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Abstract. In this paper, we introduce a new framework for deriving partitioned implicit-5
exponential integrators for stiff systems of ordinary differential equations and construct several time6
integrators of this type. The new approach is suited for solving systems of equations where the7
forcing term is comprised of several additive nonlinear terms. We analyze the accuracy and stability8
of the new integrators and compare their performance with existing schemes for such systems using9
several numerical examples. We also propose a novel approach to visualizing the linear stability10
of the partitioned schemes, which provides a more intuitive way to understand and compare the11
stability properties of various schemes. Our new integrators are A-stable, 2nd order methods that12
require only one call to the linear system solver and one exponential-like matrix function evaluation13
per time step. In addition to comparing the new integrators to previously proposed schemes, our14
numerical experiments validate the convergence and efficiency of the new methods.15
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1. Introduction. Many scientific and engineering problems involve dynamics19

driven by several processes of different natures. Often such systems are modeled20

by differential evolution equations with a forcing term that is comprised of several21

additive components. These additive terms can represent the influence of each of the22

driving mechanisms. A well-known example of such a system is an advection-diffusion23

equation where the evolution is governed by the advective and diffusive forces modeled24

by two additive terms with first-order and second-order derivatives, respectively. In25

general, a two-term forcing model can be written as an initial-value problem of the26

form27

y′ = f1(y) + f2(y)(1.1a)28

y(t0) = y0.(1.1b)2930

Frequently, the forcing terms fi(y) represent processes occurring over a wide range of31

temporal scales. As a result, the differential equations modeling such a system are stiff,32

with stiffness arising from either or both of the additive forcing terms. Such additive33

forcing structure can be exploited in constructing an efficient temporal numerical34

integrator to solve the model equations. This is often accomplished through the use35

of a splitting [16, 7] or a partitioned approach [4, 5]. Both of these approaches have36

advantages and disadvantages and construction of methods of either type, particularly37
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of higher-order, is still an active area of research. In this paper, we focus on the38

partitioning approach to develop new methods.39

Some of the best-known partitioned integrators are implicit-explicit (IMEX) meth-40

ods [3] which have been used for a wide range of applications [12, 19, 13, 11]. IMEX41

techniques treat one component of the forcing term implicitly and the other explicitly,42

thus these methods are appropriate for problems where one of the forcing terms is43

responsible for stiffness in the system. For problems with stiffness present in both44

forcing terms, partitioning approach has been extended to implicit-implicit methods45

[22] and implicit-exponential (IMEXP) integrators [14, 2, 8]. For such problems, how-46

ever, more attention has been dedicated to systems where one of the forcing terms47

is linear. Fewer options have been introduced for problems with nonlinear-nonlinear48

additive stiff forcing structure [2, 8].49

In this work, we present a novel way to construct implicit-exponential-type meth-50

ods for precisely such systems. In other words, we develop a new way to construct51

partitioned time integration schemes that treat f1 implicitly and f2 exponentially for52

problems where both of these functions are nonlinear and their Jacobians J1,n = ∂f1
∂y53

and J2,n = ∂f2
∂y are stiff.54

This approach is particularly advantageous when one of the forcing terms can be55

treated implicitly in a very efficient way, e.g., when a fast preconditioner exists for56

this portion of the Jacobian. We extend the work in [15] to problems where both f157

and f2 are nonlinear and introduce a new ansatz for constructing such partitioned58

implicit-exponential integrators which can potentially be extended to higher order59

methods. We also describe a convenient way to visualize and assess the stability of60

the methods and choose schemes with favorable stability properties. The efficiency61

and accuracy of the new techniques are demonstrated on a set of test problems in a62

numerical study which also includes a thorough comparison of the performance of the63

new methods with previously introduced partitioned schemes for such problems. In64

the following, it is assumed that the partition into f1 and f2 is consistent with the65

problem to be solved and the Jacobians corresponding to each of the forcing terms66

are well-defined matrices such that their matrix exponentials or their inverses can be67

approximated in a stable manner.68

The article is organized as follows. The first section briefly reviews the exponential69

and Rosenbrock methods, which serve as a building block of our new techniques.70

Section 3 introduces the novel ansatz for the partitioned implicit-exponential methods71

and presents the construction of the new second-order schemes of this type. Linear72

stability analysis of the new methods is included in section 4 where we also show that73

some of our schemes are A-stable. Finally, in section 5 we validate and compare the74

performance of our methods to other techniques using several numerical test problems.75

