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PREFACE: GEM4, an evolving dynamical core code
Introduction of staggering

Reduction of noise in GEM3 was the main motivation for the original project of GEM4,
consisting in the introduction of vertical staggering (Charney-Phillips grid). It was deemed the
first and primary ingredient to achieve this goal. In effect, there are numerical modes which were
theoretically diagnosed on the previous un-staggered grid which are absent from the new one in
the hydrostatic case at least. As a first step therefore, only the grid was changed. Everything else,
the equations, the independent as well as the dependent variables, were kept unchanged. Very
positive results were obtained with respect to noise. But there remain problems in GEM, in
particular an accuracy problem in the hydrostatic relation at upper levels when the true resolution
(in terms of height) is insufficient.

Improving the accuracy of the hydrostatic relation using logarithmic differencing
wherever appropriate was therefore the goal of a second step. The results from this modification
of the code were very satisfying with improved scores in the stratosphere.

The log-hydrostatic-pressure coordinate

With this incentive, it was tempting to try and implement a full log-hydrostatic-pressure
coordinate, (. A theoretical advantage of ¢ is its linear relationship with Inp,
(Inp=In(p/z)+In(z/7z.)+Inz.=qg+Bs+¢]. Along with the fact that g=In(p/z) and

s = ln(?[s / pmf) are already model variables, this greatly simplifies the linearization of model

equations. Again the accuracy of the hydrostatic equation is improved since the finite differences
not only are calculated logarithmically but also become defined at logarithmic mid-points. This
third step though had little impact on model performance.

An important development: it was discovered that the initial staggered version of the
semi-Lagrangian scheme, linear vertical interpolation of the departure positions for variables
arriving on thermodynamic levels, resulted in significant loss of kinetic energy. Cubic
interpolation is rather the thing to do.

Resolving numerical inconsistencies within the semi-Lagrangian scheme

A secondary motivation for the project was the resolution of accuracy and noise problems
encountered in the simulation of non-hydrostatic mountain waves, specifically what we call
Schir’s case. Well, a completely satisfactory solution has been achieved, not via staggering
though but again through modifications of the semi-Lagrangian scheme: tri-dimensional cubic
interpolation of the departure positions replacing linear ones combined with trapezoidal means
of the velocities instead of the mid-point rule. And if off-centering is present, off-centering in
trajectory calculations as well as in advective calculations is necessary for consistency.

In addition to resolving numerical inconsistencies, the introduction of the trapezoidal rule
and cubic interpolation in the trajectory calculations has improved model accuracy.
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Reintroduction of logarithmic tendencies (the sole reason for renewing the documentation)

Tendencies inside non-linear terms can only be dealt with through non-linear iterations.
Our latest attempt to eliminate them (see GEM4.3) has failed. The model becomes noisier near
the surface, indeed less stable, in absence of off-centering. There is also a hint that accuracy is
affected in presence of off-centering (the unfiltered mountain test).

Taking advantage of the Yin-Yang grid: improving efficiency

On a Yin-Yang grid, horizontal resolution is much more uniform than on a latitude-
longitude grid. We are getting rid of pole problems. The need to calculate semi-Lagrangian
trajectories along great circle or to implement implicit horizontal diffusion schemes disappears.
These optimizations were implemented.

Variable T. and modified epsilon, € : improving stability

Improving stability, especially over steep topography, is perhaps the main remaining
challenge for the dynamical core of GEM. The introduction of two new options: a variable T,

and a modified epsilon, & =r¢, are features which have shown their utility, although the
problem is still present.

Lifting the last thermodynamic level: improving accuracy (!?)

As far as the dynamics was concerned, the last thermodynamic level was assumed to be
at the earth’s surface and therefore also the thermodynamic equation along with the temperature.
In particular, the vertical motion was assumed to vanish. It turns out though that the thickness of
the layer involved is typically far from negligible and the assumption of vanishing vertical
motion in terrain-following coordinate, where the ‘horizontal wind’ vary substantially between
the base and top of a mountain, leads to artificial cooling/warming due to lack of inflow/outflow
of air in the layer. These are particularly evident when the model is run in adiabatic mode (no
physics). A proper correction has required extensive modifications to the code. When the physics
is included though, the impact is surprisingly small.

Dynamics-Physics interface: further improving accuracy

Improving accuracy along with improving efficiency and stability are the permanent
general objectives of Numerical Weather Prediction. This document focuses on the Dynamics
aspects. Two items involving the interface between Dynamics and Physics have recently been
addressed though and are worth mentioning here:

a) Dynamics and Physics work in slightly different coordinate system: Is then the

coordinate transformation done correctly?

b) There are water vapor and precipitation fluxes through the Earth’s surface. How are

we to take into account these fluxes?

Older versions of this document, GEM4.0, GEM4.1 GEM4.2 and GEM4.3 remain
available.
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1) The meteorological equations

- 4 independent variables: t, r=(1y, 2)

- 6 dependent variables: V=(V,,w), T, p, p

- 6 scalar equations:

ﬂ+kaV+RTV1np+gk=F

dt
dinp  v.v=o
dt
C"%_RT%:T§:Q+JC

- There are: 5 prognostic equations (momentum + mass + energy conservation),
one diagnostic equation (perfect gas law).

N.B. The Coriolis force remains approximated in GEM4.4 (traditional meteorological approximations).

N.B. The atmospheric substance is assumed to contain, in addition to dry air, not only a variable quantity of water
vapor but also condensed water and precipitations. The above equations are valid under the assumptions of dynamic
(precipitations falling at terminal velocity) and thermodynamic (neglecting temperature differences between air and
hydrometeors) equilibrium. Equations for the displacement and evolution of the hydrometeors are required to
complete the system. Water vapor and precipitation fluxes through the earth’s surface affecting the mass of the
atmosphere is accounted for separately (see Appendix 15).

N.B. In the above equations the coefficients R, ¢, and their ratio x=R/c, are variable. A simplification occurs with
the introduction of virtual temperature whereby RT is replaced by R,T, with R; now a constant) (see Appendix 1).

The variation of xin the thermodynamic equation is now taken into account.

N.B. The second law, Tds /dt > Q , requires that the frictional dissipation of kinetic energy f >0.
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2) The equations transformed to generalized 77-coordinate

Note the necessary decomposition of vector equations into their horizontal/vertical components due to the
different horizontal/vertical transformation rules.

3 transformation rules: V, V -V 7 877 J i=a_ﬂi i_i_ii

7 azan dz 0z on o, ot, o, 07

n
- 4 independent variables : £, 1, 7
- 8 dependent variables: Viw, T,0, p, 1, 2

- 8 equations (6 prognostic and 2 diagnostic):

3z ) dlnp
V. 1 \Y =F
{ e 2(877} on ] '

-1
dw RT(azj alnp+g:F

dr on) on "
4l p 2 +V, v, +97 g
dt an an
ar _ _dinp_Q+f
dt dt ¢,
a_ o
dt
__r
RT
z=z2(n.1,,1)

- Were added then: 1 prognostic equation (dz/dt=w) for varying height in space and time,
1 diagnostic equation (yet to be specified) defining the coordinate 7.

N. B. the continuity equation is the only one requiring more than simple manipulation:

dz oz . 02
—=—+V, -V z+n—
ar o 77877
ondw 9 (B o) Y, o 0 (0
dz dn  dz an\ ot on) dz oan " odp dt \dnp
hence
VZ-Vh+a—W=V -Vh—a—nav”-v z+a—na—W:V -Vh+a—77+in 4
' aiz oz on " ozap 7 on dt \on

See Appendix 2 for some details on transformation rules.
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3) Eliminating density, p, introducing log-hydrostatic pressure, Inz, replacing height, z, by
the geopotential, ¢ and adding u (ratio of vertical acceleration to gravitational
acceleration). For convenience, isolating the exclusively non-hydrostatic equations.

or p 09 polnp
0z &0 zrolnrx r=8 7 dlnx
- 9 dependent variables: Viow, T,p,n, 0 U, T

- 9 equations (added diagnostic equation for u ):

djh + fkxV, +RTV, In p+(1+ 1)V, ¢ =F,
t
LU PPLELL P VAL
dt on on
dlnT_Kdlnp_Q+f
dt dt c,T
d¢
——gw=0
a °
T olnrx

Inz=Inz(n,r,,1)

dw

= _—ou=F

dl‘ gﬂ w
14 _pdlnp 0

wolnx

N.B. Making the hydrostatic approximation allows for the elimination of (the last) two equations and the
following variables: p and g The ... will be used to separate the ‘hydrostatic’ from the ‘non-hydrostatic’
equations.

N.B. At this point, 77 is still a general coordinate of the hydrostatic-pressure type: in the next section we
will specify both ¢ and 7.

N.B. For the rest of the presentation, the physical forcings, F,, F,, Q and f, will be excluded and R will be
treated as constant: the Pure Dynamics or so-called No Physics formulation (although xis allowed to vary).
It is worth noting that horizontal hyper-diffusion used in F, neither conserves angular momentum nor
respect the second law and f, due to all processes of kinetic energy dissipation, is not accounted for, viz.

£=0.
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4) The {-coordinate is Inz-like

5

{=¢s+Inm; {s=lnp.; p, =10
Inz=A({)+B({)s: s:lnﬁs_gszln(ﬂ's/l?ref)
- >(; =1

A=¢ B=A"; ;L:max|:§ Sy ,O} {é/U r {r=Inp;

=y OSrzrmx—(r —rmm)/lSSO

Inz=¢+B(¢)s .

transformation rules: V”

Jd 19 J d

V,: —=——~. 2 _ 2
“op npol o, o

- 9 dependent variables: Vi, w, T, p, é‘ L, QU T

- 9 equations:

d;;”+kaVh+RTV§lnp+(l+,u)V;¢:O
Dyl 227y v, 4% 0
dt P4 Y4
me_Kdmp:O
dt dt
de
——gw=0
a °
RT+2_99_ _g
T dlnzx
Inz={+Bs
dw
Z _ou=0
r 8u
1+ﬂ_£8mp20
rolnrx

- ObViOllSly, at this point, the form of the equations in {'and 7 coordinates is identical

N.B. p,, / D, <7<1 is now but a label characterizing model {-levels. Entering the model, a set of 7- values are

required from which the {~values are obtained.

See Appendix 3 for more information on the metric parameter B. {, is typically chosen to

correspond to ¢, the top momentum level.
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5) Perturbation thermodynamic variables, 7, ¢, g, and simplifications

Introducing the logarithm of the non-hydrostatic pressure perturbation, g=In(p/7), and
eliminating the pressures p and 7. Transforming the continuity equation in order to eliminate the
logarithmic tendency. Further introducing a mean temperature profile, T.(¢), and a related

geopotential profile, ¢@,. Perturbation temperature, 7°=T —T,, and geopotential, ¢’ =@ —¢., are
then considered. Finally, modifying the notation for the vertical derivative to d, .

Inp=Inzr+qg={+Bs+gq
9,0, = —RT,

_ 8 variables: V,,w,T,q, (¢,s) ¢, 1

- 8 equations [6 prognostic & 2 diagnostic]:

chh + fkxV, + RTV ;(Bs +q)+(1+ u)V ¢'=0

%[Bs+ln(1+a§Bs)]+V§ v, +@,+1)¢ =0

i[ln(%}—/{(Bsﬂ;)}Kf+§'8;1nT* =0

dt "
do .
———RT.C —ow=0
0 {-¢g
1+eq8;¢/RT*:
T. 1+8§Bs
dw
DY eu=0
” 8H

d.q
l+pu—e!| 14—="—|=0
H e( 1+8§st

N.B. The variable s is 2-D only andé; vanishes at the surface. The combination (é; , §) may therefore be
considered to constitute a single 3-D variable.

N.B. In the thermodynamic equation, a vertical advection term for 7, has appeared. The term is to be calculated
in an Eulerian fashion. Variable 7T, is only an option (see Appendix 13 for the motivation behind this option).

When constant, T, =240K is usually chosen. In the non-hydrostatic case, T, =200K might be more appropriate.
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10

6) Boundary Conditions

The model top (subscript 7) and bottom (subscript g, for earth’s surface when talking of
the bottom of the atmosphere), are defined to be material surfaces. Therefore we have the
following top and bottom boundary conditions:

é;T:é;(gT):O; fs=f(§s)=0

In addition, the behavior of theses surfaces must be specified and this will lead to an
additional condition in the non-hydrostatic case. The bottom surface is assumed to be

terrain-following and not moving: d¢ /0t = 0. In terrain-following coordinates, this does not
imply a vertical velocity that necessarily vanishes at the surface. In effect,
gwy = [d(./)/ dt]s #0, generally. At the top, we consider a flexible surface whereby the top
pressure:

Pr =7y

is assumed to remain constant. This is automatic in the hydrostatic case since the top surface
pressure cannot be anything other than a material hydrostatic pressure surface. In the non-
hydrostatic case, to maintain a constant top pressure equal to the constant top hydrostatic
pressure surface provides a top boundary specification for pressure. In terms of the non-
hydrostatic pressure variable ¢, this becomes:

qr zln(pT/ﬂ-T):O

The top surface is then assumed free to move, constrained only by this artificially imposed
pressure p, (the atmosphere above only exerting its weight). In fact, this condition is strictly

applied at the first momentum level: therefore we set g, =0.

