or bounding the approximation error, but at present there is a93

knowledge gap in this area: available results typically only apply to normal matrices and are94

restricted to specific classes of matrices (e.g., Kronecker sums [10, 11]) or specific functions95

(e.g., Cauchy–Stieltjes functions [35, 39, 48, 49, 62], Laplace transforms [31, 37] or functions96

which can be related to an underlying ODE initial-value problem [13, 14, 15, 16]). The97

error bounds available for more general cases may be very pessimistic, and they are typically98

not fit for use as stopping criteria in practice. Furthermore, the derivation of error bounds99

quickly becomes interdisciplinary, as often function-specific, analytical results are necessary100

for deriving error expressions. This is in stark contrast to, say, linear systems of the form101

Ax = b, where a notion of residual r := b−Ax̃ for an approximation x̃ is readily available102

from the data, can be cheaply approximated in Krylov subspace methods like GMRES, and is103

widely used as a reliable stopping criterion [68].104

The situation is further complicated by the lack of comprehensive comparisons of the105

performance of different algorithms, which is made arduous by the large number of imple-106

mentation details and parameters that have to be selected. We address this point further in107

Section 3.108

This focus group also identified a few timely challenges for the community, which109

represent, at the same time, opportunities for research advances.110

• Current methods may not exploit the full breadth of available techniques, a case in111

point being randomized methods, which have just started to be considered [18, 27,112

50, 66, 67].113

• Existing implementations are not able to fully leverage the variety of hardware on114

modern computers and supercomputers, which makes them potentially less attractive.115

See also Section 2.116

• Often, unlocking the full potential of methods might require “intermingling” the117

algorithm used for approximating f(A)b with the surrounding ecosystem, taking into118

account specifics of the application at hand, instead of just treating it as a black-box119

2Incidentally, in the preface of [51], the author states “The problem of computing a function of a matrix times a
vector, f(A)b, is of growing importance, though as yet numerical methods are relatively undeveloped”. Due to this
growing importance, a lot of developments have taken place since then, which are of course not covered by the last
“f(A)b survey” [40], which was published in the same year as the book [51].
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that returns an approximate solution (see, e.g., [26] for an example of a “Krylov-120

aware” approach in trace estimation, or [44] for an algorithm exploiting the intimate121

connection to exponential integrators when approximating linear combinations of122

φ-functions).123

Next steps. Although a clear path to solve all the challenges affecting knowledge transfer124

is hard to pin down, some steps the community can take to make some progress on these issues125

are relatively easy to trace.126

First and foremost, there is a need for effective benchmarking standards. All methods to be127

compared should be implemented from the same building blocks, and the same implementation128

choices should be applied consistently. The performance of the methods should be measured129

in a uniform way, and this is not necessarily a simple task: estimating the execution time and130

memory usage of an algorithm is simple, but assessing its accuracy is not. Accuracy is usually131

measured in terms of the forward error of the computed result, but since the exact solution is132

often not available, a reference solution computed using a different algorithm—potentially run133

in higher-than-working precision—is typically employed. Attention should be paid to how the134

reference solution is computed, and how the error is estimated from it.135

Ideally, one could identify classes of problems where certain methods perform well, so136

that precise and easy-to-follow recommendations—based on the structure of A, the behavior137

of f , or a combination of both—can be made.138

In order for the comparison to be useful, it is also crucial that a representative set of139

benchmark problems be established. Difficult questions that should be addressed regard:140

• what information should be collected, in addition to the obvious f , A, and b, and141

• what format should be used to store this information.142

These points were discussed in more detail by another focus group—see Section 3.143

These efforts would put the community in a better position to summarize the literature and144

produce easy-to-follow guidance for all those interested in computing f(A)b without delving145

into algorithmic and theoretical details: a general consensus is that drafting a modern survey of146

numerical methods for computing f(A)b should be a priority.3 The lack of a comprehensive147

literature review for more specific problems, such as exponential integrators, is also a shared148

concern which should be addressed in coming years.149

Finally, a question that was raised is whether understanding better the sensitivity of150

the proposed algorithms, as well as offering ways of estimating the conditioning of a given151

problem, could help practitioners feel more confident about the use of a chosen algorithm for152

f(A)b—after all, this is one of the aspects that make the BLAS and LAPACK stand out.153

