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PREFACE 
 
GEM4.2: A work nearly and satisfactorily completed … 

 
Reduction of noise in GEM was the main motivation for the present project 

consisting in the introduction of vertical staggering (Charney-Phillips grid). It was 
deemed the first and primary ingredient to achieve this goal. In effect, there are numerical 
modes which were theoretically diagnosed on the previous un-staggered grid which are 
absent from the new one. As a first step therefore in this project, only the grid was 
changed. Everything else, the equations, the independent as well as the dependent 
variables, were kept unchanged. Very positive results were obtained with respect to 
noise. But there remain problems, in particular an accuracy problem in the hydrostatic 
relation at upper levels when the true resolution (in terms of height) is insufficient.  

Improving the accuracy of the hydrostatic relation using logarithmic differencing 
wherever appropriate was therefore the goal of a second step. The results from this 
modification of the code were very satisfying with improved scores in the stratosphere.  

With this incentive, it was tempting to try and implement a full log-hydrostatic-
pressure coordinate, ζ. A theoretical advantage of ζ is its linear relationship with lnp, 
[ ( ) ( ) ζππππ ++=++= Bsqpp ** ln/ln/lnln ].  Along with the fact that ( )π/ln pq =  
and ( )refS ps /ln π=  are already model variables, this greatly simplifies the linearization 
of model equations. Again the accuracy of the hydrostatic equation is improved since the 
finite differences not only are calculated logarithmically but also become defined at 
logarithmic mid-points. This third step though has little impact on model performance. 

An important development: it was discovered that the initial staggered version of 
the semi-Lagrangian scheme, linear vertical interpolation of the departure positions for 
variables arriving on thermodynamic levels, resulted in significant loss of kinetic energy. 
Cubic interpolation is rather the thing to do. 

A secondary motivation for the project was the resolution of accuracy and noise 
problems encountered in the simulation of non-hydrostatic mountain waves, specifically 
what we call Schär’s case. Well, a completely satisfactory solution has been achieved, not 
via staggering though but again through modifications of the semi-Lagrangian scheme: 
tri-dimensional cubic interpolation of the departure positions replacing linear ones 
combined with trapezoidal means of the velocities instead of the mid-point rule. 

Many new appendices appear in GEM4.2, notably Appendices 13 and 14. 
Appendix 13 constitutes a major development affecting the code substantially since the 
top thermodynamic level, level 3/4, is being eliminated. Theoretical analysis as well as 
experimental testing has shown that this level was essentially dynamically disconnected 
from the rest of the model. Improved simulations resulted from the change. Appendix 14 
describes trapezoidal means. 

Older versions of this document, GEM4.0 and GEM4.1, remain available. 
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1) The meteorological equations 
 

 
  

  - 4 independent variables:  t, r=(rh, z) 
 
 
        - 6 dependent variables: V=(Vh,w), T, ρ, p 
 

 
- 6 scalar equations: 
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- There are:  5 prognostic equations (momentum + energy + mass conservation), 
                        1 diagnostic equation (perfect gas law). 
 

N.B. The Coriolis force is approximated (traditional meteorological approximations apply). 
 
N.B. Many more approximations are implied if we consider that the atmospheric 
substance contains, in addition to dry air, not only a variable quantity of water vapor but 
also condensed water and precipitations. The above equations are valid under the 
assumptions of dynamic (precipitations falling at terminal velocity) and thermodynamic 
(neglecting temperature differences between air and hydrometeors) equilibrium and 
neglecting precipitation fluxes. Equations for the displacement and evolution of the 
hydrometeors are required to complete the system.  
 
N.B. In the above equations the coefficients R and cp are variable. The introduction of 
virtual temperature (replacing RT by RdTv where Rd is now constant) and approximating 
the ratio κ=R/cp by the constant ratio κd=Rd/cpd lead to further simplifications (see 
Appendix 1). 
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2) The equations transformed to generalized η-coordinate 
 

- Note the necessary decomposition of vector equations into their horizontal/vertical components due to the different 
horizontal/vertical transformation rules. 