N.B. Open top boundary conditions are a possibility: see Appendix 9.

N.B. For the Limited Area Model (LAM) version, there are lateral boundary conditions: sce Appendix 10.

N.B. Time varying topography, d@, /0t #0, is also an option: see Appendix 11. In effect, when adapting a

given atmospheric state to a higher resolution topography inter(extra)polation is required. Artificially varying ¢
in time for a short period is an attractive alternative.

N.B. Initial conditions are time boundary conditions. At initial time, V,,T and s are analyzed fields; g“ ,¢' and

w (in the hydrostatic case) are diagnosed: see Appendix 16 for the calculation of g“ and the estimation of w. In

the non-hydrostatic case, w and g could be analyzed but usually w is estimated and g set to vanish; g is
diagnosed.
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7) Vertical discretization

For vertical discretization, the following choice is made:

dczh (Bs+q (1+,u§)V§¢ 0
d — . =4
E[Bs+ln(1+§§B§s)]+V§'Vh+§§§’+§’ =0
d T = = =z vb‘T
—|In| = |- &(B¢s+
d{ 7] Q)}

s
a” RT{ gw=0
dt
T . 1-8,¢/RT.
- e -2 =
T. 1+5§Bs
dw_
¢

In other words, the derivatives are replaced by simple finite differences represented by the
operator é} and averaging operators represented by over bars (linear interpolation typically) are
introduced wherever required. From the notation, it may be gathered that V,, g, ¢' are defined on
the same levels to be called full or momentum levels. They are staggered with respect to
w, T, U, 4,“ , placed on half or thermodynamic levels. Figures 1 and 2, next pages, illustrate the

vertical grid, for the variables on the first, for the equations on the second. Note that the last
thermodynamic level is defined half way between the surface and the last momentum level,

hence the need for a specific averaging of é’ as well as ¢' and ¢ for that level (averaging

represented by the curly over bar). The full details on discretization are disclosed in Appendices
4,5 and 6.

N.B. The metric parameter B is provided at the top and bottom and on full levels. It is averaged for the half levels.

N.B. The absence of a thermodynamic level above the first momentum level implies that 7 and u will be
extrapolated to the momentum level.
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N momentum Charney-Phillips Grid N thermodynamic
levels/layers 8xN+4 variables levels/layers

T, uw,e—— \1+V%

T,u,w, é’— 2+1/2

Figure 1. The Charney-Phillips grid, giving the position occupied by each variable in the
vertical domain. The model is to be composed of N layers, inside of which (in the middle of
which only if the layers are equal) are the momentum levels [1,2,...,N] where the wind
components, u and v, the geopotential, ¢, and g are positioned. Additionally, there are surface
values for ¢ and g and note that g is set to vanish at the first momentum level rather than the top.
These N layers are delimited by N-1 interfaces (the solid lines) corresponding to N-1 so-called
thermodynamic levels [3/2,...,N-Y2] where the remaining variables, temperature, 7, ¢ and the
two vertical motion fields, w, { , are placed, exactly in the middle of the momentum levels. 7, u
and w have an additional level [N+%] positioned half way between the last momentum level and
the surface while ¢ is placed directly at the surface [N+%4]. Note that there is no
thermodynamic level between the top and the first momentum level: an asymmetry therefore
between the top and bottom. Of course, 4,“ vanishes at both boundaries (see Appendices 4, 5 and
6 for more details on the vertical discretization). In total, there are 8N+4 variables.
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13

N momentum Charney-Phillips Grid N thermodynamic
levels/layers 8xN equations + 4 boundary values levels/layers

é;TZO

LaL aLH’LwyLlu_ 1+1/2

L,L,L, L,L — 2+

LyL 9LH’L L - N'1/2

""""""""""" L 9L 9LH’L L Sninial N+1/4

Figure 2. The Charney-Phillips grid, giving the position occupied by each of the ten equations
(denoted by the letter L with appropriate subscript). Three equations, horizontal momentum,
subscripts # and v, and continuity, subscript C, are placed on the momentum levels. The
remaining five equations: thermodynamic, geopotential displacement, hydrostatic, vertical
momentum and vertical acceleration ratio, respectively subscripts 6 ¢, H, w and g, are placed
on the thermodynamic levels. Note that the last level, N+%, is half way between the last
momentum level and the surface. There are thus, in the vertical direction 8N equations for 8N+4
variables (Figure 1). Four extra relations are therefore necessary to complete the system: the

boundary conditions: { ¢ = { + =0, the surface geopotential: ¢ = gz; where z, is the terrain, and

the non-hydrostatic log-pressure perturbation at the first momentum level: ¢, =0.
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8) Horizontal discretization

Previously the horizontal discretization was only discussed in Appendix. This was
somewhat justified since the horizontal momentum equations were treated as a single vector
equation. In the model three modes remain available with respect to the horizontal: a Limited
Area Mode (LAM) and two global modes: a Global Uniform mode (GU) and a so-called Global
Yin-yang (GY) mode which may be considered composed of two interacting LAM modes. The
GU mode is gradually being abandoned. In LAM and GY modes, the horizontal momentum
equation is now decomposed into its components leading to the appearance of explicit metric
terms. The presentation of the horizontal discretization is therefore more relevant. The horizontal
grid is of the Arakawa-C type, with u staggered in the X-direction and v staggered in the Y-
direction with respect to all other variables (X and Y along geometric longitude and latitude
respectively). Hence, the following fully discretized equations:

L(r e o)y RTS8, B+ g+ (1156 =0
1
dv 4 (f 4 tazﬁ ur );XY + Rfygdy (Bs+q)+( +;Y§)5Y¢/ =0

dt
— yd
di[Bs+ln(l+5;B§s)]+5Xu+ L6 (cosov)+ 8,0+ ¢ =0
t

cos @

-
d T = - s 310.T.
—{ln(?]—K(B§s+q)}—K§+§ ?T =0

dt L .
=
d¢’ z
—— —RTL.{—gw=0
dt
T _ g 1=84IRT.
T. 1+6,Bs
dw
A eu=0
0 8H
= 0
1+y—eq{ 1+i =0
1+6,Bs

1

acos@

with 0, =

the Coriolis terms may however be interpolated cubically.

0, and 6, =%59. Horizontal averages are usually simple means. The winds in
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9) Semi-Lagrangian Implicit time discretization  (n.b. not Semi-Implicit)

- Approximating the substantial derivatives and averaging the dynamical forcings,
each of the equations (index i) may be formally written and time discretized as

follows:
dF.
S14G,=0
dt
dF. F'-F”
= G, ~b'G  +(1-b")GP; 0.5<b" 0.6 (off - centering)
t t
FA—FEP G +(1—bA)GP o A: (r,1) Arrival
At ' ' D: (r-Ar,r-Ar) Departure

- Separating the time levels (7= Ath"; B = (1 -b* )/bA )

R.

14

+
Q
b=
|
8
>}
i

- Decomposing the left-hand side into linear and residual non-linear parts

F*
——+G'=L+N,=R,
T
F* F* F*
L=|—"—+G"| ; N, =—+G!-|—+G}
4 lin T T lin

- Defining the solution method (a Crank-Nicholson scheme): L, =R, — N,

Iterating (jter: departure loop, iter: non-linear loop) :

Do jter=1,2
Do iter=1,2
(Li )iter,jter — (R, )jrer _ (Nl )irerfl.jrer; (Nl )0,1 — Nl- (r’ f— At)
end do
end do

(R)Y“ =R(t—At,r—Ar) A =Atlp,v* +(1-b,v" )]
A

v =v(r,r) ;v? =v(t—At,r —Ar*); v(t) = v(r—Ar) ; Ar’ from previous timestep.

N.B. The displacement Ar’* is calculated by the trapezoidal rule with off-centering and using cubic interpolations.

N.B. The elliptic solver is called a minimum of four times per time step in this scheme. An alternative, a variant of
SETTLS scheme used at ECMWF, was developed. It is described in Appendix 12. The scheme is more efficient,
calling the solver only twice per time step, and marginally stable. Unfortunately, it seems, for the moment, less
accurate than the present scheme.

GEM4.4.docx 2016-06-02



10) The F’s and the G’s

u
%

F,
FV

F.=Bs+ ln(l + 5§§§s)

T
FHEIH(E
F¢E$'§
F, =0
F,=w
F,=0

J-oisa)

16

G, =—(f + =0 u)v™ + RT5,(Bs+q)+ 1+ ) 6,8

G, = +(f T Thad )b_tXY + RTY§5Y (Bs+q)+0 +;Y§)5Y¢/

a

. =4
GC Eb‘Xu‘l‘ﬁb‘Y(cosBV)‘l‘ 5§§+§

=<
s 310.T.
G,=—k¢+¢ gT

G,= —RT*é; —gw

G,=—-—e¢
T. 1+6,Bs
G,=-gu
. )
G,=l+u—e"|14—51 |-
1+6,Bs

N.B. Since F,~Fy=0 and G,~=Gx=0, then of course R,=R,=0.

N.B. The role of diagnostic equations is to abbreviate other equations. If, in the 6 prognostic equations, we
replace the symbols g and T by their definitions, the diagnostic equations as well as the associated variables

vanish.
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11) The Previous time step on the Right-Hand Sides: R,

Ri E;_ﬂGiD
T

(dropping the superscript D)

R, =" - BE(+ )7 KT 5, (85 q) - (1425,
. [
R =Y =l e RS, (B q)+ 4 i 6,01
. |
Bs+In(l+8,B%s i . 7
RC: (T ¢ ) —ﬁ 5XI/[+C0165Y(COSHV)+§§;+§:I
- r —¢
1 (T) Bs+g 7, 79T
R,=—1In| — |- - |- K+
67 n(ﬂ] K - Bl-xC+¢ T
¢ z
Ry=— —/3(— RT*é“—gW)
Rw :'[i _,Bnh (_ gﬂ)

N.B. In the non-hydrostatic case, off-centering for the sound waves may be set to a larger value. Hence b;;l >p!

and

Tun = Atbfh; B = (1 _b;;z )/ bfh
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12) The Left-Hand Side terms: L + N,

FA
L+N,=—+G/
T

Prognostic (dropping the superscript A):

L+N, =2 (F+=0u)y™ + RT S, (Bs+q)+ 1+ 1" )59
T

L +N, =%+ (f + “‘EHEXY)LTXY +RTY§5Y(Bs+q)+(1+ﬁY§) 5,8

_ Bs+ ln(l + 5;}5_5‘%)

. =<
L.+N, + Ot +—— 6, (eosov)+ 8,8 + ¢

T

= ) —
1. (T : Bfs+q| z90,T.
LH+N9:;IH(FJ—K|:§+ . q:|+§ ;T

i
L,+N,= . —RT.{ —gw

L +N, = —gu

nh
Diagnostic:
1_65; 1-6,4"/ RT. 0

L,+N, =
R 1+ 6,Bs

=¢ 5;q
L,+N,=1+u-e {H =0

1+ é;VBs
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13) The linear Left-Hand Side terms: L,

F-A
Li = |:;
T

+G*#

l

:| linear

19

Linearizing (approximating the exponentials [ea =1+ a], the (returned) logarithms
[In(1+ @) = @] and the products [(1 +a)l+B) =l+ax ,6’] ) yields:

u

L =—+0,[¢'+ RT. (Bs+r'q)]
T

L= v S, (¢ + RT' (Bs+r'q)]
T
BS54+ 6, L
LC:—§+5Xu+ﬁ5Y(COSHV)+§§§+§
T
T z §§s+r'c:1§
5 i
Ly="——RT.{ —gw
T
, —¢ ’
T' S,¢+RT. (Bs+rq)l -
L =—+ —r\0.g+ #0
e RT. (;q ‘])
w
L=""-gu
Tnh

L,=u-(6,q+3")%0

N.B. xis reduced to x, in the linear system.

N.B. The Coriolis and metric terms and the vertical advection of 7, are linear terms but absent from the L’s;

they are treated as if they were non-linear terms.

N.B. T, is first defined on thermodynamic levels and averaged for the momentum levels; it is also needed at the

first momentum level and the surface.

N.B. r <1 reduces the influence of non-hydrostatic pressure perturbation, g, in the linear system modifying the

so-called epsilon term.