2. Review of basic exponential and Rosenbrock methods. The new par-76

titioned methods which will be introduced in section 3 use both exponential and77

Rosenbrock-type integration to advance (1.1a) in time. Thus here we present a brief78

overview of these two approaches as the building blocks of our new schemes.79

Consider the following (unpartitioned) system of ordinary differential equations80

(ODEs)81

(2.1)
dy

dt
= f(y), y(t0) = y0, y ∈ RN , f : RN → RN

82

where y represents some unknown dynamically changing properties of the system, and83

f describes all forces driving the system. Suppose we are interested in computing the84
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solution to this system over an interval t ∈ [t0, T ]. Letting h be the discretization step85

size and yn = y(tn) denote the approximate solution at tn = t0 + hn, one can expand86

(2.1) in a Taylor series to obtain:87

(2.2)
dy

dt
(t) = f(yn) + Jn · (y(t)− yn) + r(y(t)),88

where Jn =
df

dy
(yn) and89

(2.3) r(z) = f(z)− f(yn)− Jn · (z − yn).90

Using the integrating factor e−Jn t on equation (2.2) we can write it in the form91

(2.4)
d

dt

(
e−Jn ty(t)

)
= e−Jn t(f(yn)− Jnyn) + e−Jn tr(y(t)).92

Integrating over the time interval [tn, tn + h] and multiplying by eJn(tn+h) leads to93

the integral form94

(2.5) y(tn + h) = yn + φ1(hJn)hf(yn) +

∫ tn+h

tn

eJn(tn+h−t)r(y(t))dt,95

where the matrix function φ1 is defined as φ1(A) = (eA − I)A−1 and I is the identity96

matrix. This equation, called the Volterra equation among its other names, is the97

starting point for the construction of different exponential integrators by introducing98

approximations to the terms of the right-hand side to estimate yn+1 ≈ y(tn + h).99

For instance, a second-order exponentially fitted Euler method (EPI2) [18] can100

be constructed by neglecting the nonlinear integral in (2.5), e.g.:101

yn+1 = yn + φ1(hJn)hf(yn).(2.6)102103

The action of the matrix function φ1 on a vector can be either evaluated exactly or104

approximated depending on the properties of the matrix Jn. For example, φ1(hJn)105

can be calculated exactly if Jn is small or diagonal. When the Jacobian is large and106

sparse, a variety of approximation techniques such as Taylor expansions [1], Krylov-107

based algorithms [9] or Leja methods [6] can be used.108

A one-stage second-order Rosenbrock scheme [20], denoted here ROS2, could109

be derived by analogously neglecting the integral in (2.5) but also replacing the φ1110

function by its Padé approximant of order [0/1] :111

yn+1 = yn + h

(
I − h

2
Jn

)−1

f(yn)(2.7)112
113

It is worth mentioning that the ROS2 scheme is very close in its formulation (differing114

only by a factor 1
2 in front of the Jacobian) to the linearized Euler method115

yn+1 = yn + h (I − hJn)
−1
f(yn)(2.8)116117

However, the linearized Euler method is only first-order.118

Both EPI2 and ROS2 require evaluation of matrix functions of the full (unpar-119

titioned) Jacobian Jn and share similar properties in terms of linear stability. The120

choice between the two, therefore, depends on the nature of the problem to be solved.121
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For example, when an efficient solver for a linear system of equations is available (e.g.,122