 

 2 transformation rules:  
ηη

η
η

η
ηη

ηη ∂
∂

∂
∂−

∂
∂≡

∂
∂

∂
∂

∂
∂≡

∂
∂

∂
∂

∂
∂∇−∇≡∇

t
z

ttzzz
z

z
z    ;     ;  

 

  - 4 independent variables :  t, rh, η 
 

- 8 dependent variables: Vh, w, T, ρ,  p, η� ,  z 
 

   - 8 equations (6 prognostic and 2 diagnostic): 
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- Were added then: 1 prognostic equation (dz/dt=w) for varying height in space and time,        

 1 diagnostic equation (yet to be specified) defining the coordinate η. 
 

- the continuity equation is the only one requiring more than simple manipulation: 
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- See Appendix 2 for some details on transformation rules. 
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3) Eliminating ρρρρ introducing lnπ , log-hydrostatic pressure, eliminating z defining 
the geopotential φ  and adding µ  (ratio of vertical acceleration to gravitational 
acceleration) 
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  - 9 dependent variables: Vh, w, T, p,η� , φ,  µ, π 
 

  - 9 equations (added diagnostic equation for µ ): 
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N.B. At this point η is still a general coordinate of the hydrostatic-pressure type: 
in the next section we will specify both ζ  and η. 

 
N.B. For the rest of the presentation, the physical forcings  Fh, Fw, Q will be 
excluded and the parameters R and κκκκ  will be treated as constants.  
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4) The new ζ-coordinate for GEM4 is lnπ-like 
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  - 9 dependent variables: Vh, w, T, p, ζ� , φ, µ, π 
 

   - 9 equations: 
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 - obviously, at this point, the form of the equations in ζ and η coordinates is identical 

 
N.B. reftop pp / <η<1 is now but a label characterizing model ζ-levels. Another way to 
characterize the levels would be to use H, a number having the units of height and 
corresponding approximately to model level height (above sea level): 
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See Appendix 3 for more information on the metric parameter B. 
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5) Perturbation thermodynamic variables, T’, φ’, q,  and simplifications 
 

 Introducing the logarithm of the non-hydrostatic pressure perturbation q=ln(p/π) and 
perturbation variables T’ and φ’. Eliminating p, φ and π. We keep T for convenience. 

 
   constTTTT =−= **                       ;'  

( )SRT ζζζφφφφ −−=−= *** )(                  ;'  
qBsqp ++=+= ζπlnln  

 
-  8 variables: ( ) µφζ  ,' ,,   , ,'or   , , sqTTwh

�V , final number 
  
- 8 equations [6 prognostic & 2 diagnostic], final form ready for linearization: 
 

( ) ( )

( )

( )
( )

( ) 0
/'

1

011

0
'

011ln

0ln

0

0'1x

*

*

*

*

=�
�

�
�
�

�

+∂
+∂−−

=�
�

�
�
�

�

+∂
∂+−+

=−−

=�
�

�
�
�

� +
∂
∂+⋅∇+


�

�

�

�
�
�

�
�
�

�

∂
∂++

=−

�

�

�

�
+−��

�

�
��
�

�

=−

=∇+++∇++

Bs
BsRT

e
T
T

Bs
q

e

gwRT
dt
d

s
B

Bs
dt
d

qBs
T
T

dt
d

g
dt
dw

qBsRTf
dt

d

q

q

h

h
h

ζ
φ

ζ
µ

ζφ

ζ
ζζ

ζκκ

µ

φµ

ζ

ζζ

�

�

�

V

Vk
V

 

 
N. B.  The variable s is 2-D only andζ� vanishes at the surface.  The combination (ζ� , s) may therefore be considered to 

constitute a single 3-D variable.   

  
 
N.B. ( ) ( ) ( )refppRTpRTqBsRTP /lnln'' *** +=−+=++= φζφφ , which may be called 
generalized pressure, is a variable which will be convenient to invoke later on.  