N.B. Definition: ' =r7/7,, .
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14) The non-linear Left-Hand side terms, N,, are the left-over differences

and therefore:

N, ==(F+=0u)" +RT S, (Bs+q)+ " 5,0’ ~ 5,RT." (Bs+r'q)
N, =+(f + 200 o + RT"6, (Bs +q)+ 1" 8,0~ 5, RT." (Bs +r'g)
- _ _
N, =;[Bs—Bé"fs+1n(1+5§st)—5§st]
= - = _ —
’ f = f r—= ‘./5 7—;
N, :l{ln[lJ_Z}_KB s+q K, B¢s+rg 1 2%
T T. . T T T.
N, =
_é’ ,
T’ 8,J[¢+RT. (Bs+rq)l iy
NH__[E"‘ RT. —7(5{Q+q ) =-L,
=0
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15) The elliptic problem: preliminary step

A first step consists of eliminating the two diagnostic equations from the left-hand sides, i.e.
eliminate L, L, and N,,N u from the solution system along with two variables: T’, . This is

convenient since the right-hand sides, R,, Ry, vanish. In a second step, we eliminate two other
variables, { and ¢, from the linear system, using the kinematic relations, L., Lq. In this case,

the non-linear parts, N £ N . vanish but not the right-hand sides, Rg, Rq . Third, we introduce the

auxiliary variables P and X:

P=¢ +RT.  (Bs+r7q)
. ny¢ —¢

We are left with the following 6 basic equations for the final form of the linear system
involving now only the following 6 variables, u,v, P, X, w,q:

L="+spP
T
L="+6,P
T
LCEL;:5Xu+migay(cosav)+5gx+Y§—’?(5§z]f+qﬁ)
L o.P _ 7 -
L-"L=L=—"—xX+—(5.q+¢°
- 9 RT. d T(gq ‘1)
:é, 3
waEL;:P__RT*X_gW
T T

’ w =
Tnh
where EXTRA = RE(E ‘s+rg)—x°, with y= Rig (Bs+r’q), a term allowing P to appear in
L', which then takes the required form on the way to the elliptic problem. EXTRA will therefore

be added to the non-linear system. In effect, since L = R - N, modifications to the L’s are to be
carried on the R’s and the N’s.

N.B. X is not defined at the top, since g is not defined there. To validate the difference and average operations in the continuity
equation we consider truncated operators at the top momentum level:

l5,x] = X, /AL [x¢], =o)X,

The result on é’ is un-changed since it vanishes at top. Once the operators are truncated, there is no need to carry it at the top and

in fact we don’t.
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For the non-linear system, we obtain (noting that N, =0) :
N, = —(f + ta;“g u)VXY + RY_"'Xgé'X (Bs+q)+ ZIX§5X¢'+ = r')RY_"fé'Xq
N, =(f+

N.=N;, =%[Bs ~B%s +1n(l + 5§§;s)— 5§§§s]

nd X )@ + RT“5,(Bs+q)+ 1 8,6 +(1-¥)RT.  8,q

=< ’ = = ~ = — —
, 3,[¢+RT, (Bs+r ,0.9+¢°  Bfs+g  Bfs+rg :06.T.
NB—lNHEN9=lln1 At ( q)]—r 479 (2 S%G g BTG 2%
T T v RT. T T T T.
EXTRAEN;
T

N, +gN, =N, =—glu—68,q4-3°)

For the right-hand sides (noting that R, =R, =0), we have nothing to calculate.
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16) The linear elliptic problem: final step

At this point the system of six equations is formally identical to previous model versions,
except for the presence of curly operators:

u

L =—+0,P
T

L="+8,P
T

%:§w+®;@@wﬂ+éx+yf—%wﬁ{+?ﬂ

o.P g
"o ¢ ¢
=———x,X+—\0.q+
6 RT, d (gq Q)
C_PE
L¢ T—RT:X—gW

EW=§£—gQ%q+5Q

nh

The fact that 7, varies in the vertical will however produce variable coefficients I' and &”. The
number of equations can then be reduced to three essentially as before:

1 — g€ .
L =VP——|6.X + X¢ )+ ¢
[=V2 7(; )m

1{ , r —¢
54¢+;w@@muﬁ——{g;"——ij
T ngh

;,{L;"' d Lv,v+ 2r2 L;J
T(Kd +€) ngh g Tnh

“\|><(

L= —F(é'gP - 8'1?4)—

1 ’ ’ ’ ” =
— |+ rl@—fiL¢sL¢=4ﬂ§P+@PQ+iM—
7(x, + &) g7, RT. wRT.
2 1 1 ’ RZ
where V§P=§XXP+j5Y(cose5yP), '=————— and & =ré=r— -, hence the so-
cos (x, +&)c’RT., g’

called modified epsilon formulation.

—¢ =¢ —r =

N.B. The following must hold to complete the elimination of g: 5;6[ +q° = 5;q§ + qgg. This is possible in
virtue of the forced commutation rule between the difference and mean operators (see Appendix 5), also taking into
account the truncation of operators at the first level and the fact that g, =0. The averaging must be adapted for the

last thermodynamic level: hence the introduction of an arrowed averaging operator (see Appendix 4).
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The averages X ¢, P¢ and Wt modify the final elimination, again only in relation to the
last thermodynamic level and therefore only for the bottom row of the matrices involved in the
elliptic problem. The next step brings us to L, :

- —¢

- — - = = —¢
Ll-6.1;-1; —¢L] ELP=V§P+5§r(5§P—gﬁ4)+r(5§P—gﬁf) +Te(6,P+K,P*)

Here we have introduced and applied the difference operator Sg allowing the elimination of X
since
S X+X=0,X+X°

Further introducing P (differing from P again at the last level only) such that
N =, =l
774 ’ _ ’

the final result is

4
I ¢ 5o ’ —
L,=V;P+6,'8,P+T6,P —P5 e ~(1-k, )l eP*

This is a generalization of the equation in previous model versions. With 7, constant, I" and &’
become constant

—¢

~ —¢ =
L,=ViP+I|6,6,P+6,P —(1-K,)e'P*

The & formulation, with £ =re and r<lI, is also a generalization as well as the introduction of
the curly average operator (V) , lifting the last thermodynamic level from the surface to the mid-
point between the surface and last momentum level and forcing the introduction of the curly
difference & and arrowed average (”) , all operators which differ from the originals for the last
levels only, all depending on a single weight @, <1. With r =@, =1, the equation of document
GEMA4.2 (still a valid option) is recovered:

L,=V:P+ r[csgagp +6,P" —(1-x,)eP? }

The above equation for P corresponds to an elliptic problem and still needs a surface boundary
condition. In effect, there are N+1lunknowns remaining, [ P, (k =1,N), plus PN ], but only N

“
equations. However,
/’
PN+% — 9 _ st+r qN+%

1 T 2
N+1
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since ¢, =0. On the other hand, eliminating X , from

2

- X
[Z,;’+F(5;P—€’13§)]N = =—1(w:x @ X )
+ T T N+7 N—>
_ XN_l
[L6+F(§§P—8P§)]N_% S—
gives
1., (rn ,
Ll -omw, J= 0.,
where

@,
m—+

;9
Ly——==
T°RT. |, .,

leads to a relation involving P_, interms of P, and P, , only:
N+

” 1 = = 1
(LH)N'F;:_E[F(égp_gpg)k+l+ [F(égp_gpg)]N_%_;XN_%

Hence, the combination

(L(;”) N +%

(L) :_L[Fw P—E'Fg)]N + 2 s, p—eP9)] e
N+s @': ¢ +7 w—:— ¢ -1 Z'ZRT |

Rewritten as follows
PN% =P, + Py, — C (L;”)

N+%
it is combined with L, atlevel N to get, on the left-hand side,
(LP )N + C;(L;”) N+% = (L;’ )N

and, on the right-hand side, the same relation, except that P, , is replaced by P, + BP,_;.

See Appendix 4 for the full details of these derivations including definitions of difference and
mean operators as well as definitions of parameters ¢, B, C; and Cy.

N.B. Here the closed top boundary condition has been described. An open top boundary condition is considered
and described in Appendix 9.

GEM4.4.docx 2016-06-02



17) The elliptic problem: non-linear step

To find the solution to the non-linear problem we need to perform the

operations iteratively

26

following

1 +iter, jter __ ( )jter ( )u‘er,jter
( u) - Ru u
1 +iter, jter __ ( )jter ( )u‘er , jter
( v) - Rv v
» \+iter, jter »\jter » \iter, jter
() =(RZ)" ~(N?)
C (& C
1-+iter, jter »\ jter » \iter, jter
L) = (RG)Y - (N
4 % 9
» \I+iter, jter ( »\jter ( //)/ter , jter
( ¢)l - R ¢

(L/ )1+iter,jter — (R )jter _ (N/ )iter,jter

w w

w

(LP )1+i1‘er,jter — (RP )jter _ (NP )iter,jrer

In order to obtain R, R}, R;', R, and N/,N,, N;, N,, the R’s and N’s are transformed like was

done for the L’s, i.e. we compute the R’s:

1 —¢ ,
5 R +colsl9§ ((,osHR )——(R —LRW ERC
ngh
1 ’ r r ’ ~”
Al Rt R, + 22 R¢ =R,
Z.(K-d +€) gz.nh 8 z.nh
1 ’ K ’ ”
~| Rj+——R,—2LR) |=R]
” > »” T,,§ /—/’,f
R —| O;R;+R; +ER] |=R,
Similarly for the N's:
1 r —¢
1 7 —A7”
§XN’4+C0505Y(COSBNv)_;(NC_ngh Nw j:Nc
LN N LN = N
Z.(K-d +8) ngh 8 z.nh
1 7 7 ’ ”
—| Ny + r NW—Kd N¢ EN¢
t(x, + &) gz, RT. ")

” N ” ‘_/rg 5
Nc—(5§N9+N9 +&N, jENP

N.B. We have R but N/ . Novelties are R, and the fact that
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1 » _ ” ”
F[(RH)N+% — @, (RH)N—%] = (RH)N+%
.0 ”
{ - TZI;T* }Nw ) (RH)N%
(R,)y +C{(RY) .. = (R},
1 ”
L), -0 V), 1= (V)
(NZ)N+% = (N;”)N+%
(NP)N + C;’(N;”)N+‘ = (NI’J)N
N, #0.



18) The elliptic problem: back substitution

27

The following equations give in a straight forward manner the 8 prognostic variables
u,v,w,q, (s, g“), f, g and ¢’:

RT* ~” N =
W w=""2 R - NS+ T(8,P+k,PF))]

g

= , w

q 5§q+q::__|:Rw_Nw__:|’ qlzo

g Tnh
u: u=t[R,—N,—J,P]
v: v=t[R -N,-5,P]

P - ’
s: s=-5 s —r'g

RT,,
2 > ” ” = §§ - ‘q°
¢ {=—t[R) - N} +T(6,P—eP¢)] ————1_
& ¢ =P—RT. (Bs+r7q)

Finally, we may compute # and 7T diagnostically:
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Appendix 1. Virtual temperature

In presence of water vapor ¢, and various types of hydrometeors g;, the density of
atmospheric substance is given by

p=plg, +q,+Yq)
where g, is the dry air specific mass. The equation of state is given by

p= p(RdQJ +R,q, )T
=pR,(1+8,q,~ X q,)T

where 8, =R, /R, —1=0.6 and we rewrite the equation of state as follows:
p = de Tv
defining virtual temperature thus
Tv = T(]‘+§VCIV _th)

Rewriting the equations to appear in terms of virtual temperature, the equations of section 1 may
then be replaced by the following:

%+kaV+Rdﬂ,Vlnp+gk:F
t
dt, _ﬂvdlnp:%:£2+7~(5v%_zﬂj
dt dt c, R,c, dt dt
dNp L y.v=0
dt
14
- =0
p RdTv

From the point of view of the pure dynamics (F =Q, = 0) , these equations are formally identical

to those in section 1 in which R would take the dry air constant value and temperature be
replaced by virtual temperature. The advantage of this formulation is of course the fact that the
parameter R no longer varies while all of the virtual effects, including water vapor buoyancy and
condensed water loading effects, are implicitly taken into account. The replacement of xby x; in
the thermodynamic equation would however constitute an approximation and is avoided:

— c
K‘=£= R,q,+ Ry, :& 1+(Rv/Rd l)qv ~ k| 1+ &_L q,
d Cpa

€, CpadatCpnd, Cp 1+(va/cpd_1)

v

~ { (461.51 1850
~K, _1o%9

+ =K, |1+(1.608-1.841)q, |= x,(1-0.233
287.05 1005}”} A+ Ja, 1= x,( 9,)

(values taken from Atmospheric Thermodynamics, Iribarne & Godson)
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Appendix 2. Coordinate transformation rules
Appendix 2a. Invariance of the total derivative

By the chain rule we first verify the invariance of the total derivative df/dt under a
general coordinate transformation. In effect, if we consider f(x,y,z,7), then:

£(0), 0, 5(0) 5.
dr\ or ox),. di \dy) 02 ) 1y

while for f{x,y, , 1), we naturally have:

S(B) T) () a7
de \ot) ., \ox) . dr 9y o ). .,

Here we only have changed the vertical coordinate from z to ¢ with the result that the horizontal
components of the velocity (dx/dt,dy/dt) = (u,v) = V;, remain unchanged. The vertical motion

though has transformed from dz/dt = w intod¢ /dt = ¢ . Shortening the notation, we also write
the above relations respectively as follows:

ﬁ:(a_fj + (afj +v 8f +w af af+V V. f+w af
dt \ot), ox dy). dz ot ¢ 0z

d () () () u o of
dz‘[atjﬁ (aj ”(ay] For T Ve Vel g

Thus we minimized the indices. We also introduced the vector notation for the ‘horizontal’ part
of the advection operator. Note though that the new coordinate ¢ is generally curvilinear and
non-orthogonal and the scalar product must be interpreted with care (see appendix 2c)

Appendix 2b. Transformation rules for derivatives.

