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SECOND-ORDER ROSENBROCK-EXPONENTIAL (ROSEXP)
METHODS FOR PARTITIONED DIFFERENTIAL EQUATIONS *

VALENTIN DALLERIT T, TOMMASO BUVOLI ¥, MAYYA TOKMAN T, AND STEPHANE
GAUDREAULT &

Abstract. In this paper, we introduce a new framework for deriving partitioned implicit-
exponential integrators for stiff systems of ordinary differential equations and construct several time
integrators of this type. The new approach is suited for solving systems of equations where the
forcing term is comprised of several additive nonlinear terms. We analyze the accuracy and stability
of the new integrators and compare their performance with existing schemes for such systems using
several numerical examples. We also propose a novel approach to visualizing the linear stability
of the partitioned schemes, which provides a more intuitive way to understand and compare the
stability properties of various schemes. Our new integrators are A-stable, 2% order methods that
require only one call to the linear system solver and one exponential-like matrix function evaluation
per time step. In addition to comparing the new integrators to previously proposed schemes, our
numerical experiments validate the convergence and efficiency of the new methods.

Key words. Implicit—-Exponential, Stiff differential equations, Exponential integrators, Rosen-
brock method,

MSC codes. 65L20, 65104, 65L05

1. Introduction. Many scientific and engineering problems involve dynamics
driven by several processes of different natures. Often such systems are modeled
by differential evolution equations with a forcing term that is comprised of several
additive components. These additive terms can represent the influence of each of the
driving mechanisms. A well-known example of such a system is an advection-diffusion
equation where the evolution is governed by the advective and diffusive forces modeled
by two additive terms with first-order and second-order derivatives, respectively. In
general, a two-term forcing model can be written as an initial-value problem of the
form

(1.1a) y' = fy) + fo(y)
(1.1b) y(to) = yo.

Frequently, the forcing terms f;(y) represent processes occurring over a wide range of
temporal scales. As a result, the differential equations modeling such a system are stiff,
with stiffness arising from either or both of the additive forcing terms. Such additive
forcing structure can be exploited in constructing an efficient temporal numerical
integrator to solve the model equations. This is often accomplished through the use
of a splitting [16, 7] or a partitioned approach [4, 5]. Both of these approaches have
advantages and disadvantages and construction of methods of either type, particularly
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of higher-order, is still an active area of research. In this paper, we focus on the
partitioning approach to develop new methods.

Some of the best-known partitioned integrators are implicit-explicit (IMEX) meth-Jj
ods [3] which have been used for a wide range of applications [12, 19, 13, 11]. IMEX
techniques treat one component of the forcing term implicitly and the other explicitly,
thus these methods are appropriate for problems where one of the forcing terms is
responsible for stiffness in the system. For problems with stiffness present in both
forcing terms, partitioning approach has been extended to implicit-implicit methods
[22] and implicit-exponential (IMEXP) integrators [14, 2, 8]. For such problems, how-
ever, more attention has been dedicated to systems where one of the forcing terms
is linear. Fewer options have been introduced for problems with nonlinear-nonlinear
additive stiff forcing structure [2, §].

In this work, we present a novel way to construct implicit-exponential-type meth-
ods for precisely such systems. In other words, we develop a new way to construct
partitioned time integration schemes that treat f; implicitly and fy exponentially for
problems where both of these functions are nonlinear and their Jacobians J; ,, = %—’2

and Jo,, = %’; are stiff.

This approach is particularly advantageous when one of the forcing terms can be
treated implicitly in a very efficient way, e.g., when a fast preconditioner exists for
this portion of the Jacobian. We extend the work in [15] to problems where both f;
and fo are nonlinear and introduce a new ansatz for constructing such partitioned
implicit-exponential integrators which can potentially be extended to higher order
methods. We also describe a convenient way to visualize and assess the stability of
the methods and choose schemes with favorable stability properties. The efficiency
and accuracy of the new techniques are demonstrated on a set of test problems in a
numerical study which also includes a thorough comparison of the performance of the
new methods with previously introduced partitioned schemes for such problems. In
the following, it is assumed that the partition into f; and fs is consistent with the
problem to be solved and the Jacobians corresponding to each of the forcing terms
are well-defined matrices such that their matrix exponentials or their inverses can be
approximated in a stable manner.

The article is organized as follows. The first section briefly reviews the exponential
and Rosenbrock methods, which serve as a building block of our new techniques.
Section 3 introduces the novel ansatz for the partitioned implicit-exponential methods
and presents the construction of the new second-order schemes of this type. Linear
stability analysis of the new methods is included in section 4 where we also show that
some of our schemes are A-stable. Finally, in section 5 we validate and compare the
performance of our methods to other techniques using several numerical test problems.