a direct solver or a preconditioned iterative method), then the ROS2 scheme may be a123

judicious choice. Otherwise, exponential approximation of φ1(hJn)fn might be more124

efficient when used with a fast algorithm such as the KIOPS method [9]. The case125

where an efficient linear solver is only available for a portion of the Jacobian will be126

discussed in the next section.127

3. New nonlinear-nonlinear partitioned Rosenbrock-Exponential (RO-128

SEXP) methods.129

3.1. General framework. Below we introduce a framework for developing ef-130

ficient numerical schemes for solving nonlinear-nonlinear partitioned problems of the131

form:132

(3.1) y′ = f(y) = f1(y) + f2(y), y(t0) = y0,133

where f1 and f2 are both stiff. To develop such schemes, we use the idea of generalized134

EPI methods introduced in [23]. Specifically, in [23] it was proposed to construct135

approximation to the solution of (3.1) in the form136

yn+1 = yn +
∑
i

ψi(hJn)f(zi)(3.2)137

138

where ψi(hJn) are functions of a matrix Jn which in some way approximates the139

Jacobian or a portion of the Jacobian, and zi’s are vectors approximating the solution140

on some nodes. The functions ψi are chosen to construct integrators of a particular141

type. For example, these functions can be exponential or rational depending on142

whether an exponential, an implicit, or a hybrid method is being built.143

We extend this idea to the case of a partitioned right-hand side and allow these144

functions to be a product of exponential or rational functions, each applied to either145

the Jacobian of f1 or f2. For low order methods, this idea can be expressed using the146

following ansatz:147

(3.3) yn+1 = yn +Q1,1(hJ1,n)Q2,1(hJ2,n)hf1(yn) +Q1,2(hJ1,n)Q2,2(hJ2,n)hf2(yn)148

where: Qi,j are analytic functions (rational or exponential-like functions), J1,n and149

J2,n are respectively the Jacobians of f1 and f2 evaluated at yn. Note that the150

multiplication order of the functions Q1,i and Q2,i in the above ansatz can be changed151

to derive different schemes. Since matrices J1,n and J2,n do not necessarily commute,152

we can also consider the following flipped ansatz that reverses the order of application153

of the functions:154

(3.4) yn+1 = yn +Q2,1(hJ2,n)Q1,1(hJ1,n)hf1(yn) +Q2,2(hJ2,n)Q1,2(hJ1,n)hf2(yn)155

Because the functions Qi,j are only applied to either J1,n or J2,n, availability of156

efficient solvers that estimate Qi,j ’s applied to each of these matrices separately for157

some problems can result in significant computational savings compared to a method158

which involves only the full Jacobian Jn = J1,n + J2,n. This ansatz is very general159

and allows the construction of many methods. In the following section, we present160

the derivation of several efficient second-order schemes.161

3.2. Construction of second-order schemes. In this section, we derive the162

classical order conditions necessary for a scheme based on the ansatz (3.3) to have163
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second order of convergence. To do so, we assume that the numerical solution at164

time tn is exact (y(tn) = yn) and match the numerical solution at the next time step165

yn+1 to y(tn+1), the exact solution at time tn+1 up to and including second order166

terms. This will add some restrictions on the functions Qi,j that will be used to167

derive second-order schemes.168

First, we assume that the functions Qi,j are analytic, so that we have the following169

Taylor series representation170

Qi,j(hA) = αi,j + βi,jhA+O(h2)171

Without loss of generality, we can assume that αi,j = 1. If it is not the case, the
function can be rescaled. Moreover, the product of the scaling coefficients must be
equal to 1 for consistency. We use these expansions of Qi,j to obtain the following
form of the numerical solution

yn+1 = yn +Q1,1 (hJ1,n)Q2,1 (hJ2,n)hf1 (yn) +Q2,1 (hJ1,n)Q2,2 (hJ2,n)hf2 (yn)