It is remarkable that not only can all these rules be recovered from the invariance of the
total derivative but also that these derivative transformation rules suffice to transform the Euler
equations. In effect, the three velocity components may be treated as three independent scalars
(‘pseudo-scalars’), the velocity vector not being transformed. We are left though with a ‘hybrid’

system since maintaining two vertical velocities w and 7 or { and therefore needing an
additional [prognostic when (0z/ at)g #(0), diagnostic otherwise] equation. A complete

transformation to a time-varying non-orthogonal curvilinear coordinate, a complete elimination
of w, is of course possible but then the notions of four-dimensional tensor calculus is very useful
(see appendix 2d).
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The transformation rules may be obtained by equating the above two relations. In effect,

we must have
_(of) (& o _(of o) _[of o s
0_(&1 (atlJr”Kaxl (axj;}rvﬁayl (ayl«]waz o¢
and since
W:%:(%J +u(%j ] % +§%
dt \dt), ox ), dy . of
-3 @D -0 22
ot). \adt), \dt); oz ox), \odx), \dx); 0z
1808y
dy), \dy), \9y), 0z 0§ dz d¢
Each bracket must vanish independently. Therefore the rules are:
(5) (555
o). \or), \or), oz
EIRCIREE:
ax ). \ox), \ox), oz
BRERCE
dy ), \9dy), \dy), oz

of _o¢ o
oz 9z 9C

then

Appendix 2¢. Vectors in non-orthogonal curvilinear coordinates

In non-orthogonal curvilinear coordinates X = ()?1,)?2,)?3) (see Dutton, John A, The Ceaseless

Wind, chapters 5 and 7), there appear two sets of basis vectors (usually not even of unit length)
and two sets of vector components. Applying the chain rule, we obtain the following two

expansions (summation convention):

oxX .. R A
dx = ——-dx’ dx' =——dx’ =\Vx') - dx
ox’ ox’ ( )

=1 ,di’ =1 -dx
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where T is covariant: tangent to the curve along which only %/ varies and ' is contra- variant:

normal to the surface %' = const. and we have the orthogonality relation

TN =9
Representing a vector A as
k k
A=At =An

we may recover the components [Ax (A"): covariant (contravariant) components] using the above
orthogonality relation:
i _ i 4 i
A=A-n=At,n
A =A-1, =AM T,

The scalar product is
A-B=A"B, = AB"

Therefore in generalized vertical coordinate % = (x, y,¢) the basis vectors become [the original
orthogonal Cartesian coordinate being x = (x, y,z)= xi + yj+ zk |

| . X . 02

n x=i T, = P +8x
ox 0z

ZIV =1 = — i k
n y=J T, dy =]+t dy
ox 0z

3:V = — = —k

The contravariant components of the velocity vector u' =V -n' are found to be
u, v,V-V¢=¢

while the covariant components of the gradient df /9%’ = Vf - 1, are found to be
(3503
ox ;’ ady ;’ o1
and the vector product V- Vf may be computed as follows:

) - of
V-Vf =u't, n/ 2
f wTM S

{u(n%kjw(ng—ikj gagk} Hfj 1+(§—Jy€lj aJ; 4
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|3, gl e Wﬂ Kayl selyveege gﬂ oo™t
_u_(a_fj af(ag azagj ”{_j af(ag 8z8§}+;$8i%
T ox ), 9c\ax  ax oz ), 9lay dy oz A ¢ Oz
f of
(gj +V(3yJ +§ a¢
since
() () 208,
dx ). \dx) dz \ox),
(5)-3) 543,
dy . dy . 0z dy :
0z 0z
a U % .
Veu = Ui+ wk {=V-v¢g
% aZ 400“
vm_u[ + axkj [ axj '
v _( 3z j( azj / _ \
cont =1 +—w|+| k—1— ’ﬁ\ Vé/
ox ox R Q
&K e
& ’o%“\/é/ K
N
Ui »(dz/9x)wi
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Figure 3. Representation of the wind vector in both

orthogonal z-coordinate and oblique ¢-coordinate
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Appendix 2d. Complete elimination of w.
Neglecting the Coriolis force and physical forcings, the four equations of motion in 7-

coordinate (see page 5) may be written:

av, 1 3z op
—|V.p-V 71— | —[=0 A2.1
dt +p( 7P ”Z[anj an (A2
-1
dw 1[92} 9 g (A2.2)
dt p\dn) 9In
dz
—= A2.3
Y (A2.3)

with
d 0 0

L_24v.v w52l A2.4
dt ot "7 77877 (A24)

Inserting (A2.3) in (A2.2) using (A2.1) and (A2.4), we obtain (Einstein summation convention)
-1

ﬂ+f‘;ﬂu“uﬂ+lh3“ —
dt p  ox® \dn

with x* =(t,x,y,7)and u® = (1,u,v,7), and where

. _(22) 0%
¥ \9n) ox®ox?

is a Christoffel symbol and where

A I A R A NS
on ox dy

h30 20, h31 —
’ on) ox’ on) dy’

is a special tensor related to the metric tensor as follows:

#o _Ov

h* =g"" —g"g

(see Charron et al. 2013 in QJRMS for all the beautiful details).
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Appendix 3. The metric parameter B.

In {~coordinate, the hydrostatic pressure is given by

Inz=A()+B(¢)s; s=lnzg ¢ =Inlzs/p,} p. =1000hPa
A=¢ B=A

2:%20; $y 280 r=rp = (h = o)A

Inz=¢+B[nz, -]

Here B is the unique relevant parameter as p,,, is not allowed to change. We note the logarithmic

character of the relation and the presence of a variable exponent r. We have 0< B <1 and a
positive derivative:

dInB :arlnﬂ:l[r—Arﬂlnﬂ]ZO; Ar=r, .~ T
oA oA A

Monotonicity requires that

dlnrx oB o4
3 =1+ﬁ[1n7:5 —;S]i >0
Inz,

e NG

When r is constant (4r=0), (0B/dA) =r at the model surface where A=1. K=1-1/r

max

(1-¢,/¢,) and the monotonicity requirement is r<ln(p,.ef/ p. ) ln(p,.ef/ 7). For
=p,/2 and p, =10 Pa, this implies r<4In10/In2=13.2 and for p,, =10 hPa,

r<2In10/In2=6.6. Larger admitted exponents do not necessarily mean better coordinate
straightening though and we must keep worrying about the ratio of model layer thicknesses.
Considering

g high

alnﬂ- _1_[8_Bj ln(pre_f /7[5‘)
o ) oL, .. ln‘pwf ! Prop )
we get, for constant r with Piop =10 Pa,

In2

thfs=1—r ~(1-.075r)
ln‘pwf /pwp )
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variable r constant r
Fmax = 100, rmin:2 r=4.5

10 —

Pressure [hPa]

Figure 4. Variable r compared to constant r=4.5.

Hence, for r=1, thfs =.925already. The value thfs=0.4 is reached for r=8 and thfs=0.57 is
reached for r= 5.7 meanwhile 7(0.2)=172hPa with =8 and #(0.2)=159hPa with r=5.7,

slightly better but no doubt insufficient rectification. Hence the need to keep r close to 0 near the
surface while faster coordinate rectification requires increasingly larger values of r aloft and this
is what we may attempt to achieve with the present formulation.
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In Figures 4 and 5, we compare variable r (7,,,=100, r,,;,=2) to constant r=4.5, clearly showing
the rectifying possibilities inherent in variable r. The basic idea here is to essentially eliminate

topography induced coordinate variation above 200 hPa.

variable r r=4.5
Vmax = 100, rmin=2

Pressure [hPa]

Figure 5. Variable r (7,,,,=100, r,;=2) compared to
constant r=4.5 below 200 hPa.

In practice though, we have found difficult to implement models with r,,,, much greater than 15.
The current (2015) GDPS uses r.in=3, rma=15. An alternative would be to use a SLEVE-like

coordinate (Schir et al., MWR, 2002).
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Appendix 4. Detailed spatial discretization: linear terms and matrices of the elliptic problem
a) Initial terms and basic difference and mean operators

In section 7, we described the vertical discretization succinctly. In sections 15 to 18, we
examined the elliptic problem formally. We now go back and examine the discrete linear system
leading to the elliptic problem in full details. In particular, we clarify the definitions of difference
and averaging operators.

As mentioned earlier, the difference operators replacing the derivatives are made as
simple as possible. In effect, if ¥ is a variable defined on full-levels and y a variable defined on
half-levels, then

_ Vier, — Vi

(5§y/)k+%" - Ik+% - tklk_%

A§k+%‘ ; (5§Z)k - A, (k=1,N)
A§k+f7k = §k+t‘k - gk Aé/k = §k+% - ;k_%

with specification of the momentum levels, ¢, (1<k<N ), plus the surface, {;=¢ v.r» and
calculation of the thermodynamic levels, ¢ =(§k+fk +§k)/ 2 (I1<k<N) plus the top
1

E ]9

and the truncated difference at momentum level one [#, =0, #, =1 (2<k < N)]. Considering the

¢r=¢ =2¢ — ¢, . Note the fraction at thermodynamic level N, [f, =1 (I<Sk<N-1), f,

2

linear equations and focusing first on difference operators, we place (LC) with u,,v, and

k’

é’ ..1» leading to (Lu) i (Q) . and P, =@ +RT, B,s. The hydrostatic case imposes (L,) o With

T' . and then (Le) « . Note the need of an extra level for P, P, =¢' | +RT., s, where
k+k k+= N+ N+ N+3
@' =¢;, the surface geopotential, is a known quantity and s is a model variable. Hence, in the

N+1

hydrostatic case, for k=1, N:

(Lu)k:(”+5xpjk (g)k:(‘%&yp)k

T

5§E§s+?§s . . 76
(LC)k = —+§XM+W5Y(COSGV)+5§;+;

T’ : Bis
()= ﬁ"[gﬂ ,.
k+&

e _
RYRCINEI

k

2 T K+l
7' 6P
L = —+—
(L, )k+7 T. RT. J o
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This is typical of the discretization on the well-established Charney-Phillips grid (Figure 1, page
12) for the hydrostatic case. The absence (in the present version of GEM) or presence (in
previous versions) of a thermodynamic level near the top, above the first momentum level, and
the presence (in this model) or absence (in other models) of a thermodynamic level, N + ', near

the surface, below the last momentum level, remain model specific features.

For the less well-established non-hydrostatic case, the placement of ¢ at momentum
position k is determinant. It is suggested by its presence in both the full definition of P and in the
full equation (LH)k+Lk . Note however the need for a value at N+2, the surface. With ¢, , the

positions of the remaining equations and non-hydrostatic variables are pretty well determined:
(L )k+%, ,uH%k, then (Lw)“%, wk+%k and (L¢)k+%k.Hence, for k=1, N:

u
= (E+ §XPJ
T k

(L), = K+5YPJ
k

—_
‘;h
~—
>~

|

T

-,
0.B‘s+B¢ s . =<

(L.), = %+§Xu+ﬁéy(msev)+5§§+§

L k

T z §§s+q§
(Le)kﬁ?k E_Kd(é/—i_ 7 ]}
L k+%k

T opP -
=] 7+ ¥
o
()t =[ 2]
nh k+%k

(Lﬂ),ﬁ%k = L‘l - (5461 +q° )]/H_%k

For the sake of maintaining second order accuracy, the use of more than one operator on
the same terms is to be avoided. In fact, on the above linear terms, this occurs only on terms
involving the parameter B, not a model variable, and it could have been avoided by explicitly
calculating B at half-levels. For the vertical averaging operators, we formally write:
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7 ¢ =" - =) _ -
(l// )k+5 wk+ll//k+1+wk+%l/jk‘ (Z )k—w-;,'{k+%+tkw-k1k_% k=LN)
el T k+l2 w-k_ =1 —@-]:

Note again the truncation of the second operator at momentum level one. As can be seen, only
one variable, 4,“ , could have been affected by the truncation of both difference and average.

However, since ¢ = ¢ =0, the truncation has no impact. The truncation will take care, in the
2

following development, of the absence of other variables above the first momentum level, while

being of no consequence on 4,“ . The first averaging operator, averaging variables from

momentum or full levels toward thermodynamic or half-levels, follows the rule of calculation for
the half-levels, i.e.

7 2 N+3

This ensures optimal (second-order) accuracy for the hydrostatic equation Ly in particular. For
the level N+¥2, no averaging is necessary for B or g, hence the value one. For the second
averaging operator, averaging variables from thermodynamic levels toward momentum levels,
averaging operator commuting with difference operators is adopted (see Appendix 5):

AL Ag, .
o= (k=1N-1); @ =07+
2A8, Agy

The weight @, refers to a special averaging operator for level N+¥4 which we have noted and
defined as follows:
= zk (k=1LN-1) (ﬁ{ )k+f7k = (V7§ )k+; (k=LN-1)

W) = Yy, 7).

it =X

_ N .

. =0y,  +O. %,
4 2 2

and which serves to interpolate linearly the variables required at level N+% but not defined there.
Hence the weights:

@.=Ag, 1200 @ =1-0..

