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1. Introduction

Over the last few years, the variational form of statistical estimation has been
implemented at many operational centres. The motivation originated from the
difficulties associated with the assimilation of satellite data such as TOVS (TIROS-N
Operational Vertical Sounders) radiances. Lorenc (1986) showed that the statistical
estimation problem could be cast in a variational form (3D-Var) which is just a different
way of solving the problem that the so-called optimal interpolation attempts to solve
directly. Eyre (1989) showed, in a 1D-Var context, that a variational formulation leads
to a more natural framework for the direct assimilation of radiances instead of retrieved
temperature and humidity profiles. This is also true for any indirect measurement of the
state of the atmosphere. Talagrand and Courtier (1987) showed that the use of the
adjoint of a numerical model makes it possible to determine the initial conditions
leading to a forecast that would best fit data available over a finite time interval. These
two formulations can be combined to yield what is now called the 4D variational
formulation of the statistical estimation problem or 4D-Var.

The first implementation of 3D-Var was done at NCEP (Parrish and Derber, 1992)
and later on at ECMWF (Courtier et al., 1998). Other centres like the Canadian
Meteorological Centre (Gauthier et al., 1999) and the Met Office (Lorenc et al., 2000)
also implemented operationally a 3D-Var scheme. Courtier (1997) noted that there
exists a dual formulation of 3D-Var on which is based the assimilation of NASA's Data
Assimilation Office (Cohn et al., 1998) and of the US Naval Research Laboratory
(Daley and Barker, 2000).  In 1997, ECMWF implemented 4D-Var (Rabier et al., 2000)
and so did Météo-France in 2000 (Gauthier and Thépaut, 2001). A considerable amount
of research was necessary to achieve these operational implementations. Courtier et al.
(1994) pointed out that a direct implementation of 4D-Var requires a computational
time exceeding the capacity of even the most powerful computers. The incremental
formulation of 4D-Var was proposed in which a simplified model is used to perform
inner iterations followed by an integration of the full model based on the updated initial
conditions. This outer iteration provides an updated evaluation of the innovations and
of the reference trajectory required to define the simplified tangent linear model. In this
context, an operational implementation of 4D-Var is possible. In recent years,
experimentation with now operational 4D-Var systems indicates that it is necessary to



make the simplified model to agree more closely with the complete high-resolution
model both for its dynamics and physical parameterizations. This question is the object
of current research regarding the nature of the simplified physical parameterizations that
need to be used (Janisková et al., 1999; Mahfouf, 1999).

In the context of the data assimilation cycles, the background error statistics should
reflect the information gained from past observations, which is implicitly contained in
the background state. Fisher and Andersson (2001) report recent results of experiments
with a reduced rank Kalman filter, used to provide flow dependent background error
covariances to 4D-Var. Their results did not show substantial improvements in the
forecasts. This topic is being investigated using different types of simplified Kalman
filters.

In this paper, the focus will be on the variational formulation of the data assimilation
problem. In section 2, the incremental formulation will be presented and discussed first
in the context of 3D-Var. Section 3 presents the incremental form of 4D-Var. Results
with a simple barotropic model are presented to illustrate the capabilities and limitations
of the approach. Section 4 reviews some recent results obtained from experimentations
by several groups (e.g., ECMWF, Météo-France). Section 5 discusses some avenues
being explored in current research. This includes the ensemble Kalman filter (Evensen,
1997; Houtekamer and Mitchell, 2001) or representer algorithms (Bennett and
Thorburn, 1982; Xu and Daley, 2002).

2. The incremental formulation of variational assimilation

The variational assimilation problem is expressed here as
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where X is the model state, Xb is the background state,  B represents the background-
error covariances,  y is the observation vector, H, the observation operator while R
represents the observation error covariances. To precondition the minimization, the

Figure 1. Kinetic energy spectra for the rotational and divergent component for the autocorrelation of
background-error statistics at 500 hPa.
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In 3D-Var, the analysis increment δx = B1/2 ξ has an effective lower resolution that is
dictated by the background-error covariances. For example, Fig.1 shows the spectrum
of the rotational and divergent kinetic energy of correlations. The use of such
covariances will lead to an analysis increment with a resolution that cannot exceed 200
km.