= yn + (1 + β1,1hJ1,n) (1 + β2,1hJ2,n)hf1(yn)

+ (1 + β1,2hJ1,n) (1 + β2,2hJ2,n)hf2(yn) +O
(
h3

)
= yn + h (f1 (yn) + f2(yn))

+ h2 [(β1,1J1,n + β2,1J2,n) f1(yn) + (β1,2J1,n + β2,2J2,n) f2(yn)] +O
(
h3

)
On the other side, the exact solution at time tn+1 can be expanded as follows,172

y(tn+1) = y(tn) + h(f1(yn) + f2(yn)) +
h2

2
(J1,n + J2,n)(f1(yn) + f2(yn)) +O

(
h3

)
173

After matching the terms up to second order, we have the following conditions174

on the functions Qi,j :175

β1,1 = β2,1 = β1,2 = β2,2 = 1/2176177

Table 3.1 presents several schemes that satisfy these conditions. These methods178

were obtained by choosing the functions Qi,j to be exponential or rational functions179

similar to those found in formulas for the EPI2 and ROS2 schemes. For this reason,180

if we consider the extreme case partitioning f1 = 0, f2 = f then all the schemes181

from Table 3.1 reduce to the EPI2 method. Likewise, if f1 = f, f2 = 0 then all182

the schemes simplify to the ROS2 scheme. It should be noted that we derived these183

methods using classical order conditions theory. In our future research we plan to184

investigate whether stiffly accurate methods approach of [15] can be used to build185

similar partitioned methods.186

As mentioned above, implicit-exponential (IMEXP) schemes for linear-nonlinear187

partitioned problems were introduced in [15]. In particular, the scheme HImExp2N188

(equation (4.2) in [15]) is derived for problems of the type y′ = Ly + N(y) where L189

is a linear operator and N is a nonlinear operator. Interpreting this scheme in the190

context of our ansatz and the derived order conditions, we can easily see that the191

method HImExp2N also satisfies the order conditions (3.2). Thus, HImExp2N can192

also be used for the nonlinear-nonlinear partitioned problems and is, in fact, a second193

order scheme for problems of the form (1.1a). Using the notation from this article,194

HImExp2N can be written as:195
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Coefficients Scheme

RosExp2 – ansatz (3.3)

Q1,1(z) = Q1,2(z) =
(
I − z

2

)−1 yn+1 = yn +
(
I − h

2 J1,n

)−1
φ1(hJ2,n)hf(yn)

ExpRos2 – ansatz (3.4)

Q2,1(z) = Q2,2(z) = φ1(z) yn+1 = yn + φ1(hJ2,n)
(
I − h

2 J1,n

)−1
hf(yn)

PartRosExp2 – ansatz (3.3)

Q1,1(z) = Q1,2(z) =
(
I − z

2

)−1 yn+1 = yn +
(
I − h

2 J1,n

)−1
[

1
2

(
ehJ2,n + I

)
hf1(yn) + φ1(hJ2,n)hf2(yn)

]
Q2,1(z) = 1

2 (ez + I) PartExpRos2 – ansatz (3.4)

Q2,2(z) = φ1(z) yn+1 = yn + 1
2

(
ehJ2,n + I

) (
I − h

2 J1,n

)−1
hf1(yn) + φ1(hJ2,n)

(
I − h

2 J1,n

)−1
hf2(yn)

Table 3.1: Second-order Rosenbrock-Exponential schemes

Y1 = yn +
h

2

(
I − h

2
J1,n

)−1

f(yn)(3.5a)196

yn+1 = yn + h

(
I − h

2
J1,n

)−1

f(yn) + 2hφ2(hJ2,n)(f2(Y1)− f2(yn))(3.5b)197
198

Other ideas of partitioned nonlinear-nonlinear schemes were also explored in [8,199

2], but both of the methods derived in these publications are limited to first-order200

accuracy. We will include the SIERE and SBDF2ERE schemes derived in these papers201

in our comparisons:202

• SIERE [8]:

yn+1 = yn + h (I − hJ1,n)
−1

(f1(yn) + φ1(hJ2,n)f2(yn))