GEM4.2.doc   06/11/2013 10:26 9 

6) Boundary Conditions 
 
 The model top (subscript T ) and bottom (subscript S for earth’s surface when 
talking of the bottom of the atmosphere), are defined to be material surfaces. 
Therefore we have the following top and bottom boundary conditions: 
 

( ) ( ) 0            ;0 ==== SSTT ζζζζζζ ����  
 
 In addition, the behavior of theses surfaces must be specified and this will lead to 
an additional condition in the non-hydrostatic case. The bottom surface is assumed 
to be terrain-following and not moving. In effect, the bottom geopotential φS is 
specified, varying with position but usually fixed in time: 0/ =∂∂ tSφ . This though 
does not imply a vertical velocity that necessarily vanishes at the surface. In effect, 

[ ] 0/ ≠= SS dtdgw φ  generally. At the top, we consider a flexible surface whereby the 
top pressure: 

TTp π=  

 
is assumed to remain constant. This is automatic in the hydrostatic case since the top 
surface pressure cannot be anything other than a material hydrostatic pressure surface. 
In the non-hydrostatic case, to maintain a constant top pressure equal to the constant 
top hydrostatic pressure surface provides a top boundary specification for pressure. 
In terms of the non-hydrostatic pressure variable q, this becomes: 
 

( ) 0/ln == TTT pq π  
 
The top surface is then assumed free to move, constrained only by this artificially 
imposed pressure Tp  (the atmosphere above exerting its weight only). 

 
N.B. Open top boundary conditions are of course a possibility: see Appendix 9.  
 
N.B. For the Limited Area version of the Model (LAM), there are lateral boundary 
conditions. See Appendix 11. 
 
N.B. Time varying topography, 0/ ≠∂∂ tSφ , is also an option: see Appendix 12. In 
effect, when adapting a given atmospheric state to a higher resolution topography 
inter(extra)polation is required. Artificially varying φS  in time for a short period is an 
attractive alternative. 
 
N.B. Initial conditions are time boundary conditions. At initial time, sTh and   ,V  are 

analyzed fields; '  , φζ�  and w (in the hydrostatic case) are diagnosed: see Appendix 15 
for the calculation of ζ�  and the estimation of w. In the non-hydrostatic case, w and q 
could be analyzed but usually w is estimated and q set to vanish; µ  is diagnosed.  
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7) Vertical discretization with staggering 
 

For vertical discretization, the following choice is made: 
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In other words, the derivatives are replaced by simple finite differences represented by 
the operator ζδ  and averaging operators represented by over bars are introduced where 

required. From the notation, it may be gathered that ' , , φqhV  are defined on the same 
levels to be called full or momentum levels. They are staggered with respect to 

ζµ � , , ,Tw  placed on half or thermodynamic levels. With this staggering, double 
operations on dependent variables are severely reduced. No difference is calculated over 
more than two levels. The number of averaging operators is minimized. In the horizontal 
momentum equations, they occur on non-linear terms only; in the hydrostatic case (with 
q=µ=0 and w dropping out of the system), only one averaging operator remains on linear 
terms, namely on ζ�  in the continuity equation. Details of the discretization are given in 
Appendices 4a, 4b, 5 and 6 (but first read the rest of the main document). Taking into account 
the boundary conditions, it is natural to have half levels rather than full levels coincide 
with the top and bottom. This essentially, though not fully, completes the description of 
the vertical grid. See Figure 1, next page. 
 
N. B. The metric parameter B is exactly calculated on full levels only. It is averaged for 
the half levels. 
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 Figure 1. The Charney-Phillips grid, giving the position occupied by each variable in 
the vertical domain. The model is composed of N layers, inside of which (in the middle 
of which only if the layers are equal) are the momentum levels [1,2,…,N] where the wind 
components U and V, the geopotential φ and q are positioned. φ and q are also defined on 
the boundaries (top level 0 and surface level N+1). These N layers are delimited by N-1 
interfaces corresponding to N-1 so-called thermodynamic levels [3/2,…,N-1/2] where are 
positioned the temperature T and the two vertical motion fields w and ζ� , exactly in the 

middle of the momentum levels. ζ�  also has 2 additional levels [½ and N+½] 
corresponding to the top and bottom surfaces. T and w also have 2 additional levels [¾ 
and N+¼] positioned exactly in between, respectively, the top surface and first 
momentum level and the last momentum level and bottom surface. [N.B. The ¾ 
thermodynamic level (variables in gray) is absent from the numerically truncated top: 
see Appendix 13] 
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8) Semi-Lagrangian Implicit time discretization      (n.b. not Semi-Implicit) 
 