2. Review of basic exponential and Rosenbrock methods. The new par-
titioned methods which will be introduced in section 3 use both exponential and
Rosenbrock-type integration to advance (1.1a) in time. Thus here we present a brief
overview of these two approaches as the building blocks of our new schemes.

Consider the following (unpartitioned) system of ordinary differential equations
(ODEs)

d
(2.1) d% =fly),  ylto)=vo, yeRY, f:RYN RV

where y represents some unknown dynamically changing properties of the system, and
f describes all forces driving the system. Suppose we are interested in computing the
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solution to this system over an interval t € [tg, T]. Letting h be the discretization step
size and y,, = y(t,,) denote the approximate solution at ¢,, = tg + hn, one can expand
(2.1) in a Taylor series to obtain:

(22) Wty = )+ - (lt) — o) +r(u(0),
where J, = %(yn) and
(2'3> T(Z) = f(Z) - f(yn) —Jn- (Z - yn)

Using the integrating factor e=7/»* on equation (2.2) we can write it in the form

d

(2.4) P (

e M ty(t)) = eI (F(yn) = Tnyn) + e (y(1)).
Integrating over the time interval [t,,t, 4+ h] and multiplying by e’»(»*") leads to
the integral form

tn+h
(2.5) Y(tn + D) = yn + @1(hJn)hf (yn) + /t e (y (1)) dt,

n

where the matrix function ¢; is defined as 1 (A4) = (e — I)A~! and I is the identity
matrix. This equation, called the Volterra equation among its other names, is the
starting point for the construction of different exponential integrators by introducing
approximations to the terms of the right-hand side to estimate y, 11 = y(t, + h).

For instance, a second-order exponentially fitted Euler method (EPI2) [18] can
be constructed by neglecting the nonlinear integral in (2.5), e.g.:

(2.6) Ynt1 = Yn + @1(hJn)f (yn).

The action of the matrix function ¢1 on a vector can be either evaluated exactly or
approximated depending on the properties of the matrix J,,. For example, ¢ (hJ},)
can be calculated exactly if J,, is small or diagonal. When the Jacobian is large and
sparse, a variety of approximation techniques such as Taylor expansions [1], Krylov-
based algorithms [9] or Leja methods [6] can be used.

A one-stage second-order Rosenbrock scheme [20], denoted here ROS2, could
be derived by analogously neglecting the integral in (2.5) but also replacing the ¢y
function by its Padé approximant of order [0/1] :

Zjn>_1f(yn)

(2-7) Yntl =Yn + N (I -

It is worth mentioning that the ROS2 scheme is very close in its formulation (differing
only by a factor % in front of the Jacobian) to the linearized Euler method

(2.8) Ynt1 = Yo+ 0 (T = 0Jn) " fyn)

However, the linearized Euler method is only first-order.

Both EPI2 and ROS2 require evaluation of matrix functions of the full (unpar-
titioned) Jacobian J,, and share similar properties in terms of linear stability. The
choice between the two, therefore, depends on the nature of the problem to be solved.

3
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For example, when an efficient solver for a linear system of equations is available (e.g.,
a direct solver or a preconditioned iterative method), then the ROS2 scheme may be a
judicious choice. Otherwise, exponential approximation of ¢ (hJy,) f,, might be more
efficient when used with a fast algorithm such as the KIOPS method [9]. The case
where an efficient linear solver is only available for a portion of the Jacobian will be
discussed in the next section.

3. New nonlinear-nonlinear partitioned Rosenbrock-Exponential (RO-
SEXP) methods.

3.1. General framework. Below we introduce a framework for developing ef-
ficient numerical schemes for solving nonlinear-nonlinear partitioned problems of the
form:

(3.1) v =fly) =)+ f2(9), (o) = vo,

where f1 and fs are both stiff. To develop such schemes, we use the idea of generalized
EPI methods introduced in [23]. Specifically, in [23] it was proposed to construct
approximation to the solution of (3.1) in the form

(3.2) Yn+1 = Yn + Z Vi(hJn) f(2)

K2

where ;(h.J,) are functions of a matrix .J, which in some way approximates the
Jacobian or a portion of the Jacobian, and z;’s are vectors approximating the solution
on some nodes. The functions v; are chosen to construct integrators of a particular
type. For example, these functions can be exponential or rational depending on
whether an exponential, an implicit, or a hybrid method is being built.