• SBDF2ERE [2]:203

yn+1 = yn +
1

3

(
I − 2h

3
J1,n

)−1

(yn − yn−1 + 2hf1(yn) + 2hφ1(hJ2,n)f2(yn))

Note that all the schemes are written so that the f1 partition is treated using the204

rational function, while the f2 partition is treated exponentially.205

4. Linear stability. As mentioned in the previous section, our work focuses on206

nonlinear-nonlinear partitioning where both f1 and f2 are stiff. In this context, it is207

important to have good stability properties. In order to study the linear stability of208

partitioned integrators we assume that the partitioned Jacobian terms J1,n and J2,n209

are simultaneously diagonalizable and consider the following problem:210

(4.1) y′ = λ1y + λ2y where λ1, λ2 ∈ C.211

6
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RosExp2 ExpRos2 HImExp2N PartRosExp2 PartExpRos2 SIERE

R(z1, z2) 1 + 2φ1(z2)
2−z1

(z1 + z2)
2+z1
2−z1

ez2 ez2

1−z1

Table 4.1: Stability functions for one-step methods.

Note that this problem is not able to give a full picture of the linear stability212

of additively partitioned problems. For example, it does not take into account the213

potential coupling between the two partitions. However, based on our experiments,214

this problem allows us to give a good description of the stability of the different215

methods.216

Any one-step method applied to (4.1) reduces to the recurrence yn+1 = R(z1, z2)yn217

where z1 = hλ1, z2 = hλ2 and R(z1, z2) is the stability function of the scheme. The218

scheme is then stable if |R(z1, z2)| ≤ 1. The stability functions for all one-step meth-219

ods considered in this work are listed in Table 4.1.220

Because the SBDF2ERE scheme is a multi-step method, we determine stability
differently. After applying the method to the linear problem (4.1) we obtain the
recurrence

yn+1 +R1(z1, z2)yn +R0(z1, z2)yn−1 = 0

where R1(z1, z2) = − 2
3−2z1

(1 + ez2) and R0(z1, z2) = 1
3−2z2

. The method will be221

stable when w1 and w2, the roots of the polynomial w2 + R1(z1, z2)w + R0(z1, z2),222

satisfy |wi| ≤ 1.223

Because both z1 and z2 are complex-valued, the stability regions for both one-step224

and multi-step methods are challenging to visualize. To simplify our presentation of225

stability, we will use A(α)-stability. For a stability function R(z) of a single complex226

variable, a method is said to be A(α)-stable if it includes a sector of an angle α in its227

stability region with α defined as:228

α = max{α : ∀z (z ∈ C− ∧ | arg(z)− π| ≤ α) ⇒ |R(z)| ≤ 1}.(4.2)229230

For non-partitioned schemes, α is the maximum value of the angle such that the231

method is stable for all complex z values in the sector delimited by the lines with an232

angle −α and +α with respect to the negative real axis. This value ranges from 0◦ if233

the method is only stable on the negative real axis to 90◦ for a method that is stable234

in the entire left half-plane. When the angle of the α-stability of a scheme is equal to235

90◦, we say that the method is A-stable.236

By fixing either z1 or z2, we can reduce the stability function of a partitioned237

scheme to a function of a single complex variable. We can then compute the stability238

angle α in the remaining free variable. This can be expressed mathematically as239

fixing z1: α(z1) = max{α : ∀z2 (z2 ∈ C− ∧ | arg(z2)− π| ≤ α) ⇒ |R(z1, z2)| ≤ 1},
(4.3a)

240

fixing z2: α(z2) = max{α : ∀z1 (z1 ∈ C− ∧ | arg(z1)− π| ≤ α) ⇒ |R(z1, z2)| ≤ 1},
(4.3b)