There does indeed exist a lot of work on estimating the condition number of the com-154

putation of f(A) and f(A)b; see, e.g., [51, Chapter 3] for a general overview of the topic.155

However, these condition number estimates are intimately related to the Fréchet derivative156

Lf (A, ·) of f(A), an object that is typically several times more costly to compute than f(A)157

itself. For the f(A) problem, there exist several algorithms (each for a specific function f ) that158

allow for the computation of f(A) and its Fréchet derivative simultaneously and reuse certain159

computations in the process [3, 4]. Building on this, [3, Algorithm 7.4] computes the matrix160

exponential eA together with a (quite reliable) condition number estimate at a cost of roughly161

17 times that of computing eA alone.4 Thus, even when using cleverly designed algorithms162

hand-tailored to a specific function, the overhead induced by the condition number estimator163

is quite substantial.164

Additionally, it is currently unclear how to extend such approaches to, e.g., Krylov165

subspace algorithms for f(A)b, as computing f(A)b and Lf (A, ·) has much less in common166

3Indeed, efforts in this direction are already underway.
4The factor 17 can be reduced to 9 if a slightly reduced reliability is acceptable.
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than computing f(A) and Lf (A, ·). Recently, there has been some progress in Krylov subspace167

algorithms for low-rank approximations of the Fréchet derivative [57, 58, 61], which might168

facilitate making a first step in this direction.169

2. High-performance and energy-aware computing. The second focus group looked at170

the challenges surrounding the applications of f(A)b in high-performance computing (HPC).171

In many domains within the natural and social sciences and engineering disciplines, there is172

a need to compute f(A)b where A is extremely large and sparse. Such large problems are173

typically solved using supercomputers, which are machines composed of many nodes with174

distributed memory, sometimes employing heterogeneous computing hardware. Each node is175

typically equipped with a number of CPUs and accelerators, such as GPUs, and to achieve176

peak performance, a routine must make the best use of all available resources.177

Aside from those for A−1b, numerical methods to compute f(A)b have seldom been178

used in large-scale parallel applications. One of the most active fields of research in this area179

is the solution of differential equations using exponential time integrators with Krylov and180

Leja point methods. Various factors impede the application of certain algorithms developed by181

the f(A)b community, and we will provide a brief overview in this section.182

When the A matrix is large and sparse, it is often impossible to store it explicitly in memory.183

Fortunately, in many cases one can use “matrix-free” algorithms, which converge without the184

cost of forming or storing the matrix. These are frequently used in HPC applications because185

they allow the solution of problems that would otherwise be intractable. In the context of186

f(A)b, most matrix-free algorithms require only the action of the matrix (or an approximation187

to it) in the form of matrix–vector products. For example, instead of storing the sparse Jacobian188

J of a vector-valued function F (u), its action on a vector can be approximated using the finite189

difference Jb ≈
[
F (u+ ϵ)

¯
− F (u)

]
/ϵ, where ϵ is a small perturbation [17]. Other matrix-190

free approaches, such as the complex-step approximation [70] or automatic differentiation191

[45], are often also used.192

Requirements in terms of parallelism and memory storage considerably restrict the choice193

of possible algorithms. The finite difference approximation of the Jacobian action illustrated194

above, for example, does not allow operations such as transposition, slicing, or pivoting195

without a prohibitive computational cost. For the most part, it is not problematic to use a196

matrix–vector product routine instead of matrices for methods based on the Krylov subspace,197

the Taylor series, or Leja points. However, difficulties arise when information about the norm198

or the spectrum of A is needed to 1) compute the parameters that make these methods efficient,199

or 2) determine the stopping criterion. Without the matrix representation, it can be expensive200

to compute the operator norm or to estimate eigenvalues. While the spectral radius ρ(A) can201

be cheaply approximated using the power method on a single CPU, the communication cost202

in parallel implementations renders this idea inefficient in many HPC applications. Further203