We extend this idea to the case of a partitioned right-hand side and allow these
functions to be a product of exponential or rational functions, each applied to either
the Jacobian of f; or fy. For low order methods, this idea can be expressed using the
following ansatz:

(3.3) Yn+1 =yn + Q11 (hJ1,n)Q2,1(hJ2n)hf1(yn) + Q1,2(hJ1 n)Q2,2(hJ2n)hfa(yn)

where: Q;; are analytic functions (rational or exponential-like functions), J; , and
Jo,, are respectively the Jacobians of f; and f, evaluated at y,. Note that the
multiplication order of the functions @)1 ,; and Q2 ; in the above ansatz can be changed
to derive different schemes. Since matrices J; ,, and J3 , do not necessarily commute,
we can also consider the following flipped ansatz that reverses the order of application
of the functions:

(3'4) Yn+1l = Yn + Qz,l(hJ2,n)Q1,1(hJ1,n)hf1(yn) + Q2,2(hJ2,n)Q1,2(th,n)hfz(yn)

Because the functions @;; are only applied to either Jy, or Jz,, availability of
efficient solvers that estimate @); ;’s applied to each of these matrices separately for
some problems can result in significant computational savings compared to a method
which involves only the full Jacobian J, = Ji, + J2,,. This ansatz is very general
and allows the construction of many methods. In the following section, we present
the derivation of several efficient second-order schemes.

3.2. Construction of second-order schemes. In this section, we derive the
classical order conditions necessary for a scheme based on the ansatz (3.3) to have

4
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second order of convergence. To do so, we assume that the numerical solution at
time ¢, is exact (y(t,) = y») and match the numerical solution at the next time step
Ynt+1 t0 Y(tny1), the exact solution at time t,41 up to and including second order
terms. This will add some restrictions on the functions @);; that will be used to
derive second-order schemes.

First, we assume that the functions @); ; are analytic, so that we have the following
Taylor series representation

Qi ;(hA) = a; ; + Bi jhA + O(h?)

Without loss of generality, we can assume that «; ; = 1. If it is not the case, the
function can be rescaled. Moreover, the product of the scaling coefficients must be
equal to 1 for consistency. We use these expansions of (); ; to obtain the following
form of the numerical solution

Ynt1 = Yn + Q11 (hJ1,0) Q2,1 (hJ2n) hf1 (Yn) + Q2,1 (hJ1,n) Q2,2 (hJ2,0) hf2 (yn)
=Yn + (14 Br,1hJin) (14 B21hd2.0) hfi(yn)
+ (14 Bighdin) (1 + Baphdon) hfa(yn) + O (h?)
=yn +h(f1 (Yn) + f2(yn))
+ B2 [(Bradin + B2adam) f1(yn) + (Br2Jin + Ba2d2.n) f2(yn)] + O (h?)

On the other side, the exact solution at time ¢,,4+1 can be expanded as follows,

Y(tnt1) = y(tn) + h(f1(yn) + f2(yn)) + %Q(Jl,n + Jz,n)(fl(yn) + fa(yn)) + O (hg)

After matching the terms up to second order, we have the following conditions
on the functions Q); ;:

ﬂl,l = ﬁZ,l = 61,2 = 52,2 = 1/2

Table 3.1 presents several schemes that satisfy these conditions. These methods
were obtained by choosing the functions @; ; to be exponential or rational functions
similar to those found in formulas for the EPI2 and ROS2 schemes. For this reason,
if we consider the extreme case partitioning f; = 0, fo = f then all the schemes
from Table 3.1 reduce to the EPI2 method. Likewise, if fi = f, fo = 0 then all
the schemes simplify to the ROS2 scheme. It should be noted that we derived these
methods using classical order conditions theory. In our future research we plan to
investigate whether stiffly accurate methods approach of [15] can be used to build
similar partitioned methods.

As mentioned above, implicit-exponential (IMEXP) schemes for linear-nonlinear
partitioned problems were introduced in [15]. In particular, the scheme HImEzp2N
(equation (4.2) in [15]) is derived for problems of the type y' = Ly + N(y) where L
is a linear operator and N is a nonlinear operator. Interpreting this scheme in the
context of our ansatz and the derived order conditions, we can easily see that the
method HImExp2N also satisfies the order conditions (3.2). Thus, HImEzp2N can
also be used for the nonlinear-nonlinear partitioned problems and is, in fact, a second
order scheme for problems of the form (1.1a). Using the notation from this article,
HImEzp2N can be written as:

This manuscript is for review purposes only.