241242

Fixing z1 or z2 over a grid of values and using color to represent the stability angle243

makes it possible to easily visualize the stability of each method. Figure 4.1 shows the244

α-stability for the schemes presented in the previous section. Note that ordinarily,245

due to the high dimensionality of the stability function R(z1, z2), it is difficult to assess246
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the properties of the stability regions. Using the approach described above, it is easier247

to visualize the stability regions. To our knowledge, this approach to visualizing the248

linear stability of a method has not been used before. Plots like Figure 4.1 provide249

a visual guide to the overall shape of the stability regions. Additional visualization250

can be done if one is interested in the geometric details of a subregion. For example,251

different types of plots, such as graph of the angle value along the real axes, can be252

created to better assess stability for eigenvalues on the real axes.253

In Figure 4.1 (a), we see that α = 90◦ for all values of z1 and z2. This implies that254

the schemes PartRosExp2, PartExpRos2, and SIERE are all A-stable. This can be255

formally proven by observing that the stability function for each of these methods is a256

product of two A-stable functions in z1 and z2, respectively (e.g. the stability function257

of PartRosExp2 and PartExpRos2 are the products of the functions R1(z) = ez and258

R2(z) =
2+z
2−z ). Since both of these functions are A-stable, the product must also be259

A-stable.260

Figure 4.1 (b), shows that the stability of the schemes RosExp2, ExpRos2 and261

HImExp2N is more restricted. Specifically, there are restrictions on stability in z1 if262

values of z2 are close to the imaginary axes. However, for problems with spectrum263

lying sufficiently away from the imaginary axes stability is retained. Finally, the264

stability of the scheme SBDF2ERE, presented in Figure 4.1 (c), is good overall, with265

some limitations close to the origin.266

5. Numerical experiments. The stability properties of the new schemes for267

linear equations with constant coefficients provide necessary, but not sufficient condi-268

tions for the stability of variable coefficients and nonlinear problems.269

In this section, we summarize numerical experiments that confirm that the con-270

clusions of our analysis also apply to more complicated problems.271

5.1. Advection-diffusion PDE (AdvDiff). We consider the following 1D272

advection-diffusion PDE:273

(5.1)
∂u

∂t
+

∂

∂x

(
α0u+ α1u

2
)
=

∂

∂x

[
(β0 + β1u)

∂u

∂x

]
, x ∈ [0, 1], t ∈ [0, 0.1],274

We use a Gaussian function as the initial condition u(x, 0) = e−5000(x−0.2)2 and ho-
mogeneous Dirichlet boundary conditions u(0, t) = u(1, t) = 0. We also consider two
sets of parameters: the first correspond to a linear problem with α0 = 5, α1 = 0,
β0 = 10−2, and β1 = 0, and the second representing a nonlinear problem with α0 = 5,
α1 = 5, β0 = 5×10−4, and β1 = 10−1. Figure 5.1 shows the solution u of this PDE at
the initial and final time. Equation (5.1) is discretized in space using standard second-
order centered finite differences with 1000 grid points. This discretization leads to a
system of N ordinary differential equations that can be written as:

u′ = fadv(u) + fdiff(u)

where fadv(u) correspond to the discretized advection term ∂
∂x

(
α0u+ α1u

2
)
and275

fdiff(u) correspond to the discretized diffusion term ∂
∂x

[
(β0 + β1u)

∂u
∂x

]
. In the next276

section, we will explore the cases where f1 = fadv, f2 = fdiff (rational advection /277

exponential diffusion) as well as f1 = fdiff, f2 = fadv (rational diffusion / exponential278

advection).279

280

5.2. Schnakenberg with non-linear diffusion (Schnakenberg NL). The281

following equations describe two reacting and diffusing chemical species (u and v)282

8
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(a) Stability for the schemes PartRosExp2, PartExpRos2, and SIERE