- Approximating the substantial derivatives and averaging the dynamical 
forcings, each of the equations (index i) may be formally written as follows: 
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-  Separating the time levels ( ( ) AAA bbtb /1 ; −=∆= βτ ) 
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- Decomposing the left-hand side into linear and residual non-linear parts 
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- Defining the solution method (a Crank-Nicholson scheme) 
 

iii NRL −=  
   

Iterating (jter: departure loop, iter: non-linear loop) : 
 

Do jter=1,2 
   Do iter=1,2 

      ( ) ( ) ( ) ( ) ( )ttNNNRL ii
jteriter

i
jter

i
jteriter

i ∆−=−= − ,      ; 1,0,1, r  
   end do 
end do 

 

( ) ( ) ( )( )( )
22

1

)(    ;,
−∆∆ −+∆−=∆∆−∆−=

jterjtertjterjter
i

jter
i tttttRR rrvvrrr  

( ) )(1 ttt ∆−= vv ; 0r∆  from previous timestep  
  
N.B. The displacement jterr∆ is here calculated by the mid-point rule. A different option 
consists in using the trapezoidal rule: see Appendix 14. 
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9)  The F’s and the G’s 
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N.B. Since Fµ=FH=0 and Gµ=GH=0, then of course Rµ=RH=0. 
 
The role of diagnostic equations is to abbreviate other equations. If, in the 6 
prognostic equations, we replace the symbols µ and T by their definitions, the 
diagnostic equations as well as the associated variables vanish. 
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10) The Left-Hand Side terms: ii NL +  
 

 A
i

A
i

ii G
F

NL +≡+
τ

 

  
Prognostic (dropping the superscript A): 
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11) The linear Left-Hand Side terms: iL  
 

linear

A
i

A
i

i G
F

L 

�

�

�

�
+≡

τ
 

 
Linearizing (approximating the logarithms [ ( ) αα ≈+1ln ], the exponentials 

[ αα +≈ 1e ] and the products [ ( )( ) βαβα ±+≈++ ± 111 1 ]; note the Coriolis term 

hf Vk × is treated as if it was a non-linear term) yields: 
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12) The non-linear Left-Hand side terms, iN , are the left-over differences 
 
 

i
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i

A
i
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A
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A
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i

A
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G
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G
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�

�
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and therefore: 
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GEM4.2.doc   06/11/2013 10:26 17 

13) Elimination of the diagnostic equations from the solution system 
 

As noted above, Rµ=RH=0. It is then convenient to immediately eliminate the two 
diagnostic equations, involving the diagnostic variables µ and T’, from the Left-Hand 
side terms, i.e. to eliminate Lµ, LH and Nµ, NH.  We are left with 6 basic equations for the 
linear system: 
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ζ
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ζ
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Similarly for the non-linear system we have 
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14)  The Previous time step on the Right-Hand Sides: iR  
 

D
i

D
i
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F

R β
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−≡  

 
(dropping the superscript D) 
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15) The elliptic problem  
 

Introducing ( )qBsRTP ++≡ *'φ  and 
( )

τ
ζ

ζ
qBs

X
++= � , the linear system takes 

the form: 

( )
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gwXRT

P
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XXqqL

X
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P
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P
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w
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δ
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δ
τ

τ
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ζ
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ζθ

ζ
ζ

ζ

V

V
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The number of equations and dependent variables, Vh, w, P, q, X, is easily reduced to 3 
thus (variables left: P, w, X): 
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with 22
*

2
*

ττ
ε

g
RT

g
H ==  and 

εκ
κγ
+

= .  

 

Here note: we have assumed 
ζ

ζ
ζ

ζ δδ qq ≡ , i.e. we have assumed commutation of 
the mean and difference operators. See Appendix 5 for details on averaging operators 
and commutation. 
 