This averaging is performed on ¢ in (Lg) Nalo (L¢)N+1’ on ¢* in (L¢)N+l and on g° in
(Lg) Vel (LH) v+l and (Lﬂ)N+l’ Very explicitly, we have [exceptional values of k are listed
separately, w']il being replaced by their values, either ( Y2, Y2 ) or (1,0) ] the linear terms

5

(section 13):
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(k=1N)

2 T
kL - 1B, s+rq,.,, +Bs+ryq
(Le)/”l:ﬂ‘ _Kd[§k+j+_ k+1 k+1 k k

5 } (k=1,N-1)

: B,.,+B, s : B, +B, s
(), =B oy 8o ) (| £+ Bt B2 | o g BBt o)

T

ST RTG —w (k=LN-1)
s, BB A% Gt
(L ) | = k- + k+1 k_ _p k+1 k4 Tk+l k (kzl,N—l)
H ) k! T*k% Rﬂk+%A§k+l Aé‘k% 2
Wk+%
(L) =—"—s1,,, (k=1N-1)
nh 2
Qw1 — 9 | D T4k

L L= L= + k=1,N -1
( ﬂ)k+i ’ulm-E { A§k+% 2 ( )

and for the exceptional values, k=1 for L.:

. B,+B s
(LC)I:5XM1+C0i95Y(c050V1)+(Al§l+(D'r[é/3+ 22 1_i|
and k=N for all equations except L, and L, :
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. B +B, s
(LC)N = Oxlty +ﬁ5Y(C°59VN)+ (Aél“Ner;{;NJri } ACN { T2 }
B,

T
y s+rq
N+l N N+l B . 1 +r +B s+r
(LG)N+1: ex|of|{  +——2|+@ |+~ dn -1 dn-1
4 ﬂ;N+l N+5 T N_5 T 2

_ 1 ’ - ¢N ¢N 1 + £ - #
(z,) ; —;(‘UWN +@. RT*M;(‘”* Cur T 5N_;)_gWN+;

N+1
T,+1 P . —F Ay, —4n
(LH)N+l: N 4 N+z r’ N 2 +w—:q +w—— qN qN—l
3 ’Z:kN+Zl *N+IA§ A§N+% 2
(L), = — g
w N+K Tnh N+Z

q,.1 —dy

(Lﬂ) L=, - N+2—+@':q +@"M
N+ N+; Aé’ 1 2
N+L

b) The primed terms
After the preliminary step (section 15), having introduced

’ ’
X Ié‘/ +lBk+lS+er+l+Bks+er
e+ e+ T 2

and
B, :¢I:+Rﬂk(Bks+Qk)

and eliminated two equations and variables 7’ and g, we end up with:

’ r, + + r,—+ —
(LC)k =§Xuk +COIS€5Y(COSHVk)+(A;(+m;IXk+; __qkl—zqkj_&‘wk_{xk; _?Qk ZQk lj

T
and
( e—l;{j :(L;)k.;.,l = — m; P]X%_Pk _K.ka+7+r? qzlé/ qk +qk+12+qk
ko el K+l ks
EXTRA ’ 1P, +PF
|:L¢— j| :(L )k+i:7 k+l Rnk+|X o ng+l
T P T 2 2 2
W
[L +gL ] /)k+1= ks 1 Gy — 4y +‘1k+1+%
T, A{k% 2
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in addition to (Lu) L (Q ) . - For the exceptional levels, we have

rq, +
(LC)l :5Xul +001305Y(0050V1)+(A1§1+51+)(X; _?qz 2 qu

r’ rq,+q,.
(LC)N :5XMN+00159 5Y(COSHVN)+(A§1’N+EXI)(XN+;_?qN+;j_(A§1’N_w;/)(XN_;_?- N 5 N l]

4y, — 49N
r 1 +
(L,), .. =- z —K‘d(a)':X +a X 1)+— BTN, ) S L2
N+§ N- N+E 2

N+= 1
i RT,,, A{N% )T AQ“N%

, R Y. _P,+P, . -
(). = ;(Cm By S Rﬂmi(af* X, .+ XN_IJ— Wy,

2

w q .—q
(L)) =— - g 222 ! ++mlq, o I v
) o N+% ?
N.B.
' 1
(z ¢)k+g = (L¢)k+% -—EXTRA,
: 1
(L ")N% - (L¢)N+% ——EXTRA
where
EXTRA < g7 Buas +7qu)+ (Bis+r'q,) RT,, (Bis+7q,,)+ R, (Bis+1g,)
k+% ot > 5
EXTRA :anl[m(”r,q l)+w*_ (BNS+qu)+(BN_1s+qu_1)}
+Z 4 N+5 2
—@':RﬂNJr;[S +r’qN+1j - RT.y (BNS +r QN)"‘ I;T*N—I(BN—IS +r QN—1)

and if 7. is constant, EXTRAkJrfk =0.

2
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¢) The double primed terms
Next we proceed towards (L"), (L;) and (L)

» L’ + ' - '
(Lc)k:|:§XLM+C(:§€5Y(COS€L‘/)_7Ci| + r bk (Lw)k+;+wk(Lw)k—;]
k

gTTnh
2 1 3 1 X"‘; + - r
=V.P —\ o} +—a + ow _ +Ow, _, |+—-res
ETk g T Al v ogre, U F ks ke 2
” 1 1 r ' r 1
(LH)]H.,I_ |:(L0)k+l+ (l’w)k+l + 2.2 (L¢)k+1j|
T(K'd +8]: 1) - 8Ty ?
+
- _ Pk+l — Pk ’ Pk+1 + Pk k+%
1 1
k+s Aé’k% k2 T
” 1 ’ r ’ Kd ’
(l‘¢)k+7l , (Le)k+% + r (Lw)k+% RT. ( ¢)k+%
T(K‘d +8k+1) 8 wrd
w
o | Bu-B ., ButBR |, "
K+l d
+3 Aé‘mi 2 TRT*,H%
RT
1 , ko4l . .
where L.= and € , =ré&=r——+. Here the commutation rule applies:
2 ’ 2 B 8T
(K‘d + gﬂJr RT*H% n

Qi1 — k- + Qi1 — 94 -9 49
ke "ot _ gy Dien Z e _ gy- G~ i
ZA;IC Aé/k+% Aé]k—%

AL,

since @, = ZAEZ . For the exceptional values, we have at the top (k=1)
k
” 1 Lé‘ r + '
(L2), =] 6L+ 6, (o L) -—5 | + a; (L)
T4 87T, ’
1 X r + r
:5XXP1+COS95),(COS€5YP1)_(A1§+m'l+) Z 4+ 5 @'1 w3+—2res1
! T grfnh 2 Z.nh
where
+ —_
res, = e ‘]1_m.1+% 4 _ 9 _
YA NSNS
Ad,
since @, = 2A§2’ =— and g, =0. Another possibility would consist in assuming that ¢, =0
1 2

instead. Then ¢, could be obtained by linearly interpolating between ¢, and (, viz.
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g, =q,/3, in which case res, =(1/A§1—a7f/A§3)2q2/3 would vanish only provided we

modify @ =A¢,/A{, =1: an interesting possibility (to be investigated).

At the bottom (k=N), we have

R YRR TR [ ERNR

v 8Tl E
=0 P+ 8,(cs05,P,) (1 )X1V+;+(1 )XN_;+ " (& +0, +
= cos — @ -@y w W N res
XN eoso PO N g T T g T T e \ O e T o
where
|l . N N e
resy = (Aé'N-HUN)qN‘F; (Ag“N_wN )—2
q,..1 —dy — +
— & N+3 +0)’:q +@'_ dn T4y — @), Ay — 4y n Ay T4y
AL vl 2 AL Vo 2
4 2
. - A;N# @, .o . ~ .
and res, =0 provided @) = t=—2_ It is interesting to note that the value of @)
Az, @
corresponds to the ancient value of @, , which is the one that must be modified by @; . (N.B.

With uniform resolution, @, =1/2, @, =3/4, @, =3/8). Therefore

o), e, ]

gTr,, —

( ) |:5 L +cos€ (cosGLv)——}
N
:5XXPN +ﬁ5Y(COSQ§YPN)

For the other two terms, we have
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P 1 , ro. ro(
(L), =—[<L9>N+; e L) +?(L¢)N+i
T(K‘d + €]’V+,) 8T 8 Ty s
P  —-P,
1 , . _P,+P | N _
= |22 4¢ I(ZD;P @ uj ——(aLX @ X
N+ Aé‘ 1 N+ N+3 2 T N+
Nt
1 r K
), =)y +—— (L) s ——— (1)
b 1 9/ N+L1 w/ N+~ (4 o
N+ z'(](d + €;V+,j " 87T, ¢ RT*/{% N+
P  -P,
1 P, +P
=T ] M2—+Kd(m':P ]+m-*— N N—lj + 8 |
N+Z A;N+1 N+E 2 ZRT*N+1 N+E
Symbolically, the averaging operator corresponding to the weights
o, =o; (k=1,LN-1); o,=0,/0;
o =1-&]
—¢
has been represented by () . We may therefore write
” L, r —"é,
LC=5XLM+?1895Y(COSQQ)—7C+ L,
gTTnh
=V§P—(5§X+Y§)+ — W
gTTnh
7 —~ X
L,= —F[é'gP - 8P]——
T
= w
L":—F[é' P+ P]+—g
¢ ¢ d RT.
d) The final eliminations
From (L]) ., we obtain (L;),
” —(r” ” N+% N ’ _ P, +P, _
(LH)N-% — . (LH)N—% Ew-:(Lﬁ)N% = _FN+% T_Ezwl(mjp +3 +@ 2 =
N+g
+@T Py =F, | P, +P,_, _gr M
Nl AL N=3 2 T
N——
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before proceeding to the final eliminations,
(L), = (), (o )(25), - 1 e 7).
(L), =(t), (oo

(LP)N= ( HUNX N+1 +(

getting respectively

@) =vin| v | Bt Lot mpare), B

3 AZ 3 AG >

2

(Lp)k:VE,P]{_F(L_Fw']:’JF]H] Pk+1_Pk_( 1 _w.k_Jl—* IM
Agk 2 A§k+l Agk 2

AC,

and

P, -P, ~
(LP)N:V§PN+[;++@;jFN+I ke —( ! +—@‘;JFN_1PN—
AL, @, 3 A;N+£ AL, @, 3 i

TNy =N ar @
— ) PN +7PN—1

DAy

)+l ), el ), ~aile ),
;)

o k), —eylens), ~onler),

P , ’ + , P + + P — , _
- [(Fg )k+% - (Fg )k—;]_ (1 — Ky )[w-k (Fg )k+% % + @, (FE )k_i £ &1

(x, ){m re),. (@:pw @ %j a7, (TE), %}

Symbolically then, defining the special difference operator

(Aé“)k:(ég)k (k=1,N-1) ; (;)N:(éé“)zv

and the special average

(B)=p (k=LN-1): (~)N=(1—‘”JJPN+%

we may write the elliptic problem as follows
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— —C
L=L-8,L,—L, €L
” Sy Tf;{ Tf;g
=L -6, L, —¢€L]

¢
N el 5o ’ =
L,=V;P+6,I6,P+T6,P —PS,Te -(1-k,)TeP*

— ~ -, =¢ — -~ - =¢
Here note the equivalence 6,1, + L, = 8Ly +L, oragain 6,X+X*=6,X+X . In effect,
we verify
X -X

1
N+E

N-1 . _ _ 1 oy N _ 1 L
A—g“NerNXN*% +a7NXN_% = (C’JIAKN +con(w; XN% + @, XN‘J_(&T:M’N —mNjXN_;

There are N equations with N+1 unknowns [ P, (k =LN ) plus P, ,]. We use the boundary

condition, { , =0, to eliminate P _, . In effect,
N+- N+=

2 2

» N+l TN , _P,+ P
w-:(LH)N+1 N+t - _€N+l w-:PN 1 + . = =
: Aé/N+l ! ’
o' X
+o 1 Py —Py , IPN+PN1 N+s
N= A{N_l N= 2 T
But, since £, =0, then
N+E
~ s+qu+% ~ PN% /8
N+% T ZRT*N+1
Hence
» ” 4
L 1= L 1 — S
( 19)1\/+E ( 9)N+E 72RT*N+1
r . |P ,—-P
S| Betiee SR G %5 S S s
o A§N+l N N+
. PN - PN—l _¢ PN + PN—l N+1
@; V= AL, NE 2 T°RT., 1

Re-ordering, we write
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P 4l =a,P, + BPy _CS(L;”)

N N+%
with
Cs = !
FN+i{1/A§N+i +|:(K’d +8N+i)T*N+l/T$N+; _8N+ilw; }
Nl B (rg,)N+l - (Fg,)N—l FN—l
as — CS 4 +w* 4 2 + 2
A{N% 2 A{N_%
By = Cs@. S R
s — Y sWs -
2 A;N%
and thus finally

(L;’)N = (LP)N +C;(L;”)N+%
(L;’)N = §XXPN +ﬁ§y(0059 5YPN)
+( ! +0F jFN+l (a'SPN +:BSPN—1)_PN _( 1 &- jFN_ P, -P,_,

AE o A{N% AC o N N A(N%
&)y, =T @) @
- £ L 1-=|P,+—P,
A, 2 2

-(1-x, ){Cojv (Fg')ml{w: (a,P, + BP, )+ @ %} + o (T 8,)N—5 P, +2PN—1 }

with

1

A A TR R o
Ci= +a@;; —(1-x,)@} (T€),.: |Cs

o \ag, V)AL, :

Hence L, gives rise to the same expression

¢

’ o ¢ = , =
L,=V;P+6,'5,P+T6,P —P5 T ~(1-k,)TeP*
with PN+% replaced by o P, + B, P,_,.