Coefficients Scheme

RosExp2 — ansatz (3.3)
Q1,1(2) = Qi2(2) = (I - 2)7" Ynt1 = Yn + (I = 2J1 ) " o1 (h2,n)hf(yn)

ExpRos2 — ansatz (3.4)

Q2,1(2) = Q2,2(2) = ¢1(2) Ynt1 = yn +o1(hd2n) (I — 2J10) " hf(yn)

PartRosExp2 — ansatz (3.3)

Qui(x) = Qua(x) = (I-3)"" Ynt1 =yn + (1= 5J10) 7[5 (727 4 1) Rfr(yn) + @1 (b2 2 (yn)]
Q2,1(2) =3 (e +1) PartExpRos2 — ansatz (3.4)
Q2,2(2) = p1(2) Yntl =Un + 3 (e”m + I) (I—2700) " fi(yn) + o1(Bd2n) (I — 201,) " hfa(yn)

Table 3.1: Second-order Rosenbrock-Exponential schemes

h h -
196 (3.ba) Yi =y, + 3 I— §J1,n f(yn)

-1
197 (3.5b) Ynil = Yn +h (I — ZJLn) fWn) + 2hpa(hJan)(f2(Y1) = fo(yn))

199 Other ideas of partitioned nonlinear-nonlinear schemes were also explored in [8,
200 2], but both of the methods derived in these publications are limited to first-order
201 accuracy. We will include the STERE and SBDF2ERE schemes derived in these papers
202 in our comparisons:

o SIERE [8]:

Yn+1 = Yn + h (I - th,n)_l (fl (yn) + Spl(hJZn)fQ(yn))

203 e SBDF2FERE [2]:

1 2h !
Yn+1 = Yn + g (I - 3J1,n> (yn —Yn-1+ thl(yn) + 2h§01(h=]2,n)f2(yn))

204 Note that all the schemes are written so that the f; partition is treated using the
205 rational function, while the fo partition is treated exponentially.

206 4. Linear stability. As mentioned in the previous section, our work focuses on
207 nonlinear-nonlinear partitioning where both f; and f; are stiff. In this context, it is
208 important to have good stability properties. In order to study the linear stability of
209 partitioned integrators we assume that the partitioned Jacobian terms J; , and Ja,
210 are simultaneously diagonalizable and consider the following problem:
211 (4.1) v =My + Xy where A, A\ €C.

6
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201 (22) 2+21 2 e?2
R(Z1,22) ‘ 1+ 52 (Zl + 22) e 2 o

Table 4.1: Stability functions for one-step methods.

Note that this problem is not able to give a full picture of the linear stability
of additively partitioned problems. For example, it does not take into account the
potential coupling between the two partitions. However, based on our experiments,
this problem allows us to give a good description of the stability of the different
methods.

Any one-step method applied to (4.1) reduces to the recurrence y,, 1 = R(z1, 22)yxl}
where z; = hA1, 2o = hAg and R(z1, 22) is the stability function of the scheme. The
scheme is then stable if |R(z1, 22)| < 1. The stability functions for all one-step meth-
ods considered in this work are listed in Table 4.1.

Because the SBDF2ERE scheme is a multi-step method, we determine stability
differently. After applying the method to the linear problem (4.1) we obtain the
recurrence

Yn+1 + Ri(21,22)yn + Ro(21, 22)Yn—1 =0

where Rj(z1,22) = 73_22Z1 (1 4 e*) and Ry(z1,22) = ﬁ The method will be
stable when w; and ws, the roots of the polynomial w? + Ry (21, 22)w + Ro(z1, 22),
satisfy |w;| < 1.

Because both z; and z5 are complex-valued, the stability regions for both one-step
and multi-step methods are challenging to visualize. To simplify our presentation of
stability, we will use A(a)-stability. For a stability function R(z) of a single complex
variable, a method is said to be A(a)-stable if it includes a sector of an angle « in its
stability region with a defined as:

(4.2) a=max{a:Vz (z€C™ Alarg(z) — 7| <a)=|R(z)| < 1}.

For non-partitioned schemes, « is the maximum value of the angle such that the
method is stable for all complex z values in the sector delimited by the lines with an
angle —a and +a with respect to the negative real axis. This value ranges from 0° if
the method is only stable on the negative real axis to 90° for a method that is stable
in the entire left half-plane. When the angle of the a-stability of a scheme is equal to
90°, we say that the method is A-stable.