Finally, these three equations are combined to give the structure equation: 
 

 
again provided commutation holds.  
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ζ
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ζ
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This is the elliptic problem to be solved with boundary conditions (on P) given by 
 

( ) ( )
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� ++−−−=
τ

ζ
τ
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applied at both top and bottom as follows: 
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�
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       ( ) ( ) ( )S
S

S
S

L
RT

LPP
RT θθ

ζ
ζ τ

φκδ
κτ

γ
"'"

*
2

*
2 −=+−=


�

�

�

�
+  

 
In effect  
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since 0=Sζ�  and 1=SB  at the bottom. φS  is a known quantity. 
 

N.B. These are closed boundary conditions. Open top boundary conditions are 
considered in Appendix 9. 

 
N.B. The top boundary condition is XT=0. It is therefore not necessary to eliminate 

TXX =
2
1 from the top continuity equation, ( )1"CL , using a top thermodynamic equation, 

( )
4
3"θL , i.e. it is not necessary to have a top thermodynamic level ¾ . See Appendix 13 

for such a Numerically truncated top boundary condition. 
 
N.B. Using the scale height, gRTH /** = , the square of the Brünt-Väisälä frequency, 

*
22

* / TcgN p= , and the square of the speed of sound, ( ) *
2
* / RTccc vp= , the structure 

equation takes a more familiar form: 
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16) The non-linear problem 
 
 To find the solution to the non-linear problem we need to perform the following 
operations iteratively 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) jteriterjterjteriter

jteriterjterjteriter

jteriter
w

jter
w
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w
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h
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In order to obtain φθ ",", RRRP  and φθ ",", NNN P , we transform the R’s and N’s, like was 

done for the L’s  to obtain φθ ",", LLLP ,  i.e. we compute: 
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Note that we have θRRw  ,  on the left and θ' ,' NN w  on the right and remember that 

0=φN . 
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17)  Back substitution  
 

 The following equations give in a straight forward manner the 6 prognostic 
variables ( )ζ�,   ,, , sqwhV  and φ’: 
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( )BsqRTP

qBs
PP

RT
NR

q
RT

P
ss

q
w

NR
H

qqq

PP
RT

NR
H
w

w

P

ST

S
SS

Tww

hh
h

h

+−=

==+−

�

�

�

�
−+−−=

−
−

=

=
�

�
�

� −−−=+



�

�

�

�
++−=

∇−−=

*

2
*

2

*

*

2

*
2

*

'              :'

0   ;""              :

                :

0      ;'   :

""           : 

             :

φφ

ζζ
τ

εδ
κτ

γ
τ
ζζ

φ
τ

ετδ

κδ
κτ

γ
τ

τ

ζ
ζ

ζθθ

ζ
ζ

ζ
ζφφ

ζ

��
�

�

NR
V

V

 

 
 

Finally we may compute µ and T diagnostically: 
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For a brief description of The Dynamic Core Code, see Appendix 6. 
 
There is THE HYDROSTATIC OPTION. For a description, see Appendix 7. 
 
There is THE AUTOBAROTROPIC OPTION. For a description, see Appendix 8. 

 
Aspects of HORIZONTAL DISCRETIZATION are given in Appendix 13. 
 
See Table 1, page 72, for a summary of the model equations and transformations. 
 
See Table 2, page 74, for a summary of the equations, variables, etc. 
 