(b) Stability for the schemes RosExp2, ExpRos2 and HImExp2N

(c) Stability for the scheme SBDF2ERE

Fig. 4.1: α-stability angles for the partitioned schemes when z1 is fixed (left-column)
or z2 is fixed (right-column). The x and y axis of the plots in the left and right
columns, respectively, correspond to the real and imaginary parts of z1 and z2. The
color represents the stability angle α defined in (4.3a) and (4.3b). The white regions
correspond to parameter values where the stability region is bounded and therefore
not α-stable even for α = 0.

evolving in two-dimensional space:283

∂u

∂t
= γ(a− u+ u2v) +∇.(uβ1∇u),(5.2a)284

∂v

∂t
= γ(b− u2v) + d ∇.(vβ2∇v), (x, y) ∈ [0, 1]2(5.2b)285

286
9
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Fig. 5.1: Solution at initial and final time for the PDE (5.1) with both sets of param-
eters

where a = 0.1, b = 0.9, d = 10, β1 = β2 = 10, tend = 10−2, and γ = 1000. As287

in [17, Section 4.2] the initial condition is a perturbation of the stable equilibrium288

and the boundary conditions are periodic in both directions. The diffusion terms are289

discretized using the standard second-order finite differences on a uniform grid with290

Nx = Ny = 128. The reaction terms are treated exponentially, while the diffusion291

terms are treated using the rational function.292

293

5.3. 1D Semilinear parabolic problem (Semilinear para). Finally, we use294

the following one-dimensional semilinear parabolic problem described in [10] (note we295

use the term ”semilinear parabolic problem” as it was named in [10]):296

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) =

∫ 1

0

u(x, t)dx+ ϕ(x, t) x ∈ [0, 1], t ∈ [0, 1],(5.3)297
298

with the homogeneous Dirichlet boundary conditions. The source function ϕ is cho-299

sen so that u(x, t) = x(1 − x)et is the exact solution. This problem was originally300

designed to demonstrate the order reduction that some exponential integrators can301

suffer when applied to stiff problems. It is therefore used here to validate that no such302

order reduction is exhibited by our schemes. The diffusion term is discretized using303

the standard second-order finite differences on a uniform grid with Nx = 400. The304

nonlinear terms on the right-hand side are treated exponentially, while the diffusion305

term is treated using the rational function.306

5.4. Numerical results. Numerical examples presented below verify the order307

of convergence of the newly derived methods and compare their performance with the308

existing methods described above. The implementation of the integrators was done in309

MATLAB 2020b. For all the schemes, we use the KIOPS method introduced in [9] to310

approximate the products of exponential and φ−functions with vectors. This method311

allows us to approximate both exponential functions in the schemes PartExpRos2 and312

PartRosExp2 at once as a single computation. The rational functions are approxi-313

mated using the GMRES method [21] with an incomplete LU factorization with no314

fill preconditioner (ILU(0)). Because the scheme BDF2ERE is a multi-step integrator315

where the solution at the current and previous time step must be known, the initial316
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step must be treated differently. In this work, the initial time step is computed using317

the 2nd order EPI2 method. The error is computed at the final time as the discrete318

2−norm between the approximate solution and a reference solution computed using319

MATLAB’s ode15s integrator with absolute and relative tolerances set to 10−14.320

In the first set of tests, we verify the order of convergence of all the methods on the321

problems presented above. Figure 5.2 shows the convergence plot (error vs. time-step322

in log-log scale) on the linear and nonlinear advection-diffusion PDE, Schnakenberg323

PDE, and the semilinear parabolic problems. Note that for the advection diffusion324

PDE, we used f1 = fadv and f2 = fdiff. We can see that, as expected, the methods325

SBDF2ERE and SIERE both converge at first-order, while the methods introduced in326