By fixing either z; or z5, we can reduce the stability function of a partitioned
scheme to a function of a single complex variable. We can then compute the stability
angle o in the remaining free variable. This can be expressed mathematically as

(4.3a)

fixing z1:  o(z1) = max{a:Vz2 (22 € C” A|arg(z2) — | < a) = |R(z1, 22)| < 1},
(4.3b)

fixing zo: o(z2) = max{a:Vz1 (21 € C” Alarg(z1) — | < a) = |R(z1, 22)| < 1},

Fixing z; or zo over a grid of values and using color to represent the stability angle
makes it possible to easily visualize the stability of each method. Figure 4.1 shows the
a-stability for the schemes presented in the previous section. Note that ordinarily,
due to the high dimensionality of the stability function R(z1, 22), it is difficult to assess

7
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the properties of the stability regions. Using the approach described above, it is easier
to visualize the stability regions. To our knowledge, this approach to visualizing the
linear stability of a method has not been used before. Plots like Figure 4.1 provide
a visual guide to the overall shape of the stability regions. Additional visualization
can be done if one is interested in the geometric details of a subregion. For example,
different types of plots, such as graph of the angle value along the real axes, can be
created to better assess stability for eigenvalues on the real axes.

In Figure 4.1 (a), we see that a = 90° for all values of z; and z5. This implies that
the schemes PartRosExp2, PartEzpRos2, and SIERE are all A-stable. This can be
formally proven by observing that the stability function for each of these methods is a
product of two A-stable functions in 2y and 25, respectively (e.g. the stability function
of PartRosExp2 and PartExpRos?2 are the products of the functions R(z) = e* and
Ry(z) = 2£2). Since both of these functions are A-stable, the product must also be
A-stable.

Figure 4.1 (b), shows that the stability of the schemes RosExzp2, ExpRos2 and
HImEzp2N is more restricted. Specifically, there are restrictions on stability in z; if
values of z, are close to the imaginary axes. However, for problems with spectrum
lying sufficiently away from the imaginary axes stability is retained. Finally, the
stability of the scheme SBDF2FERE, presented in Figure 4.1 (c), is good overall, with
some limitations close to the origin.

5. Numerical experiments. The stability properties of the new schemes for
linear equations with constant coefficients provide necessary, but not sufficient condi-
tions for the stability of variable coefficients and nonlinear problems.

In this section, we summarize numerical experiments that confirm that the con-
clusions of our analysis also apply to more complicated problems.

5.1. Advection-diffusion PDE (AdvDiff). We consider the following 1D
advection-diffusion PDE:
ou

(5.1) 5 + (,% (a0u+a1u2) = ((% {(50 +ﬂ1u)gZ] , x€]0,1], te]l0,0.1],

We use a Gaussian function as the initial condition u(z,0) = e=5900==0-2)* 4nd ho-
mogeneous Dirichlet boundary conditions u(0,t) = u(1,t) = 0. We also consider two
sets of parameters: the first correspond to a linear problem with ag = 5, a3 = 0,
Bo = 1072, and 31 = 0, and the second representing a nonlinear problem with cg = 5,
a; =5, By =5x107%, and B; = 10~!. Figure 5.1 shows the solution « of this PDE at
the initial and final time. Equation (5.1) is discretized in space using standard second-
order centered finite differences with 1000 grid points. This discretization leads to a
system of N ordinary differential equations that can be written as:

t' = faav(w) + fair(uw)

where faay(u) correspond to the discretized advection term -2 (apu + aju?) and
faig(u) correspond to the discretized diffusion term % [(ﬁo + ﬁlu)%]. In the next
section, we will explore the cases where fi = fadv, fo = fair (rational advection /
exponential diffusion) as well as f1 = faift, fo = fadv (rational diffusion / exponential
advection).

5.2. Schnakenberg with non-linear diffusion (Schnakenberg NL). The
following equations describe two reacting and diffusing chemical species (u and v)

8
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Fig. 4.1: a-stability angles for the partitioned schemes when z; is fixed (left-column)
or zy is fixed (right-column). The z and y axis of the plots in the left and right
columns, respectively, correspond to the real and imaginary parts of z; and zo. The
color represents the stability angle o defined in (4.3a) and (4.3b). The white regions
correspond to parameter values where the stability region is bounded and therefore
not a-stable even for a = 0.

evolving in two-dimensional space:

(5.2a) % =v(a —u+u?v) + V.(u’Vu),
(5.2b) % =~(b — u*v) +d V.(v"2Vv), (z,y) € [0,1]?

9
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Fig. 5.1: Solution at initial and final time for the PDE (5.1) with both sets of param-
eters

where a = 0.1,b = 0.9,d = 10,5, = B2 = 10,teng = 1072, and v = 1000. As
in [17, Section 4.2] the initial condition is a perturbation of the stable equilibrium
and the boundary conditions are periodic in both directions. The diffusion terms are
discretized using the standard second-order finite differences on a uniform grid with
N, = N, = 128. The reaction terms are treated exponentially, while the diffusion
terms are treated using the rational function.