This vertical matrix problem may be decomposed into a set of tri-diagonal matrices written as
follows:

L,=V;P+[DID+MID-D(¢)-(1- &, M(CeM]P,

the elements of which are:
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(LP )k) §XXP + Colqg 5 (cosr9§ P )
r
1 Ko+
—2\P. ., —P
Aé’k Aé/ ( ko+1 ko)
0 k0+%
ko+
+a; (P, ,-R,)
A;ko-%
()
Ko+t
_ > p
A, "
o i
~(-x)5ere) (B +R,)

(LP)k =0 b, + P

% 5Y (cos 95YPk )

1 1—‘k+7 (P —P) 1 Fk—f (P P )

Tag A TR AL

- . (v l—a)m,:i(a—a )
ag, ag

B (Fgf)k+—; - (Fg,)k—%

P,
Ag,

@} @, [,
_(1_Kd) 7(F8 )k+%(Pk+1 +B<)+7(F£ )k—l(Pk +Pk—1)

(Lp)y = O P+

cosé

NN A; A{N% AL\ A{N_% A{N%
r r r L
+ (_’31_\/ - 6‘)7\/( as) - N 6)1_\/ - a NIBS —
A;N—% Aé‘N 1 AG, A§N+%
@\ -(0e) s g 0y - (T€),
2 @A, Yo @A, N

5 (0059 5YPN)

~(1-x, ){mzN (re),. + @, [{‘; +0; o j(FS')M; } P,

~(1-x, ){GJZN (Ce)ys + 0 (a; N 'BSJ(FS/)ML }PN_l
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Explicitly, the matrices then are:

50

- ro. T, A |
| -a) T 0
Ag% A;kﬂ% A;kﬂ% Ag% A;kﬂ%
r . r . r |
DID= L k-1 B 1 k-2 + o i k!
AL AL, LA AL AL AL,
0 1 FN—% B FN% B 1 FN—% +(1—6¥) N
o A;N A;N% SA;N% @A;N A;N—% ' A;NJ% J
_(1 o), o o it 0 |
- ko %k K
Aévka—% Ag@,+% Agk0+%
Fk_' Fk—' 1—‘k+' 1—‘k+'
— _ 3 3 3 o 3
k k k k
AL, AN AL,
L - FN+I FN— ( ) FN+I
0 Oy B Gy = (1)
L AgN—% A§N+l AéVN% Aévm%
_(Fg') K+ —(Fg’) ky— 1
Yo
, (T€) . ~(Te)
DI'e = 2 2
4 Agk / 4 4
o )y ~Te)vy (@ Ty ~T€)y
2 AT 2 ) A,@
| 4 4 w* 4 —‘
@, (T€), . + “©(Ie), 2"" (Te),u 0
— ~ + +
MIeM= % (rg) G (1) +2(re),.0 G (re),..
2 2 2 : 2 2 2 2
0 “’7 (Fe)y.. +ay (ag +@ f; j(re’)]w; “’7 (Fe) 0 +any (ag +wrasj(re’)N

N.B. The operators are not truncated and the indices start at ko rather than one with the presence of ¢, , indicating

that the top boundary condition is different from the one discussed above. In fact it corresponds to the open top
boundary condition (see Appendix 9 for its description). The truncated operators are easily recovered though:
simply considering I", =0 if k,=1.

2
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Appendix 5. How were chosen the averaging operators and note about commutation

Let us consider two variables, yand g, defined on separate staggered grids as follows:

l//k:l//(é/k) > Zk-%——;:Z(;k-%—%)

indicating that yis defined on full levels while y is defined on half-levels. Only the independent
variable ¢ could and was defined on both types of levels and thus take the two types of indices.
The metric parameter could also sometimes be defined on both types of level, hence two
different symbols (B on full and B on half levels). To obtain the variables G and H on their
alternative grids, averaging operators & and a such that:

(ex), = v +(1-a, )lk_i ; (al/l)k+é =a, Via +(1_ak+1)§[/k

are introduced. In the following discussion, difference operators will be needed and we define
them:

Zk+l _Zk—l Zk+l _Zk—l
§k+1_§k_1 - Agk

: (5W)+l:Wk+l_Wk:Wk+l_Wk
" §k+1_§k Ag !

ke+t

(5Z )k =

Now, let us consider the following relations discussed in section 17
¢ S oo ¢ ’
¢ =z¢ ¢ =
5§q +q§ :é‘gqg +q§§

If I'e is constant, and if we do not consider the frontiers, the double averages cancel and both
relations simplify to the same commuting relation

= ¢ —¢
Sy -6,y =(ad—day=0
Let us impose this condition to the above operators and examine the consequences. We get

P+ - P P —-P
(@), = (0P). +1-a JoP) = )

2

(&IP )k = =

Implying that
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A, _ ak*% . Ag, _ l_ak‘lz
A{k% a,’ A{k_% 1-¢,
and either
(a) Agkﬂ _ o 1_ak+% or (b) A§k+% _ o 1= Gt
A, 1-a, a, Aé/k—l 1-a, 4

ket

then we most likely want

From (b) we get

and thus
A§k+le+l + Agk—le—l

(aG)k: 2AC,

Instead of choosing a, . off-hand as we have done, we might have imposed another condition
2

such as the symmetry of matrix M formed by the product of the matrix obtained from the double
averaging operator au and the diagonal matrix with elements A{ , i.e. if we had imposed that
the tri-diagonal matrix M whose elements are

5 —

(AlaaP), = A{kak(ak+él’,(+l + (1 —~ ak+.jpk) +(1-a, )Aé’k(ak_;Pk + (1 —a,_, ij_l)

= Mk+l,kPk+1 + Mk,kPk + Mk—l,kPk—l

be symmetric, i.e. setting M, , =M, ., i.e. Aé’ka'kak% =(1-a. )AL, [l —ak+;), ie.

©) AL,y _ a, ak*%
AL, 1-oyy, l_ak+i

2

Then, combining (c) with (a), we would have again found

|
a ,=—
ktz 2
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Appendix 6. The Dynamic Core Code and vertical discretization: A brief description

The dynamic core code is essentially organized as follows:

set_zeta, set_dync, set_opr, set_oprz :

Timestep Loop

compute constants and parameters of the vertical
discretization

tstpdyn: performs a dynamical time step calling rhs, adv, pre, nli, sol, bac

rhs: compute the 6 basic Right-Hand-Side terms: R

R,R., Ry, R, R, (section 12)

u’

R =Y — B (F+ )7 + RT 8, (Bs +q)+ (1+ 48,8
T - )
R=Y Bl + @@ )@ + RT 5, (Bs+q)+(1+1") 8,6
T - i
Bs+In(l+8,B° i iy
R.=2 nll+6,5°) _B §Xu+migay(msgv)+5§;+g}
. i :
= - B —¢
‘o+g s 30.T.
R, lln(zj—KB Stq —Bl -k +E—=
T " T 7;
¢ -
R=" - Bl RT.Z - gu)
T
w
Rw = _ﬁnh(_ gﬂ)
nh
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Departure Outer-Loop

adv_pos: Compute the next estimate of the departure points.
adv_int: Evaluate Right-Hand-Side terms at departure points.

- adv:

- pre: compute Right-Hand-Side terms (section 17)

- -firstcombine R,,R,,R,, R into R. and R, R ,R, into R, and into R,

GEM4 .4.docx

1 — ;
5XRM+C01§95Y(0039RV)——(RC_LRW ERC
A v ngh
1 , - _
Al Rt R,+——R,|=R;
t(x, + &) T, P
1 ”
(k, +€) g7, RT.

- -second combine R/, R}, R;' into R,:

” S p” T”§ ﬁ;
R; —(é}Re +R, +€R; ) =R,

- - third make extra combination at the last level

E [(Rg )N -%

1

*

(RP )N + C;(R;)N.;.% = (R;’ )N

(Rg)N—%] =

7°RT.

(Rg )N +%

¢S :| = (RZ)NJ,%

2016-06-02

The final version of the Right-Hand sides are: R, R,, R}, R; , R, and R,




Non-linear Inner_Loop

- nli: compute non-linear Left-Hand-Side terms: (sections 15 & 17)

- first compute N,,N,,N.,N,,N,,N;

N, = —(f + taze u);XY + fogé'x (Bs + q)+ﬁx§5X¢'— 5XRE§(BS +rgq)
N, =(f + =@ )a* + RT" 5, (Bs +q)+ 1"* 5,6 — 5,RT." (Bs +r'q)

N, E%[Bs ~B%s +ln(1+ é‘(l_?{s)— 5§§§s]

- =
O,[¢+RT. (Bs+r’ 0.q+q°
IV UV PN o AT (Bs+rg)l _ ,0:q+7
T T RT, T
= - = - —
é/ =l éV — \75’1—;
—K‘B s+q+KdB s+rq+é, ¢
T T T.
EXTRAEN;
T

N, +gN, =N, =—glu-6,q-7°)

- second combine N,,N,, N, N, into N_. and N, N/,,N; into N, and N

SN +15(cosng)—l[NC— d N—;ngNé’

! cosd Y T ngh
1 , r ’ r ’ N4
A N6’ + Nw + 2.2 N¢ = N6’
T(Kd +& ) ngh g Tnh
1 ’ ’ K ’ ”
—— | N+ N, -ZN}| =N,
T(Kd +& ) ngh Rn w

- third combine N, N, N, into N,

- — ¢ —
Ng—(5§N§+N;’ Ve jENP

- fourth make following extra combinations at the last level

1 ” o »
F[(Ng )N% -a. (N, )N,%] =(N, )N%

(N 4,9, )N+% = (N ;”
(N, ), +CS(NG)y o =(N7),

).
N+L

GEM4.4.docx 2016-06-02



- and obtain final Right-Hand Side of the Elliptic Problem R, — N,

- sol: solve the Elliptic Problem (section 16 & appendix 4)

L,=R,-N,=V;P+[DID+MID-D(T¢)-(1- &, M(Te)M]P

- bac: back substitution: compute variables for next iteration/time step (section 18)

RT. ., .~ =

Wi W= [RI =N+ T(8,P+k,P)]
=r 1 , w

q: 0,q+q°=——|R,-N,——|; ¢,=0

g 7’-nh
u: u=1[R,~N,—6,P]
Ve v=t[R,—N,-3,P]

P_ ’
s s=—"5 b —r'y

RT.,
C C ” ” ,_é’ E;S+r,§; >
& ¢ =—t[R]~ N, +T(3,P—€P*)] ————1; £ =0
9 ¢ =P—RT. (Bs+r7q)

end inner loop

end outer loop

end timestep loop
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Appendix 7. The hydrostatic option

We start with the final form of the equations given in section 5:

djh + fkxV, + RTV ;(Bs + q)+ (1+ )V . =0
t

%[Bs+ln(l+a;Bs)]+V§ 'V, +(0,+1)¢ =0

%{ln[%j—K‘(Bs+q)}—K'é;+§;a;lnT* =0

%—Rﬂ;—gw=0
dt

d,0/RT,
T. 1+9,Bs

The hydrostatic approximation may be considered to consist in neglecting non-hydrostatic
pressure effects, therefore assuming g=4=0. Then the vertical acceleration dw/dt is neglected. No
equations after the ... are required in the solution system. Therefore, we only need to solve
(using the switch Schm_hydro_L=.true.):

dav,
dt

+ fkxV, + RTV Bs+V ¢’ =0

%[Bs+ln(l+8§Bs)]+V§ -V, +(0,+1)¢ =0

i{ln[%j—ld?s}—l(f+§;aglnﬂ =0

dt .
%—Rﬂf—gw:o
dt
0.0/ RT,
1+eqL:O
T. 1+8§Bs
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Appendix 8. The autobarotropic model

We build an autobarotropic model (Dutton, The Ceaseless Wind, pp 186-7) from the three-
dimensional code of GEM in order to simulate a barotropic model. We do that in

1) eliminating the physical effects,
i1) making the hydrostatic hypothesis,
1i1) introducing a key & =0 to eliminate the pressure tendency d(Bs)/dt in both the

autobarot
thermodynamic and continuity equations,
iv) initializing with barotropic conditions :
V,#V,((), T=T.=const; { =£=0; ¢ + RT.Bs = ¢, = ¢ + RT.s ,
conditions which will be maintained afterwards, hence the name autobarotropic
model.