Table 3.1 and the HImExp2N scheme converge at second order. We can also see that327

for the advection-diffusion and the Schnakenberg PDE, the order of multiplication328

of the functions Qi,j does not influence the accuracy of the solution (ansatz (3.3)329

vs. (3.4)). However, for the semilinear parabolic problem, the order does affect the330

accuracy. For this problem and this partitioning, applying the function of J2,n first331

leads to better accuracy. This case illustrates that the accuracy of the method does332

depend on the problem and the chosen partitioning.333
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Fig. 5.2: Convergence plots (error vs. time step) for the linear and nonlinear AdvDiff,
Schnakenberg NL, and Semilinear para problems

Next, we want to validate the stability advantages of the new schemes that our334

analysis of section 4 predicted. We showed that for the schemes ExpRos2, RosExp2335

and HImExp2N, if z2 is close to the imaginary axis, then stability for z1 is either336

bounded or restricted. Figure 5.3 shows the convergence diagram for the advection-337
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diffusion PDE problem. Figures 5.3a and 5.3b correspond to the problem with linear338

parameters while Figures 5.3c and 5.3d correspond to the nonlinear parameters. The339

plots on the left (Figures 5.3a and 5.3c) are obtained using the partitioning f1 =340

fadv, f2 = fdiff and the plots on the right (Figures 5.3b and 5.3d) are obtained using341

the partitioning f1 = fdiff, f2 = fadv. The eigenvalues corresponding to the advection342

term fadv are expected to be close to the imaginary axis, while the eigenvalues of the343

diffusion term are expected to be along the negative real axis. Therefore, based on the344

stability analysis, we are expecting the schemes ExpRos2, RosExp2 and HImExp2N345

to have worse stability for f2 = fadv (right plots). For both the linear and nonlinear346

parameters, we see that this is indeed the case, and these methods are stable only for347

a more restrictive range of time step sizes.348
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Fig. 5.3: Stability comparison for the AdvDiff problem with different partitioning

We now compare the performance of the methods on the different test problems.349

Figure 5.4 shows the precision diagrams (error vs. CPU time) for the linear and350

nonlinear advection-diffusion PDE, Schnakenberg PDE, and the semilinear parabolic351

problems. As expected, the precision diagrams clearly demonstrate that the first352

order methods SBDF2ERE and SIERE are less efficient than all of the second order353

schemes. Also for cases where the linear solve is sufficiently more costly than the354

exponential functions estimation, such as systems solved in Figure 5.4(a), (c), method355

PartExpRos2 is less efficient since unlike all other second order schemes it requires356

two linear systems to be solved per iteration. Among the second orders methods357
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there is no a clear winner in terms of efficiency and the choice of the best methods358

should depend on the particulars of the operators f1 and f2 and the costs of evaluating359

these functions, their respective Jacobian contributions and the corresponding costs360

of linear solves and exponential functions evaluations.361
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Fig. 5.4: Precision diagram (error vs. CPU time) for the linear and nonlinear AdvDiff,
Schnakenberg NL, and Semilinear parabolic problems.

13

This manuscript is for review purposes only.



6. Conclusion. In this paper, we presented a new framework for deriving parti-362

tioned integrators for stiff systems of ODEs with nonlinear-nonlinear additive forcing363

terms. The new time integrators constructed using this framework are particularly364

efficient for problems where both nonlinear forcing terms are stiff, but one of them365

can be solved efficiently using an implicit approach, and another can be integrated366

exponentially. The new ansatz that allowed us to derive specific second-order schemes367

can potentially be extended to construct higher-order methods, where the choice of368

the sequential order for the operators is also very important. We intend to pursue369

this line of research in our future work. We have used linear stability analysis and370

a novel way to visualize the properties of a stability function to demonstrate that371

several of the new methods are A-stable and thus offer superior stability compared to372

existing schemes for similar problems. Convergence and efficient performance of the373

new methods have been demonstrated using several numerical examples. A thorough374

comparison of these schemes with integrators proposed for such problems in previous375

publications has been performed. We showed that the novel exponential-Rosenbrock-376

type methods are both more accurate and more stable than previously published377

methods and can be effectively used for a variety of applications.378
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