research will be necessary to develop numerical algorithms more suitable to this kind of204

problems.205

Another important consideration is the capability of an algorithm to scale and optimize206

energy efficiency as the amount of computing resources increases. Clearly, existing imple-207

mentations are not yet ready for the future exascale machines, i.e., supercomputers capable208

of performing at least 1018 binary645 floating-point operations per second. The problem of209

implementing Krylov subspace methods efficiently on a GPU has been considered from a210

theoretical point of view [34], but studies focusing on high-performance implementations211

suggest that the use of GPUs is most beneficial when A is dense [5], which is not often the212

case for f(A)b problems, or when A has a very specific sparsity pattern that can be mapped213

5Previously known as “double precision”.
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efficiently to GPU architectures [33]. Therefore, software for this problem primarily targets214

CPUs and can only rely on GPUs in a limited number of cases or for a subset of the relevant215

operations.216

One obstacle is the fact that most implementations target binary64 accuracy, but binary64217

arithmetic is not very efficient on GPUs. When using the tensor cores on the latest NVIDIA218

H100 SXM5 GPUs [64, Table 1], for example, the theoretical peak performance of the 19-bit219

TensorFloat-32 arithmetic is 494.7 trillion floating-point operations per second (TFLOPS),220

which improves for BFLOAT16 and binary16 arithmetic (989.4 TFLOPS) and breaks the221

PFLOPS barrier for the fp8 formats (1978.9 TFLOPS). The peak performance of binary64222

arithmetic is almost 30 times slower, with just 66.0 TFLOPS when tensor cores are used for223

matrix–matrix multiplications. Using low-precision arithmetic is key to harnessing the full224

potential of GPUs, but only binary64 accuracy is typically sufficient for a range of applications.225

In other areas of numerical linear algebra, this challenge has been addressed effectively by226

developing mixed-precision algorithms [1, 55]. Efforts have been made recently in the context227

of exponential integrators to design such schemes [9], but further research will be necessary.228

The issue is not solely with implementations: the algorithms themselves do not seem229

ready to address large-scale problems either. Many methods rely on matrix operations that230

do not scale well in a distributed environment. For example, full-basis orthogonalization,231

central to many Krylov subspace methods, necessitates numerous communication operations232

(i.e., message passing and synchronization) throughout the computation. This can result in233

unacceptable latencies, with most processes idly waiting for the slowest process to complete [8].234

There are a number of new developments on this front, including but not limited to low-235

synchronization orthogonalization [12, 21, 22, 23, 24, 41, 42, 65, 71, 76, 78] and s-step236

methods [19, 20, 75, 76], which can also be combined with one another. Furthermore, a number237

of well established techniques are being rediscovered as communication-reducing, such as the238

natural short-term recurrences of Lanczos or batching vectors into tall-skinny matrices (block239

vectors) to take better advantage of BLAS Level 3 [29, 30]. Sketching, randomization, and low240

precision can also be leveraged to reduce memory movement by shrinking the size of vectors241

to be stored and manipulated [6, 7, 27, 50, 66, 77]. The performance of these techniques242

has been and is being thoroughly explored for linear systems solvers, but their transfer to243

matrix functions requires a better understanding of their backward stability, how they can be244

integrated into extended and rational Krylov subspace methods, as well as the conditioning of245

f(A)b itself (cf. Section 1).246

All these issues remain true for the computation of the full matrix f(A) as well.247

A significant push in this direction could arise from an increased interest in exponential248

integrators. However, there are many factors that hinder their use in practical applications.249

Firstly, they are seldom featured in textbooks and are often absent from university curricula,250

resulting in many practitioners being unfamiliar with them. In addition, despite their better251

stability properties, they are generally more complicated to implement than explicit methods.252