Figure 2. a) Analysis increments of dew point depression at 700 hPa from the control experiment valid at
1200 UTC 24 September 1997. b) Analysis increment of a) minus that of the incremental experiment. c).

Analysis increments shown in a) minus that of the non-incremental experiment (from Laroche et al.,
1999)



However, it is beneficial to compute the innovations y' = y − H(Xb) using the
background state at its full resolution. Following Courtier et al. (1994), we approximate
H(X) ≅  H(Xb) + (∂H/∂X)(Xb) δx ≡≡≡≡ H(Xb) + H'(Xb) δx so that (2.2) is now approximated
by
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with  δx(ξ) = B1/2 ξ. As pointed out in Courtier et al. (1994), JL has a form very similar
to the original problem except that the observation operator has been linearized around
Xb and the resulting Jacobian, H'(Xb), is used instead of the nonlinear form of the
observation operator. Fig.2 from Laroche et al. (1999) shows the analysis increment
obtained by using the original cost function at the full resolution of the model and
differences between this analysis increment and that obtained by using (2.3) (Fig.2b).
The differences indicate that the analyses are virtually identical. Fig.2c however shows
the difference between the reference analysis increment and that obtained by solving
(2.1) but at a lower resolution. The differences are significant and stress the importance
of computing the innovations with respect to the full resolution of the background field.

This approach has been used at the Canadian Meteorological Centre (Laroche et al.,
1999) and Météo-France (Desroziers et al., 2003) to produce regional analyses for a
variable resolution model while the analysis increment remains global and at a coarser
resolution. The small scales features found in the analysis are therefore produced by the
model itself in response to changes brought by the analysis to the large-scale
components.

3. The incremental form of 4D-Var

The reasons why low-resolution increments are sufficient in 4D-Var are different than
those presented above for 3D-Var. In Thépaut and Courtier (1991) and later on in
Tanguay et al. (1995) and Laroche and Gauthier (1999), it is shown that for the large-
scale dynamics, 4D-Var adjusts the more energetic large-scale components first.  To
determine the analysis increments of 4D-Var within the inner loop, Courtier et al.
(1994) then proposed to use the tangent linear model (TLM) and its adjoint (Adj) at a
coarser resolution with simplified physical parameterizations. However, as for the 3D-
Var case, the innovations must be computed with respect to a high-resolution trajectory
generated by the high-resolution model with its complete set of physical paramete-
rizations. Outer loops are however needed to update the reference trajectory that defines
the TLM and Adj.

Two questions are then raised. First, is it sufficient for the minimization to consider
only the large-scale components of the gradient of the cost function and, second, can the
evolution of these large scale components be correctly predicted by a simplified model?
Fig.3 from Laroche and Gauthier (1999) summarizes results from several experiments
carried out with a simple barotropic model on a β-plane. The experiments were cast as
identical twins with observations generated from a reference trajectory provided by the
assimilating model and random noise representative of observation error was added to
those synthetic observations. No background term is included. Fig. 3 shows the correla-



Figure 3. Correlation between the reference vorticity field and those obtained from various
variational formulations. The synthetic observations are at low resolution and random noise has been

added (from Laroche and Gauthier, 1999).

tion between the reference trajectory (or nature run) and the results from several
experiments. The assimilation takes place over the first 10 nondimensional time units
and forecasts at full resolution are made up to t = 40. The full resolution 4D-Var shows
the best that can be obtained from the low-resolution observations. Given the limit of
predictability, a reasonable forecast can be obtained up to t ≅ 30. The truncated 4D-Var
experiment is one in which the adjoint model is used at the full resolution but the
resulting gradient is truncated at a lower resolution (reduced by a factor of 4). In this
case, Fig.3 shows that the truncated 4D-Var compares to the results obtained with the
full resolution 4D-Var.

The low-resolution 4D-Var experiment is a complete 4D-Var based on the model at
low-resolution. Fig.3 indicates that it only marginally improves the fit to the reference
trajectory compared to what is obtained from the starting point of the minimization.
Finally, the incremental form of 4D-Var shows that with only one outer loop, the results
are only slightly improved compared to the low-resolution 4D-Var. However, i f three
outer loops are considered, then the incremental formulation yields to a reasonable
approximation of the truncated 4D-Var. These results show the crucial role of updating
the trajectory by performing outer iterations of 4D-Var.