5.3. 1D Semilinear parabolic problem (Semilinear_para). Finally, we use
the following one-dimensional semilinear parabolic problem described in [10] (note we
use the term ”semilinear parabolic problem” as it was named in [10]):

ou 0u !
(5.3) —(z,t) — = (x,t) = / u(z,t)dr + ¢(x,t) x €10,1],t €10,1],

ot Ox? 0
with the homogeneous Dirichlet boundary conditions. The source function ¢ is cho-
sen so that u(z,t) = z(1 — z)e’ is the exact solution. This problem was originally
designed to demonstrate the order reduction that some exponential integrators can
suffer when applied to stiff problems. It is therefore used here to validate that no such
order reduction is exhibited by our schemes. The diffusion term is discretized using
the standard second-order finite differences on a uniform grid with N, = 400. The
nonlinear terms on the right-hand side are treated exponentially, while the diffusion
term is treated using the rational function.

5.4. Numerical results. Numerical examples presented below verify the order
of convergence of the newly derived methods and compare their performance with the
existing methods described above. The implementation of the integrators was done in
MATLAB 2020b. For all the schemes, we use the KIOPS method introduced in [9] to
approximate the products of exponential and ¢—functions with vectors. This method
allows us to approximate both exponential functions in the schemes PartEzpRos2 and
PartRosEzp2 at once as a single computation. The rational functions are approxi-
mated using the GMRES method [21] with an incomplete LU factorization with no
fill preconditioner (ILU(0)). Because the scheme BDF2FERF is a multi-step integrator
where the solution at the current and previous time step must be known, the initial
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step must be treated differently. In this work, the initial time step is computed using
the 2"¢ order EPI2 method. The error is computed at the final time as the discrete
2—norm between the approximate solution and a reference solution computed using
MATLAB’s odel5s integrator with absolute and relative tolerances set to 10714,

In the first set of tests, we verify the order of convergence of all the methods on the
problems presented above. Figure 5.2 shows the convergence plot (error vs. time-step
in log-log scale) on the linear and nonlinear advection-diffusion PDE, Schnakenberg
PDE, and the semilinear parabolic problems. Note that for the advection diffusion
PDE, we used f; = faqv and fo = fqir. We can see that, as expected, the methods
SBDF2ERE and SIERFE both converge at first-order, while the methods introduced in
Table 3.1 and the HImFEzp2N scheme converge at second order. We can also see that
for the advection-diffusion and the Schnakenberg PDE, the order of multiplication
of the functions @; ; does not influence the accuracy of the solution (ansatz (3.3)
vs. (3.4)). However, for the semilinear parabolic problem, the order does affect the
accuracy. For this problem and this partitioning, applying the function of Js ,, first
leads to better accuracy. This case illustrates that the accuracy of the method does
depend on the problem and the chosen partitioning.

—©—ExpRos2
——RosExp2
PartExpRos2
—— PartRosExp2
—#—SBDF2ERE
SIERE
—O—HImExp2 N

Norm error

10 10° 10 10°
Time step Time step

(a) AdvDiff (linear parameters) (b) AdvDiff (nonlinear parameters)

. —©—-ExpRos2
—4—RosExp2
PartExpRos2
—— PartRosExp2
~#—SBDF2ERE
SIERE
—§—HImExp2 N

Norm error
Norm error

(c) Schnakenberg NL (v = 10%) (d) Semilinear_para

Fig. 5.2: Convergence plots (error vs. time step) for the linear and nonlinear AdvDiff,
Schnakenberg NL, and Semilinear_para problems

Next, we want to validate the stability advantages of the new schemes that our
analysis of section 4 predicted. We showed that for the schemes FxpRos2, RosExp2
and HImFzp2N, if z5 is close to the imaginary axis, then stability for z; is either
bounded or restricted. Figure 5.3 shows the convergence diagram for the advection-
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diffusion PDE problem. Figures 5.3a and 5.3b correspond to the problem with linear
parameters while Figures 5.3c and 5.3d correspond to the nonlinear parameters. The
plots on the left (Figures 5.3a and 5.3c) are obtained using the partitioning f; =
fadv, f2 = fair and the plots on the right (Figures 5.3b and 5.3d) are obtained using
the partitioning fi1 = fais, fo = fadv- The eigenvalues corresponding to the advection
term f,qv are expected to be close to the imaginary axis, while the eigenvalues of the
diffusion term are expected to be along the negative real axis. Therefore, based on the
stability analysis, we are expecting the schemes ExpRos2, RosEzp2 and HImExp2N
to have worse stability for fo = faqv (right plots). For both the linear and nonlinear
parameters, we see that this is indeed the case, and these methods are stable only for
a more restrictive range of time step sizes.