Even when stability is important, practitioners tend to be more attracted by implicit or implicit-253

explicit schemes, because of the availability of techniques that deal with the stiffness of their254

particular problems. Furthermore, highly optimized libraries that implement algorithms for255

solving linear or nonlinear problems are readily available. This is not the case for exponential256

integrators, and the necessity to implement a parallel solver for the φ-functions often discour-257

ages the use of these methods in HPC applications. In recent years, there has been a renewed258

interest in exponential integrators, and this can largely be attributed to advances in numerical259

algorithms for the computation of f(A)b. While this is an encouraging trend, more work is260

needed to make these time integration schemes easier to use in applications.261
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Next steps. Readying current f(A)b work for exascale presents a number of significant262

challenges, but the community is well equipped to make some progress towards this goal. It is263

clear that the focus should be on two distinct fronts, since not only the implementations, but264

also the algorithms, will require significant work in order to leverage the full computational265

power of next-generation supercomputers.266

In terms of rethinking existing algorithms, there is a clear need for reducing the number267

and frequency of communication operations. In particular, parallel inner products are a known268

communication bottleneck on distributed systems. Numerical algorithms with high arithmetic269

intensity should be favored over those requiring a high degree of data movements. Some270

work has already been done in this area (see, for example, block methods [38], truncated271

orthogonalization [50, 60, 66] or restarts [2, 16, 32, 36]), but a completely different solution272

may be needed.273

In terms of implementations, a significant challenge is to leverage the untapped potential274

of GPUs, which, as they become faster and more prevalent, represent an increasingly large275

share of the overall performance of a supercomputer.276

Writing high-performance numerical linear algebra code that can target GPUs presents277

various difficulties. First and foremost, the variation in capabilities between different models278

of GPUs, especially those from different vendors, is dramatically larger than the variation279

between CPUs. As a consequence, there is no unified implementation of the BLAS and280

LAPACK for GPUs. Vendors provide highly-optimized libraries for their own hardware, but281

these require very different frameworks, which means that porting an implementation from one282

GPU to another requires a significant human effort. For example, NVIDIA provides cuBLAS,6283

which is part of the CUDA Toolkit,7 while AMD provides support through rocBLAS,8 which284

is part of the ROCm Platform.9285

Potential solutions, which include the C++ runtime API HIP,10 also part of the ROCm286

Platform, the programming model SYCL11 [59], and libraries such as MAGMA12 [73, 74],287

are not yet mature enough to be used in production code.288

At present, the community should attempt to rewrite existing algorithms to ensure optimal289

performance on HPC architectures. They should seek to minimize communications and use290

low precision (binary32, binary16, or lower) for the bulk of the computation, switching to291

higher precision (typically binary64) only when strictly necessary.292

For research reproducibility, the f(A)b community should adopt and promote open293

science best practices. This entails authors sharing the code and data that would allow to294

replicate the results presented in their publications.295

3. Benchmarking. The last focus group discussed best practices for sharing code and296

data sets so that they can be easily reused, in accordance with FAIR guidelines.13 The main297

goal is to simplify two important steps of the algorithm development process:298

• evaluating new implementations on established test problems, and299

• comparing their performance with that of existing algorithms in the literature.300

A welcome side effect, which comes at no additional cost, is the reproducibility of experimental301

results. This idea promises to solve a number of problems that commonly arise when new302

algorithms are proposed in the literature.303

6https://docs.nvidia.com/cuda/cublas/
7https://developer.nvidia.com/cuda-toolkit/
8https://rocm.docs.amd.com/projects/rocBLAS/
9https://rocm.docs.amd.com

10https://rocm.docs.amd.com/projects/HIP/
11https://www.khronos.org/sycl/
12https://icl.utk.edu/magma/
13https://www.go-fair.org/
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Unless the authors decide to compare their proposed new method with all state-of-the-art304

algorithms for the same problem, it is impossible for the reader to understand how the new305

method compares with existing alternatives. A new implementation could easily perform306

worse than a much simpler and well established one, but the reader would have to spend a307

significant amount of effort to check whether this is the case, especially if the code used in the308

original publication is not available.309

The peer review process can help with this, but there are limitations. Reviewers can310

recommend that new approaches be compared with the most relevant existing alternatives, but311

it is difficult to ensure that the comparison is fair, and most journals in numerical analysis and312

numerical linear algebra do not yet require submission of software or reproducibility of the313

experimental results. Moreover, as a test set of representative f(A)b problems is not currently314