From the hydrostatic equations (Appendix 7):

av,
dt

+ fkxV, + RTV Bs +V ¢’ =0

%[Bs+ln(l+a§Bs)]+V§ -V, +(0, +1)¢ =0

d T .
—|In| = |-&Bs |-k{ +{ 9, InT. =0
df{ [Tj } P
d,¢/RT.
1+L:O
T. 1+9.Bs
with B defined simply as B:ﬂ and considering barotropic initial conditions

5 s ; T
[Vh #V, (&), T =T, = const; ; = O], we derive from the hydrostatic equation that P is uniform in

the vertical:
P=¢'+RTL.Bs=¢ =@, +RT.s # P({)

and we may define s = M Indeed, 8(¢ /RT. + BS) = L =0 ,hence —P =0.

RT, A+Bs) 3¢ A +Bs) ¢

We therefore have in the momentum equation:

d;;" + fkxV, +V, ¢, =0

and since P =¢, # P({), then'V, staysV, #V,(¢).
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Now, even though { =0 and T =T. = const initially, temperature will change unless the
tendency d(Bs)/dt is set to vanish. Multiplying d(Bs)/dt by o =0 whenever it occurs does

autobarot —

the job though. If 4,“ =T'=0 is maintained true after a time step, the equations

dj” + fkxV, + RTV Bs+V ¢’ =0
'

Bs+%ln(1+8§Bs)+V§ -V, +(0, +1)¢ =0

4
di

autobarot
iln z - K§al¢robar'ot i BS - Kg = 0
dt \T. dt
0,0/RT,
2 + L =0
T. 1+9.Bs

are then effectively equivalent to

djh + fkxV,V (¢’ + RT.Bs)=0
t

31n(1+8§Bs)+ V,-V,=0
t
9, (¢#+RT.Bs)=0

and since B = 4_—Qand with @, = RT.(, — ¢, ), then

N T

dj" + fkxV, +V, 4", =0
t

iln[l+uj+V§-Vh =0
dr .,

and finally withg. = ¢, + g/,

d;h + fkxV, +V, ¢, =0
t

d
Eln((pr _¢s)+vg -V, =0

And these relations are invariant in the vertical. Hence, the model equations with a vertical
structure (a few levels, at least 3: e.g. hyb = 0.5, 0.7, 0.9, to satisfy the operations), but starting

with barotropic conditions, simulates the barotropic equations.

The model is autobarotropic.
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Appendix 9. Open top boundary conditions

The goal is to develop an open boundary condition at the top, i.e. a condition with
X ppenr # 0. First, let us deal with the linear system (Appendix 4) at the stage where we have

obtained L, at all levels starting from k,>1:

(LP)kO :5XXPk0 + ! 5 (00965 P )

‘cosf

B . ~P B -P_ P
N 1 v 0 o g, |1 o It K~ Tt [(Fe )k() —(re )k() 1]
Agko o A§k0+% A;ko o2 Agko_% A;ko :

P +P P +P
_ (1 — Kd )|:w';;) (Fg,)ko-% k()+12 ko + m-k—o (Fgl)ko _% ko 5 ko—1 j|

and suppose we wanted to impose a closed upper boundary condition at the level k, -% . We
might then have used, since (the thermodynamic level being) available, the relation:

B,k P, +P
(L;,)k 1 +1X = _l" | ko ko—1 _ g/ ] ko ko1
T Sl AL L e 2

assuming X _, =0 to obtain a relation for £, _;:
077

Pk0—1 = aTPkO +C; (Lg)ko_l

where

Hence we might write

(L'P) =Oxx Pko + 56 (COS 60y Bco )

cos 6

P ., -P 1-a,)P. P
( v + m.ko]rk0+l kot ~ Ly _( 1 o, Jrko_l ( ) b Th fre) - (FE’)ko-l]
ko 2 2

Agko*-’; Agko Agk ! Agko e :

073

2

P +P
- (1 - Kd ){@';0 (Fg ,)k()% % + m-k_() (FS ,)ko —%

where
(), = (L), - €7 (L)),
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with

cr=|| L —a; s (1= (re), . |c
t\AgG, A 2 o |77

and thus be able to solve the elliptic problem. This in fact exactly corresponds to the original so-
called numerically un-truncated boundary condition, whereby a thermodynamic equation existed

at level % , viz. above the first momentum level. We could therefore still impose the original top

boundary condition but only starting at index ; (momentum levels starting at index 2).

In order to impose an open top boundary condition, we may proceed in a similar manner.
We must however find a different closure assumption, calculating, instead of imposing, X .
077

This may be provided by the relation,

1
——-K,X

1

k=1

suggesting simply imposing temperature at the top. In effect, the following combination

’
( /Il) _( //) (Lg)ko_% 7:1penT _ F Pko ko—1 ’ Pk(J +Pk0—1
LH ko—L T LB ko—t + 2 — gk 1
: T KT KT 2l AG, 073 2
2 075

provides a new relation by which £, _; may be obtained:
Boa=0h +C (L.;”)ko_%

(Ly )ko—i =L, =R,—N, simply replacing (L )ko—i in the relation. All of this is trivial then, except

for the calculation of the right-hand sides corresponding to Lg, i.e. Rp and Np:

1 T
Ry=(R",), +——|(R}), 1 —=2"T
B 07k, 3 K-dz- 07k, 3 TT*[{O_%
" 1 (Nﬂ)ku_l
Ny=(N G)kO_%_ET—Z
d *kn—%

In the non-hydrostatic case, another condition is needed, namely ¢, -

Appendix 10. Lateral boundary conditions
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A limited area (LAM) version of GEM exists. It requires lateral boundary conditions.

These are provided by three sets of grid point values:

A

(1) The first set is external to the LAM domain and allows the semi-Lagrangian scheme to

function as if no boundary existed, i.e. a sufficient number of points exist outside of the
domain so that the upwind values of all relevant fields can be obtained by interpolation
provided a predetermined Courant number is not exceeded. The relevant fields are the
R;’s, the Right-Hand Sides terms calculated from the previous timestep history carrying
model variables. If the values provided to the LAM come from a global host-model
identical to the LAM in all respects (space and time resolutions, physical
parameterizations, etc) then the host-model results for the R;’s are reproduced.

(i1) The second set is the boundary set proper: it comprises exclusively the wind component

normal to the boundary and at the boundary itself. These grid point values serve to close
the elliptic problem in the horizontal. In effect, the so-called elliptic equation will contain
in particular (see section 17) the following terms:

(LC ),‘0 Jjk

T

+...

(5X L, )io at [ﬁ oy (coso L, )],0 w (LP )io = (JXX P )iojk + [ﬁ S (e gayp)]iojk o

To the left, the L’s must be known quantities. To the right, there is only the unknown P.
Here we consider, as an example, the grid points with the label i,. This is the X-direction

and we assume that i, is the first internal model cell on its left-hand side. Developing the
relevant terms, we obtain
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But note, the equation

i
(Lu )io ~Ljk :%"' (§XP )io Lk

which should have served to eliminate u " from the continuity equation does not
=3
exists. (L )io _1; 1s in fact an unknown quantity. Let us then restore u " in the previous
2 =3

u

equation:

(L“ )io ‘*‘% x u

AX

It N (L ) _ (5XP)iO+%jk -
Pligjk AX

J J

0
+

L1
ig = jk

Thus the elliptic problem may be solved if we provide the normal wind component on the
boundary, u. Liyeasa boundary condition. The elliptic problem may appear as if we had
set (5 xP)iO_l,»k =0 as a boundary condition on P to the left of the system. In fact we have

replaced an unknown quantity, (Lu )io——'jk’ by a known one, u " /7, the true boundary
2 b=

condition, to the right of the system. The same procedure is applied to the normal wind
components on all the boundaries of the LAM. Again, if the normal wind components
provided to the LAM come from an identical global host-model, then the host-model
results are reproduced. Since the solution of the elliptic problem corresponds to a future
timestep, the set of boundary winds must come from the timestep following that from
which came the external set.

(ii1) Finally, a third set of grid point values are internal to the LAM domain. They allow for a
gradual relaxation of LAM-fields to the HOST-fields as we approach the boundary. All
history carrying variables are relaxed this way. Of course, if the host-model is identical
(the acid test), this third step of the procedure is redundant.

In GEM presently, physical parameterization is added (split mode) after the dynamics, i.e.
after the relaxation step just mentioned. Thus for the LAM to reproduce the host-model results,
the future values provided in steps (ii) and (iii) must come from the host-model after the
dynamics prior physical parameterization while the past values provided in step (i) must come
from the host-model after physical parameterization.

N.B. As soon as horizontal winds are modified by space and time interpolation, i.e. when not performing the acid

test, the vertical motion field ; should be diagnosed (see Appendix 17)
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Appendix 11. Time varying topography

The initial conditions as well as the lateral conditions (see Appendix 10) of a LAM are
frequently provided by a host-model or by an analysis made on the host-model grid with much
coarser horizontal resolution, typically at least a factor of three coarser. And the information
usually comes in terrain-following vertical coordinates. Then the bottom surfaces, the
topography, of the host and LAM may differ considerably. Straightforward interpolation-
extrapolation often results in poorly balanced fields: a point fairly high in the host may have
relatively strong winds which may find themselves near the surface in the LAM; vice versa a
surface point with light winds in the host may find itself fairly high in the LAM. For the first two
sets of lateral conditions, i.e. outside and on the boundary of the LAM domain, the host
topography may be kept, but for the third set, the relaxation zone, the problem cannot be
avoided. One may only attenuate the problem by relaxing the topography in essentially the same
way that the other model fields are relaxed and then interpolating-extrapolating the variables. As
for the initial imbalances, it has been found desirable to initialize the LAM with the coarser host
topography, gradually modifying it to reach the finer LAM topography after a suitable interval of
integration time: the LAM then having a so-called time-varying topography field. Artificial
though it may be for the atmosphere, this is a perfectly acceptable mathematical procedure and,
provided the induced vertical motions remain small, the meteorological consequences may
remain acceptable (a 10 cm/s topography velocity is able to lift the terrain by more than 1 km in
3 hours).

Examining the equations, we find that a local tendency of geopotential is provided and
calculated implicitly by the equation:

d¢’ .
Y _RT.E —ow=0
” {-g

A surface level is present in the vertical discretization ( ;‘ s =0):

—-gwy =0
dtgs

After time discretization, we have:

O oy =0 gt

T

(gi)s )" is the surface geopotential at the arrival point, i.e. at the grid point at the future time. It is
an external parameter which may be externally specified. In hydrostatic-pressure coordinate, the
time varying topography option is just and only just that: modifying ¢ at the appropriate place
in the model code.
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Appendix 12. Trajectory calculations.

The essence of semi-Lagrangian advection resides in trajectory calculations. These serve
to estimate the upstream position of fields to be advected. Once these positions are found, the
upstream values of the fields are obtained by (cubic) interpolation. The three-dimensional
equation to be solved is:

dr
dt

\4

as follows:

2
Arszt+ﬂA—t+
dt 2

Three methods may be used in GEM: the mid-point rule, the trapezoidal rule and
SETTLS scheme. The mid-point rule (a time mean followed by a space interpolation) can be
described as follows:

Ari _ V(I,I‘ —Ari—l /2)+ V(I—At’r _Ari—l /2)
2

At=v, At

where i is for iterations being made due to the non-linear nature of the process. We write the
trapezoidal rule (a space interpolation followed by a space-time mean) with the off-centering
possibility as follows:

Ar' =[pv(e, )+ (1= 6" (e — Ar,r — Ar 7 )JAr = [p"v + (1- b7 v |Ar
Finally, SETTLS scheme may be written

(r—At,r)- vl —24r,r — Ar'™') AP
At 2

Ar' =v(— At —Ar T )Ar+ Y

vi+v?

> A, vi=v(-Anr), v°= 2v(t —At,r— Ari_l)— v(t —2Af,r — Ari_l)

Ar' =

The first two methods assume that winds at time ¢ have been estimated and so require an iterative
outer (so-called Crank-Nicholson) step. SETTLS scheme, using winds at #-Ar and t-2A¢, do not.
The scheme performs satisfactorily in barotropic mode. Recently, after the elimination of
logarithmic tendencies and with the introduction of a vertically variable 7., stable integrations in
full NWP mode were achieved. The scheme is more efficient. So far though, the meteorological
performance remains inferior.

Traditionally, GEM was using the mid-point rule and linear interpolation in trajectory
calculations. However, noise in Schir’s mountain case could only be eliminated if using the
trapezoidal rule combined with cubic interpolation: a case of consistency between semi-
Lagrangian trajectory calculations and following semi-Lagrangian advection calculations.
Moreover, improved forecasts, improved trajectories, were found to result when the trapezoidal
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rule combined with cubic interpolation were substituted to the mid-point rule with linear
interpolation and so now this is the favored method.