—©—ExpRos2
——RosExp2
PartExpRos2
—— PartRosExp2
—#—SBDF2ERE
SIERE

HImExp2 N
P:

Norm error

Tine step Time step
(a) AdvDiff (linear parameters) (b) AdvDiff (linear parameters)
with fi = faav, f2 = fais with fi1 = faiff, fo = fadv

—©—ExpRos2
~t—RosExp2
PartExpRos2
—— PartRosExp2
~#—SBDF2ERE
SIERE
—§—HImExp2 N

Norm error

0% 10t 10? 10° 10t 10°

(c) AdvDiff (nonlinear parameters) (d) AdvDiff (nonlinear parameters)
with f1 = faav, fo = fas with f1 = faift, f2 = faav

Fig. 5.3: Stability comparison for the AdvDiff problem with different partitioning

We now compare the performance of the methods on the different test problems.
Figure 5.4 shows the precision diagrams (error vs. CPU time) for the linear and
nonlinear advection-diffusion PDE, Schnakenberg PDE, and the semilinear parabolic
problems. As expected, the precision diagrams clearly demonstrate that the first
order methods SBDF2ERE and SIERE are less efficient than all of the second order
schemes. Also for cases where the linear solve is sufficiently more costly than the
exponential functions estimation, such as systems solved in Figure 5.4(a), (c), method
PartExpRos2 is less efficient since unlike all other second order schemes it requires
two linear systems to be solved per iteration. Among the second orders methods
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there is no a clear winner in terms of efficiency and the choice of the best methods
should depend on the particulars of the operators f; and fo and the costs of evaluating
these functions, their respective Jacobian contributions and the corresponding costs
of linear solves and exponential functions evaluations.

Norm error

Norm error

10° 10"
CPU Time (s)

(a) AdvDiff (linear)

(¢) Schnakenberg NI (y = 10%)
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CPU Time (s)
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Norm error
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10t
107

10° 10! 1
CPU Time (s)

(b) AdvDiff (nonlinear)

02

10°
CPU Time (s)

(d) Semilinear_para

—©—ExpRos2
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PartExpRos2
= PartRosExp2
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—O—HImExp2 N
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PartExpRos2
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Fig. 5.4: Precision diagram (error vs. CPU time) for the linear and nonlinear AdvDiff,
Schnakenberg NL, and Semilinear_parabolic problems.
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6. Conclusion. In this paper, we presented a new framework for deriving parti-
tioned integrators for stiff systems of ODEs with nonlinear-nonlinear additive forcing
terms. The new time integrators constructed using this framework are particularly
efficient for problems where both nonlinear forcing terms are stiff, but one of them
can be solved efficiently using an implicit approach, and another can be integrated
exponentially. The new ansatz that allowed us to derive specific second-order schemes
can potentially be extended to construct higher-order methods, where the choice of
the sequential order for the operators is also very important. We intend to pursue
this line of research in our future work. We have used linear stability analysis and
a novel way to visualize the properties of a stability function to demonstrate that
several of the new methods are A-stable and thus offer superior stability compared to
existing schemes for similar problems. Convergence and efficient performance of the
new methods have been demonstrated using several numerical examples. A thorough
comparison of these schemes with integrators proposed for such problems in previous
publications has been performed. We showed that the novel exponential-Rosenbrock-
type methods are both more accurate and more stable than previously published
methods and can be effectively used for a variety of applications.