available, it is difficult for a reviewer—and for the reader, later on—to make sure that the315

numerical experiments reported in a publication provide an impartial representation of the316

merits and drawbacks of new algorithms. Not all methods are suitable for a given choice of317

f , A, and b, and having a battery of tests with clear classes of functions and matrices can318

help identify what types of problems a certain algorithm can deal with effectively. This can319

help corroborate theoretical results, in addition to providing a quick and standardized way of320

comparing all relevant algorithms for a specific choice of f , A, and b.321

The metrics against which these algorithms should be compared are also not uniquely322

determined, and authors are free, within reason, to choose the ones that suit them best. In323

some cases, the metric itself is poorly defined and can depend on a range of factors that are324

not within the control of who is performing the test. A case in point is runtime, which is325

commonly used to assess the performance of different implementations on a same test set.326

Runtime is very sensitive to the hardware configuration, as well as some low-level details of327

the software libraries being used, so that algorithm α1 can easily be faster than algorithm α2328

on a machine and slower on another for the same test problem.329

When an algorithm cannot be implemented in the most efficient way possible, for example,330

because of limitations of existing hardware, an appealing alternative is to rely on the number of331

floating-point operations being performed. This metric is only meaningful for large matrices,332

and it can be very inaccurate on modern hardware and especially in distributed-computing333

settings, as it focuses on arithmetic intensity when, in practice, the performance of most334

algorithms is bounded by the memory bandwidth.335

A final difficulty is represented by the lack of clear licensing for code and test problems336

alike. This prevents reuse and, in many cases, hinders reproducibility of existing results. For337

more information on research data management in mathematics, see a recent white paper by338

the Germany-based Mathematical Research Data Initiative (MaRDI) [72].339

Next steps. It is a priority for the community to produce a set of representative test cases340

whereon new and old algorithms can be compared. Ideally, one would want access to a remote341

facility that is capable of testing submitted implementations against known and unknown342

benchmark problems, providing overall scores for a number of metrics including accuracy,343

stability, and runtime performance. Similar services exist for machine learning research [25],344

where the unknown problems are used to prevent authors from overfitting their models to the345

test set.346

The main difficulty to address in order to deliver this golden standard is to ensure a347

fair comparison among implementations written using different languages, as Julia, MAT-348

LAB/GNU Octave, and Python are all well established in this community, and being able to349

compare code in these different languages is likely to pose significant challenges in terms of350

software engineering.351
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A more modest but attainable result would be the development of a curated reference352

collection of test problems. Authors testing their code could then simply choose which parts353

of the collection to include, and they could justify their choices by pointing out which classes354

of problems are not suitable in their context. Reviewers could equally rely on such a collection355

to ensure that authors are providing a fair picture of the merits of their algorithms.356

Building and maintaining this infrastructure would come with some logistical challenges.357

A sufficient number of examples should be included, so that the collection represents the main358

applications in which f(A)b appears. As test examples can be quite large, the collection might359

require a hosting service with sufficient storage space and bandwidth, or standardized protocol360

to point to resources like Zenodo, from which data could be downloaded. A possible remedy361

for the latter issue is to promote the use of so-called procedural examples, whereby a problem362

is specified mathematically and the matrix A and vector b can be generated with a desired size363

or other properties via a script.364

It is necessary to ensure that the test cases remain relevant, and that the collection grows365

and remains representative despite hardware and algorithm improvements that may make366

problems that are difficult today trivial in the near future. The test cases will likely come from367

a number of researchers in various research domains, and will have to be collected and added368

to the collection by a number of volunteers. A standard license—or set of licenses—should be369

adopted that ensure reproducibility and that fair credit is given to test problem creators and370

curators.371

Although it will not be possible for the community to enforce such a requirement, pub-372

lishing and advertising a reasonable set of recommendations should be one of the priorities of373

the group working on this.374

4. Conclusions. It is easy to feel overwhelmed looking at the long to-do lists we have375

outlined. A change of perspective may lessen the anxiety: these are exciting opportunities,376

some of them even so-called “low-hanging fruit”, and the impact of addressing them is huge,377