Initially, the trapezoidal rule was implemented, like the mid-point rule and SETTLS
scheme, without off-centering. This is though a necessary feature of GEM for the advective part
of semi-Lagrangian calculations when running in NWP mode. Off-centering is neither required
nor used in Schir’s mountain case as the expected smoothing is unwanted. However, if off-
centering is activated in the advection calculations but not in the trajectory calculations, as
traditionally done in GEM, a noisy mountain wave solution reappears due to this renewed
inconsistency. Applying off-centering consistently, viz. applying off-centering simultaneously in
trajectory as well as advection calculations is therefore required for consistency: hence its
introduction in the trapezoidal method. So far, off-centering is a necessary evil in this model and
better applying it consistently ...
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Appendix 13. The option of vertically varying T,

Is there an interest in using a vertically varying reference thermal profile, 7., close to the

actual atmospheric profile in GEM? According to Bénard (MWR 2004, pp. 1319-1324), there
might be some advantage in doing so, in spite of the fact that traditional schemes have been
shown to be less robust if using such variable 7, than when using a (warm) fixed value. The

reduced stability when using a variable 7, is apparently not due to the magnitude of the
difference between T and 7,, T°, but rather to the reduction of static stability in the linear
thermodynamic equation,

d(T d : :

when d,In7,>0. Bénard’s proposition is to exclude £o ¢ InT, from the linear terms when

having a variable 7,, thus maintaining and perhaps in certain cases improving robustness of the

scheme while keeping the advantage of reduced non-linear terms involving temperature since 7~
is reduced.

Very little changes are required in GEM to implement this option, besides having
variable T, and variable parameters involving T,. Basically, only the thermodynamic equation

is modified (section 7). Nevertheless, the fact that 7, varies has an important impact on the code
up to the elliptic problem which now reads (see Appendix 4):

L, =V;P+[DID+MID-D('¢)-(1- , M(Te)M]P
where D and M symbolically represent Difference and Mean operators instead of the simpler
L,=V;P+IDD+MD-(1-k,)eMM]P

when I’ and &  are constant.
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Appendix 14. The modified epsilon, £ =ré&, option

Bénard (MWR 2004 pp. 1319-1324) found increased stability of the non-hydrostatic
equations when the structure equation,

<~ ¢
1 0,,P+06,P 1 —

2 2 44 4 —

(N* +—Z_ZJV§P+ i P =0

is modified as follows

=5
: 0,P+0J,P —
(£+%]V2P+ € S Pg:O; r<li

r T ¢ re’H? el
Substituting the values of the constants (here we assume that 7, =const.),

2
8§ . =2 RT. . H = RT*; RZT*2 e
cT. 1-x g 8T

We get successively

2

—
2 O0..P+6.P —K =
( g 1 jV§P+ 1 ¢ =K 3% )

re,I. © rz'z[RT,k]z/gz_T4RT>k
= —c¢
0,P+0,P —rel(l-x)P
(k+re)VipP+——F— re(l—x) =0
T°RT.
1 ¢ —
V2P+—[5 P+8,P —£(1-x)P ]zo
v &)oRT, P T £(1-x)

recovering our own structure equation (when 7.=const.) with

’

E =ré€.

The argument is that 7. is reduced to r7. in certain terms of the equations and this has a
stabilizing effect with respect to sound waves.

There is in fact a well known way to modify & &, which is the off-centering. In effect, as noted,
£=RT./g°r*, and 7= Atb" but this particular 7can be shown to come from the non-hydrostatic
side of the system, which could be dealt with a different, larger, off-centering, 7,, = Ath}, .

Hence, we will consider a different €, € = RT./ gzth , in addition to a modify & &' =re¢.

Going into the equations further backward (section 17), we find:
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—»é’ J—
S.L +w;95y(cosag)—l[L; -y JEL;’ =5XXP+w;95Y(00365YP)—%(5;X +X)+

g
u g Wé/
g Tnh

*

1 ’ ’ ’ ” =
N+l -fpsg :—r(5§P+zch4)+ﬂ
7(x, +€) gz, RT, RT.

all the non-hydrostatic equations having to be multiplied by r. Finally, going into the initial
linear system (section14), we must have

L =2+68,[§+RT.(Bs+rq)]
T

L ="+6[4 +RT.(Bs +r )]
T

B*s+09,B*s 2 ¢
Lo=—————+8u+_ 5, (wov)+ 5,5 +¢
- ‘
T’ z Bs+rq*
ng__Kd(; q)

T' O,(¢'+RT.(Bs +r'q)] -
L,=—+ —r'\8,q+q*°
H T RT. (;(] Q)

w
L, =—-gu

7’.nh

Lﬂ:ﬂ_(5§q+5;)

In other words, whenever g modifies the hydrostatic subset of equations, it will have to be
multiplied by 7" and, of course, 7, will serve in L, . This is not quite un-expected.
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Appendix 15. Dynamics-Physics Interface
a) Vertical coordinate transformation
GEM dynamics is defined in log-hydrostatic pressure coordinate, ¢

Inz=¢+Bs

where 7 is hydrostatic pressure, s = ln(ﬂs / pmf), 7Ty being hydrostatic surface pressure and p,,,

a reference pressure value. B is a parameter varying between one at the model surface and zero at
the model top.

What is the coordinate used by GEM physics? It is not . While it remains of the
hydrostatic-pressure type, it is a traditional sigma (o) coordinate:

o=7rlx

It means then that a coordinate transformation is involved in GEM interface between Dynamics
and Physics calculations. We note that the transformation is not independent of 7. It is

therefore not independent of the time variation of 77,. When we enter the Physics calculation two
values of 7, are available [z, beginning of time step, before Dynamics step, or ﬂ;, after

Dynamics step]. Which one should we use in the coordinate transformation O'({, 7[S) ?

Since Physics calculations are done in o-coordinate, of course we want O to remain
constant during the Physics calculations. The quantity o; a dependent variable for the Dynamics,
becomes an independent variable for the Physics and 7 is the value to use in the transformation

of coordinates. It leads to values of o which we will not further change during the Physics step.
Many physical processes, thermodynamic processes etc, the processes in which mass is
conserved, may be considered to occur at constant pressure in fact. Even the processes which
affect the mass of the atmosphere, like the in/out-fluxes of water, which then further affect the
surface pressure, do not affect the values of o.

b) Water vapor and precipitation fluxes: source of mass

In the atmosphere, there are no sources/sinks of mass. Therefore the equation

a—p+V-pV:O

ot

is strictly valid. There are though, in GEM, fluxes of water (condensates as well as vapor)
through the earth’s surface and these have so far not been accounted for in the total mass budget.
Adding water in the atmosphere while keeping the mass constant amounts to changing dry air
into water. One way to account for the addition of mass is to add a “source” of surface pressure,
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ZTy. In effect, 7;/g corresponds to the mass of the atmosphere over a unit surface;

s = ln(frs / p,ef) is a model variable and 7 given by

or _

a_z__gp

is linked to the model coordinate through In7z = { + Bs . Integrating
g_[pdz = jdﬁ:ﬁs -7,
Considering mass changes, dp, they must give rise to a surface pressure change,

ng?pdz:Aﬂs

N

mass changes specifically due to water changes, dp,

dp =p, =5(pqw)=p%: 4,=4,+2.4,

w

Hence, the variation of total mass of the atmosphere in GEM may be calculated as follows:

AT, = gT%pdz = T%dﬁ

Note that g, includes cloud water and precipitations. Note that A7 is a 2 dimensional variable.
Discretely, with indices A and B standing respectively for after and before a change, it is exact to
calculate dp as follows:

5p — pB&w
l_qu
In effect,
5,0 = 5,0W = 5(,06]W): P44, —Pp4ys
:pB(qu _QWB)+@A _pB)qWA

= pB&w +§IO CIWA

Here then is the way to take care of the real sources of mass due to fluxes of the water substance
through the earth’s surface.
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Appendix 16. Diagnostic calculation of vertical motion at initial time
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There are two vertical motion fields required at initial time. The first, é’ , 1s truly
diagnostic fields. The second, w, is a diagnostic field only when the hydrostatic approximation is

made; in the non-hydrostatic case, w could become an analyzed field.
a) Diagnostic calculation of {

From the continuity equation (section 4):

transformed as follows

and integrated

4
et velar
om, on 3
o) f'(&“}d? 0

we derive an explicit relation for ¢ :

.dlnx B % or 15 or
=2 v, Ty Jag—— (v, | Ty
o w g[a; ”jg = g[a; h

In effect, Inz = { + Bs , hence

M

be

dlnz ﬁ_BalnﬂS
ot ot ot
and
dlnrx oB
—=1+—=
o¢ o¢
In discrete form we have
B |] 1 ] 1 —1
. (dlnrx T or
| = 2 z 2; = V . _V A
gk_z( a¢ Jk_; Zs Tt jk_5 1—1[ d (ag hﬂl d
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agnostic calculation of w

We use the approximation:

The approximation seems acceptable in general but note: at the model top 7 =0 by construction
while w # 0 ; similarly at the bottom, when the terrain is flat, w =0 while 7 #0 in general. We
obtain an explicit relation for 7 again from the integrated continuity equation as follows:

or . OT
—_— — .V —_
V4 8t+V" ¢ +§a§
¢
or
#=V,-V.x Vg-[—thdé’
Frelag
¢
#=mBV, Vs jvg-(a—”vhjd;
Lo \9¢

and it is convenient to replace the advection term by the difference of two divergences:

¢
i=mBlv, sV, —svg-vh]—jvg-@—z’vhjd;
&r

In discrete form, we have:

T =T,
k= ij

k_lBk—l lvé“ 'Sv_hg —SV; ‘Th;l =7

ik ik

NB. 7= —gpw+(aa—ﬂ+Vh -Vﬂj+p(¥+Vh -V(/ﬁj
t t
(neglected tern) (neglected tern)
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Table 1. The equations of GEM in 4 transformations

a;Z—V+kaV+RTV1np+gk=F

t
dl RT'dlnp QO+ f
dat ¢ dt c

P P

dnp v .y=o
dt

=P
P RT

Vertical coordinate transformation: z to ¢ (unspecified)

¢ d

V. —V -V
990

9 _9¢ 9

0z 0z ¢

Vertical coordinate transformation: z to ¢ (specified)

R —_P 99
7dlnrx
¢=gz
_pdlnp
" zolnz
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of dln p
V. Inp-V, z== F
i (f“” o aé] ”
aw RTagalnp+g F,
dt dz d¢
dl _RT dlnp _Q+f
dt ¢, dt S
< ) d 0z of
—1n e +V -V, +—==0
—_— dt (paé“J tog
di_ :0
t
__P
p RT
Z_Z(r/1’§t
ﬁﬂ‘kxv +RTV, Inp+(1+ )V, p=F
d ! ! Kveo=h
iln ﬂ_alnfr +V V/1+a§ 0
dt of ¢
dinT _Rdlnp _Q+f
¢, dt €
d¢
- 0
dt sv=
RT+pa?¢
7 dlnx
— ln”—lnﬂ-(r/,a;’t)
dw
- - =F
ot gU=r,
_Ealnp_
7 olnrx
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Going to model thermodynamic variables ¢’,q,s, {

=09 @
Inp=Inz+gq
Inz={¢+Bs

%ﬂkavh+RTV§(Bs+q)+(1+y)V§¢’=Fh
t

%[Bs+ln(1+a§Bs)]+V§-Vh+(8§+1)§"=0

d T AL _o+f
d[|:1n(T*\J K(BS+q):| K§+§3§IHT*— CPT

@—RT*;—ngo

dt
ZL—e” l—8§¢/RT* —0
T. l+8;Bs
dw
= _ =F
dt gILl w

0
lrp—et| 14— |-9
1+0d,Bs

Discretizing in the vertical

d;” +fkxV, +RT" Vg(Bs+q)+(l+,a”f )V§¢’=FH
t

2; [Bs+1n(1+§gl§f s)]+V§ 'V, +6,¢ +Z§ =0

dl (T 5T O+f
LA N - TN N S
T i g2

p

/é’ -
%—Rﬂg—gwto
dt
B AL

——e
T. 1+5§Bs
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Table 2. The Equations of GEM vertically discretized on Charney-Phillips grid

% + AV, +RTV (Bs+q)+(1+Z* IV, =F,  ------

%[Bs+ln(l+§gggs)]+V§-Vh +§§§+Z§ e J——

4
A TV Besaay | x s FO L _QFS
= = |-x(B s+q) |- +{ ==L
dt{ "[Tj K( q)} K +¢ L or
A
———RT.¢ —gw=0
" ¢-8
_—e —_—
T, 1+6,Bs —
dv_
dl‘ g w _—
o,
4 g | 14— |-
+0,Bs
V, : horizontal wind, f : Coriolis parameter
w: vertical velicity, k= R/c, is variable
T : temperature; T'=T-T,; T.(¢)
@: geopotential,; P =0-0; 6,0. =-RT.

q=In(p/7x): non-hydrostatic log - pressure deviation
p: pressure, T :hydrostatic pressure;, 0@/0x=—RT/p

H=0p/dx—1:ratio of vertical acceleration to gravitational acceleration

s = ln(iz's Dy ): log - surface- pressure; B: metric parameter
=d¢ldr ¢ : model vertical coordinate
T);, (7): averaging operators; O, : differencing operator

Pr! D,y =1y <1 <l:specified n-like model levels; Doy = 10° Pa

{= gs + 1n(77)

Inp, =¢, << =1Inp,, :calculated Inz-like model levels
In7=A+ Bs

A=¢; B=21"; 0<r=rmax—(rmax—rmm)/1<50; lzmax[ﬂ,O}; $y 24,
gs‘?u

Boundary Conditions: :S = fT =0 (g, =In(p, /7, )=0;¢, = 8Zi0pos Pr = cCONSI]
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