Another question raised by 4D-Var is the impact of model error. It is implicitly
assumed that any misfit to the observations is the result of error in the initial conditions.
Experience shows that bad forecasts are often caused by errors in the model itself. An
example is presented in the context of the barotropic model used in the experiments
presented above. To mimic phase errors that occur with numerical weather prediction
models that do not displace meteorological systems at the correct phase speed, synthetic



observations were generated from a nature run obtained with β = 0.5 while β was set to
0.4 in the model used in the assimilation. Fig.4 shows the correlation between the true
state and the assimilation/forecast based on the erroneous model: the assimilation
window here is 10 < t < 20. It shows that the best solution is obtained not at the end of
the assimilation window but at some earlier time. To test the quality of the analysis, the
true model (β = 0.5) was used to make the forecast using the 4D-Var analysis at t = 20
(dotted line) and at t = 18 (dashed line) where the maximal correlation to the true state
was obtained. It shows that the latter case yields to a substantially better forecast. So,
even though these experiments used perfect observations at all grid points and at all
times, the presence of model error cannot translate the information from the
observations into a better forecast.

In operational systems, model error is often associated with weaknesses in the
numerous physical parameterizations used in the model. The incremental formulation of
4D-Var introduces a simplified set of physical parameterizations that should be
consistent with those of the complete model. The development of a simplified set of
physical parameterizations (deep convection, stratiform precipitation, surface and
gravity-wave drag, vertical diffusion and radiation) is presented in Janisková et al.
(1999) and Mahfouf (1999). As discussed in Mahfouf and Rabier (2000), this translated
in a better fit to the observations within the inner loop of the 4D-Var. In Barkmeijer et
al. (2001) and Puri et al. (2001), it is shown that the inclusion of a simplified physics in
the TLM/Adj for the computation of the singular vectors used in their ensemble
prediction system, has a significant impact on the spread of the resulting ensemble of
forecasts.

Finally, it is important to stress that the 4D-Var analysis and forecast are better
balanced with respect to the internal balance of the model. Fig.5 shows the average
precipitation rates (over 24-h) as a function of forecast time. It clearly shows that,

Figure 4. Solid line shows the correlation between the nature run obtained by using β = 0.5  and the
assimilation/forecast of a full 4D-Var based on a model using β = 0.4. Using the perfect model to
perform the forecast, the dashed (dotted) line show the correlation obtained when using the initial

conditions at t = 18 (t = 20).



compared to 3D-Var, the 4D-Var analyses do not show a significant imbalance in the
first hours of the forecast.  This spin-up process is often associated with the presence of
spurious gravity waves that need to be removed by an initialization process such as
nonlinear normal mode initialization or a digital filter. The experiments of Gauthier and
Thépaut (2001) show that even without any constraint to suppress these fast oscillations
(No Jc experiment), the 4D-Var analysis does not lead to an appreciable precipitation
spin-up at the initial time.

4. Experimentation with 4D-Var

The introduction of the time dimension in the assimilation allows information to be
extracted from a time series of observations. For instance, the 4D-Var assimilation of
measurements related to passive tracers provides information about the winds
(Andersson et al., 1994). Moreover, the 4D-Var analysis increments have a baroclinic
structure that can be related to the fastest growing perturbations (Thépaut et al., 1996). ,
Based on the extensive experimentation carried out at ECMWF in preparation for the
implementation of 4D-Var, Rabier et al. (1998, 2000) report that the main differences
between the 3D-Var and 4D-Var analysis increments were observed in those regions
identified as the most sensitive to perturbations in the initial conditions. The sensitive
regions were determined from the singular vectors. Their results also indicate that the
gain obtained with 4D-Var lies in reducing the number of missed forecasts due to rapid
cyclogenesis. This indicates that 4D-Var is able to determine the changes to the initial
conditions that will trigger or not the development of synoptic systems.