even for such a small field. Matrix functions continue to surface in diverse applications, and378

many of the techniques developed for f(A)b can cross-pollinate work in linear systems, matrix379

equations, Fréchet derivatives, and other problems we are not yet aware of. Furthermore, the380

development of comprehensive surveys and language-agnostic benchmarking workflows for381

f(A)b can set an example for other mathematical fields that are struggling to modernize and382

keep up with an ever-increasing publication load. Our primary aim is that this manuscript383

builds on the momentum of a successful workshop and inspires new, meaningful projects in384

f(A)b and beyond.385

Acknowledgments. The workshop itself was funded in part by DFG Project Number386

529315380. We thank all of the workshop participants (excluding the present authors) for387

their contributions to the substance of this manuscript: Francesca Arrigo, Michele Benzi, Kai388

Bergermann, Philipp Birken, Liam Burke, Marco Caliari, Benjamin Carrel, Fabio Cassini,389

Ranjan Kumar Das, Vladimir Druskin, Andreas Frommer, Oswald Knoth, Patrick Kürschner,390

Thomas Mach, David Persson, Helmut Podhaisky, Michele Rinelli, Jonas Schulze, Roger391

Sidje, Igor Simunec, Martin Stoll, Mayya Tokman, Manuel Tsolakis, Paul Van Dooren, and392

Yannis Voet.393

REFERENCES394

[1] A. ABDELFATTAH, H. ANZT, E. G. BOMAN, E. CARSON, T. COJEAN, J. DONGARRA, A. FOX, M. GATES,395

N. J. HIGHAM, X. S. LI, J. LOE, P. LUSZCZEK, S. PRANESH, S. RAJAMANICKAM, T. RIBIZEL,396

B. F. SMITH, K. SWIRYDOWICZ, S. THOMAS, S. TOMOV, Y. M. TSAI, AND U. M. YANG, A survey397

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

10 M. FASI ET AL.

of numerical linear algebra methods utilizing mixed-precision arithmetic, Int. J. High Performance398

Computing Applications, 35 (2021), pp. 344–369.399

[2] M. AFANASJEW, M. EIERMANN, O. G. ERNST, AND S. GÜTTEL, Implementation of a restarted Krylov400

subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429 (2008), pp. 2293–2314.401

[3] A. H. AL-MOHY AND N. J. HIGHAM, Computing the Fréchet derivative of the matrix exponential, with an402

application to condition number estimation, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1639–1657.403

[4] A. H. AL-MOHY, N. J. HIGHAM, AND S. D. RELTON, Computing the Fréchet derivative of the matrix404

logarithm and estimating the condition number, SIAM J. Sci. Comput., 35 (2013), pp. C394–C410.405

[5] N. AUER, L. EINKEMMER, P. KANDOLF, AND A. OSTERMANN, Magnus integrators on multicore CPUs and406

GPUs, Comput. Phys. Comm., 228 (2018), p. 115–122.407

[6] O. BALABANOV AND L. GRIGORI, Randomized Gram–Schmidt Process with Application to GMRES, SIAM J.408

Sci. Comput., 44 (2022), pp. A1450–A1474.409

[7] , Randomized block Gram-Schmidt process for solution of linear systems and eigenvalue problems,410

e-print 2111.14641, arXiv, 2023.411

[8] G. BALLARD, E. C. CARSON, J. W. DEMMEL, M. HOEMMEN, N. KNIGHT, AND O. SCHWARTZ, Com-412

munication lower bounds and optimal algorithms for numerical linear algebra, Acta Numer., 23 (2014),413

pp. 1–155.414

[9] C. J. BALOS, S. ROBERTS, AND D. J. GARDNER, Leveraging mixed precision in exponential time integration415

methods, in 2023 IEEE High Performance Extreme Computing Conference (HPEC), 2023, pp. 1–8.416

[10] M. BENZI AND V. SIMONCINI, Decay bounds for functions of Hermitian matrices with banded or Kronecker417

structure, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1263–1282.418

[11] , Approximation of functions of large matrices with Kronecker structure, Numer. Math., 135 (2016),419

pp. 1–26.420
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