REFERENCES

[1] A. H. AL-Mony AND N. J. HicHAM, Computing the action of the matriz exponential, with an
application to exponential integrators, SIAM journal on scientific computing, 33 (2011),
pp. 488-511.
[2] U. M. ASCHER, E. LARIONOV, S. H. SHEEN, AND D. K. Pal, Simulating deformable objects
for computer animation: A numerical perspective, Journal of Computational Dynamics, 9
(2022), pp. 47-68.
[3] U. M. ASCHER, S. J. RuuTH, AND R. J. SPITERI, Implicit-explicit Runge-Kutta methods for
time-dependent partial differential equations, Applied Numerical Mathematics, 25 (1997),
pp. 151-167.
[4] U. M. ASCHER, S. J. RuuTH, AND B. T. WETTON, Implicit-ezplicit methods for time-dependent
partial differential equations, SIAM Journal on Numerical Analysis, 32 (1995), pp. 797-823.
[5] T. BELYTSCHKO, H.-J. YEN, AND R. MULLEN, Mized methods for time integration, Computer
Methods in Applied Mechanics and Engineering, 17 (1979), pp. 259-275.
[6] M. CALIARI, M. VIANELLO, AND L. BERGAMASCHI, Interpolating discrete advection—diffusion
propagators at Leja sequences, Journal of Computational and Applied Mathematics, 172
(2004), pp. 79-99.
[7] J. CERvI AND R. J. SPITERI, High-order operator splitting for the bidomain and monodomain
models, STAM Journal on Scientific Computing, 40 (2018), pp. A769—-A786.
[8] Y. J. CHEN, S. H. SHEEN, U. M. ASCHER, AND D. K. Pa1, SIERE: A hybrid semi-implicit
exponential integrator for efficiently simulating stiff deformable objects, ACM Transactions
on Graphics (TOG), 40 (2020), pp. 1-12.
[9] S. GAUDREAULT, G. RAINWATER, AND M. TOKMAN, KIOPS: A fast adaptive Krylov subspace
solver for exponential integrators, Journal of Computational Physics, 372 (2018), pp. 236—
255.
[10] M. HOCHBRUCK AND A. OSTERMANN, Ezplicit exponential Runge—Kutta methods for semilinear
parabolic problems, SIAM Journal on Numerical Analysis, 43 (2005), pp. 1069-1090.
[11] W. H. HUNDSDORFER, J. G. VERWER, AND W. HUNDSDORFER, Numerical solution of time-
dependent advection-diffusion-reaction equations, vol. 33, Springer, 2003.
[12] C. A. KENNEDY AND M. H. CARPENTER, Additive Runge—Kutta schemes for convection—
diffusion—reaction equations, Applied numerical mathematics, 44 (2003), pp. 139-181.
[13] D. E. KEYESs, L. C. McINNEs, C. WoobwARD, W. GrorpP, E. MYRA, M. PERNICE, J. BELL,
J. BROwN, A. CrLO, J. CONNORS, ET AL., Multiphysics simulations: Challenges and op-
portunities, The International Journal of High Performance Computing Applications, 27
(2013), pp. 4-83.
[14] V. T. LuaN, R. CHINOMONA, AND D. R. REYNOLDS, A new class of high-order methods for mul-
tirate differential equations, STAM Journal on Scientific Computing, 42 (2020), pp. A1245—
A1268.

14

This manuscript is for review purposes only.



417
418
419
420
421
422
423
424
425
126
427
428
429
430
431
432
133
434
435
436

V. T. LuaN, M. TOKMAN, AND G. RAINWATER, Preconditioned implicit-exponential integrators
(IMEXP) for stiff PDEs, Journal of Computational Physics, 335 (2017), pp. 846-864.

S. MACNAMARA AND G. STRANG, Operator splitting, in Splitting methods in communication,
imaging, science, and engineering, Springer, 2016, pp. 95-114.

A. MaDzZVAMUSE AND P. K. MAINI, Velocity-induced numerical solutions of reaction-diffusion
systems on continuously growing domains, Journal of Computational Physics, 225 (2007),
pp. 100-119.

B. MINCHEV AND W. WRIGHT, A review of exponential integrators for first order semi-linear
problems, technical report 2, Norwegian University of Science and Technology, 2005.

L. PARESCHI AND G. Russo, Implicit—explicit Runge—Kutta schemes and applications to hyper-
bolic systems with relazation, Journal of Scientific computing, 25 (2005), pp. 129-155.

H. H. ROSENBROCK, Some general implicit processes for the numerical solution of differential
equations, The Computer Journal, 5 (1963), pp. 329-330.

Y. SAAD AND M. H. ScuuLTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7
(1986), pp. 856-869.

A. SANDU AND M. GUNTHER, A generalized-structure approach to additive Runge—Kutta meth-
ods, STAM Journal on Numerical Analysis, 53 (2015), pp. 17-42.

M. TOKMAN, A new class of exponential propagation iterative methods of Runge—Kutta type
(EPIRK), Journal of Computational Physics, 230 (2011), pp. 8762-8778.

15

This manuscript is for review purposes only.



	Introduction
	Review of basic exponential and Rosenbrock methods
	New nonlinear-nonlinear partitioned Rosenbrock-Exponential (ROSEXP) methods
	General framework
	Construction of second-order schemes

	Linear stability
	Numerical experiments
	Advection-diffusion PDE (AdvDiff)
	 Schnakenberg with non-linear diffusion (Schnakenberg_NL)
	1D Semilinear parabolic problem (Semilinear_para)
	Numerical results

	Conclusion
	References