The advantage of 4D-Var over 3D-Var is that it makes it possible to assimilate data
at the observation time, which results in an increase of the volume of data that can be

Figure 5. Average precipitation rates (in mm/day) as a function of forecast time. Those have been
averaged over the Northern hemisphere for the two-week period extending from 9 to 25 January 1999.
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assimilated. Moreover, information contained in the temporal variation can also be
extracted. However, Järvinen et al. (1999) present some difficulties, encountered in the
assimilation of surface pressure data from stations reporting every hour. In regions
where the real orography differs from that of the model, a bias can be introduced in the
surface pressure data. When all hourly reports are assimilated, this results in a
significant negative impact. This problem is more acute for isolated stations since there
are no surrounding data to weigh against this biased estimate. Removing the effect of
this bias from the data can be addressed in different ways and Järvinen et al. (1999)
introduced a time-correlation in the observation error that manages to alleviate the
problem. The net effect is to focus the analysis more on the variation of surface
pressure than on the mean value of surface pressure. It is the surface pressure tendency
that is more closely linked to developing baroclinic systems (Bengtsson, 1980).

5. Conclusion

Any variational problem raises the issue of the convergence of the minimization. One
iteration of the minimization being particularly expensive in 4D-Var, its practical
implementation has to limit the number of iterations to a rather low number, typically
less than a hundred. Fisher and Andersson (2001) proposed a preconditioning of the
minimization by approximating the Hessian of the 4D-Var cost function and this
significantly improved the convergence. Problems in the conditioning could also
explain a case of poor convergence in a 4D-Var experiment reported by Andersson et
al. (2000). Convergence of the minimization is therefore still an issue and given the
nonlinear nature of the model, so is the existence of multiple minima (Tanguay et al.,
1995).

Currently, a lot of research is going on to address the importance of model error in
4D-Var and data assimilation in general. In particular, in the context of 4D-Var, the
model is assumed to be perfect and even more, in the incremental formulation, the
simplified model should be a good approximation of the more accurate high-resolution
model with sophisticated physical parameterizations. As discussed in Bouttier (2001),
extending the assimilation window to 12-h has accentuated the importance of these
differences that could be diagnosed from the differences between observation
departures computed with respect to the simplified and high-resolution models.
Extending 4D-Var to longer assimilation windows may be more difficult than was
thought initially due to the importance of model errors.

It was mentioned briefly that cycling 4D-Var requires that the background-error
covariances reflect their flow-dependent nature. Results presented by Fisher and
Andersson (2001) indicate that there is a long way from theory to practice. The
reduced-rank Kalman filter used in their experiments provided a flow-dependent
estimate of the covariances but this only had a marginal impact on the resulting
forecasts.

Other avenues are being explored in 4D data assimilation. In particular, the
ensemble Kalman filter (EnKF) (Evensen, 1997; Houtekamer and Mitchell, 2000) has
been proposed recently to obtain a practical way of implementing a Kalman filter for
complex models without having to develop the adjoint of a numerical model. The



Monte-Carlo approach that supports the EnKF then raises some questions about the
required size of the ensemble. Up to now, the direct estimate is often noisy and some
assumptions must be introduced to address the rank deficiency problem. It also makes it
more difficult to introduce non-Gaussian error statistics for errors, and to maintain
dynamical balance in the analysis increments.

The 4D-Var algorithm imposes the model as a strong constraint, which has some
limitations. Bennett and Thorburn (1992) introduced the weak constraint formulation in
which the model is imposed only as a weak constraint. Because it uses the complete
model trajectory and not only the initial conditions, this approach is much more
demanding than 4D-Var. Recently, Xu and Daley (2002) introduced the accelerated
representer algorithm which is referred to as 4D-PSAS in Courtier (1997). It
corresponds to the dual formulation of 4D-Var and can be built from the same basic
operators (e.g., model integrations, observation operators, and their tangent linear and
adjoint, covariance models). In Lagarde et al. (2001), a graphical representation has
been introduced to represent a wide class of assimilation algorithms altogether with
their dual representations. Their analysis show that i f some care is taken in developing a
data assimilation system, it would be possible to reuse the same basic building blocks to
obtain new algorithms. This would be an advantage for operational centres that must
adapt quickly to new advances in a rapidly evolving field.
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