THE END 
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Appendix 1. Virtual temperature 
 
 In presence of water vapor qv and various types of hydrometeors qi, the density of 
atmospheric substance is given by 
 

( )�++= ivd qqqρρ  
 
where qd is the dry air specific mass. The equation of state is given by 
 

( )
( )TqqR

TqRqRp

ivd

vvdd

�−+=
+=
δρ

ρ
1

 

 
where 6.01/ ≈−= dv RRδ  and we rewrite the equation of state as follows: 
 

vdTRp ρ=  
 

defining virtual temperature thus 
 

( )�−+= ivv qqTT δ1  
 

Rewriting the equations to appear in terms of virtual temperature and approximating the 
ratio κ=R/cp by κd=Rd/cpd, the equations of section 1 may then be replaced by the 
following: 
 

vd
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ρρρρ
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δδδδκκκκ

0
ln

lnln

lnx

V

FkVkV

 

 
From the point of view of the pure dynamics, these equations are formally identical to 
those in section 1 in which R and cp would take the dry air constant values, temperature 
be replaced by virtual temperature and appropriate source terms be added in the 
thermodynamic equation. The advantage of this formulation is of course the fact that the 
parameters R and cp no longer varies while all of the virtual effects, including water 
vapor buoyancy and condensed water loading effects, are implicitly taken into account. 
The only approximation made here, the replacement of κ by κd in the thermodynamic 
equation, is facultative.  
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Appendix 2. Coordinate transformation rules 
 
Appendix 2a. Invariance of the total derivative 
 

By the chain rule we first verify the invariance of the total derivative df/dt under a 
general coordinate transformation. In effect, if we consider f(x,y,z,t), then: 
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z
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y
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while for f(x,y,ζ, t), we naturally have: 
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Here we only have changed the vertical coordinate from z to ζ with the result that the 
horizontal components of the velocity (dx/dt,dy/dt) = (U,V) = Vh remain unchanged. The 
vertical motion though has transformed from dz/dt = w into ζζ �=dtd / . Shortening the 
notation, we also write the above relations respectively as follows: 
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Thus we minimized the indices. We also introduced the vector notation for the 
‘horizontal’ part of the advection operator. Note though that the new coordinate ζ is 
generally curvilinear and non-orthogonal and the scalar product must be interpreted with 
care (see appendix 2c) 
 
Appendix 2b. Transformation rules for derivatives. 
 

It is remarkable that not only can all these rules be recovered from the invariance 
of the total derivative but also that these derivative transformation rules suffice to 
transform the Euler equations. In effect, the three velocity components may be treated as 
three independent scalars (‘pseudo-scalars’), the velocity vector not being transformed. 
We are left though with a ‘hybrid’ system since maintaining two vertical velocities w and 
η�  or ζ� and therefore needing an additional [prognostic when ( ) 0/ ≠∂∂ ζtz ), diagnostic 
otherwise] equation. A complete transformation to a time-varying non-orthogonal 
curvilinear coordinate, a complete elimination of w, is of course possible but then the 
notions of four-dimensional tensor calculus is very useful (see appendix 2d). 
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The transformation rules may be obtained by equating the above two relations. In 

effect, we must have 
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Each bracket must vanish independently. Therefore the rules are: 
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Appendix 2c. Vectors in non-orthogonal curvilinear coordinates  
 
In non-orthogonal curvilinear coordinates ( )321 ˆ,ˆ,ˆˆ xxx=x  (see Dutton, John A, The 
Ceaseless Wind, chapters 5 and 7), there appear two sets of basis vectors (usually not 
even of unit length) and two sets of vector components. Applying the chain rule, we 
obtain the following two expansions (summation convention): 
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where j�  is covariant: tangent to the curve along which only jx̂  varies and i
�  is contra- 

variant: normal to the surface ix̂ = const. and we have the orthogonality relation 
 

i
jj δ=i

��  
Representing a vector A as  

k
��A kk

k AA ==  
 
we may recover the components [Ak (Ak): covariant (contravariant) components] using 
the above orthogonality relation: 
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The scalar product is 
kBABA kk

k ==⋅ BA  
 
Therefore in generalized vertical coordinate ( )ζ,,ˆ yx=x  the basis vectors become [the 
original orthogonal Cartesian coordinate being ( ) kjix zyxzyx ++== ,, ] 
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The contravariant components of the velocity vector i

�V ⋅=iV  are found to be  
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While the covariant components of the gradient i
j fxf �⋅∇=∂∂ ˆ/  are found to be  
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And the vector product f∇⋅V  may be computed as follows: 
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Figure 2. Representation of the wind vector in both 
orthogonal z-coordinate and oblique ζ-coordinate
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Appendix 2d. Complete elimination of w.  
 
Neglecting the Coriolis force and physical forcings, the four equations of  motion in η-
coordinate (see page 5) may be written: 
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dz =  (A2.3) 
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Inserting (A2.3) in (A2.2) using (A2.1) and (A2.4), we obtain (Einstein summation 
convention): 
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with ( )ηα ,,, yxtx = and ( )ηα
�,,,1 vuu = , and where 
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is a special tensor related to the metric tensor as follows: 
 

νµµνµν 00 gggh −=  
 
(see Charron et al. 2013 in QJRMS for all the beautiful details).  
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Appendix 3. The metric parameter B. 
 

Before investigating the relation defining the hydrostatic pressure π in ζ-
coordinate (GEM4), let us review the behavior of the similar relation in η-coordinate 
(GEM3) which is given by: 
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B is the relevant parameter although refp  also plays a role. We have 10 ≤≤ B ; we 
calculate its derivative 
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Monotonicity is essential, requiring that 
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Smallest values occur at the surface where η∂∂ /B  is maximum and over high ground 
where Sπ  is minimum. Hence 
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The concern here is model layer thicknesses, ( ) πln/ ∆−=∆ gRTz , and unfortunately 
these are also smallest near the surface. Furthermore, the temperature is lower over high 
ground. Let us therefore compute the surface thinning factor, 

( ) ( )msltopthfs ππ ln/ln ∆∆= ,  the minimum ratio of model layer thicknesses over high 

ground (say  hPa500≈topSπ ) to those at sea level (say  hPa1000≈mslSπ ). With the top 

pressure  Pa10=Tp , 0001.=Tηηηη  can be neglected and 
  

( ) S
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Since η is close to 1, we write ηη ∆−= 1 . We may expand, with the result 
 

( ) ( ) Sref rpr πηηπ ∆−+∆−≈ 11  
 

( ) 

�

�

�

�
−−∆≈

−
≈∆

S

ref

S

S
p

rr
π

η
π

πππ 1ln  

 
( )
( ) mslSref

topSref

prr

prr
thfs

π
π

/1

/1

−−
−−

=  

 
With refp = 1000 hPa, rthfs −= 2 ; thus for r=1.6, thfs=0.4. With refp = 800 hPa, 

( )[ ] ( )[ ]10/81/5/81 −−−−= rrrrthfs  and for r=1.6, thfs=0.57. In both cases though 
thfs=1 for r=1. Note that for r=1.6,  ( )  hPa1622.0min ≈π  when refp = 1000 hPa while 

( )  hPa1372.0min ≈π  when refp = 800 hPa. Here it is important to note that, in addition to 

allow for an increase in thfs, a lower refp forces a decrease of pressure for (a lifting of) all 
levels except the surface. For r=1.6, there results a 12% increase of the thickness of the 
bottom level. 
 
In ζ-coordinate, the hydrostatic pressure will be given by 
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Here B is the unique relevant parameter as refp is not allowed to change. We note two 

remaining differences from the similar relation in η-coordinate: the logarithmic character 
of the relation and the introduction of a variable exponent r. We again have 10 ≤≤ B  
and a positive derivative: 
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Monotonicity requires that 
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When r is constant (∆r=0), ( ) rB =∂∂ max/ λ  at the model surface λ=1. K=1-

1/r ( )ST ζζ /1 −  and the monotonicity requirement is ( ) ( )SrefTref pppr π/ln//ln< . For 

2/refhighS p≈π  and topp =10 Pa, this implies 2.132ln/10ln4 ≈<r  and for topp =10 hPa, 

6.62ln/10ln2 ≈<r .  

                   GEM4                               GEM3 
 

                      r = 4.5                                   r = 1.6 
                                                                pre f = 800 hPa 

 

Figure 3. The structure of the 79 levels of GEM4 (r = 4.5) 
compared to the 80 levels of GEM3 (r = 1.6; pref = 800 hPa).   
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Larger admitted exponents do not necessarily mean better coordinate straightening though 
and we must keep worrying about the ratio of model layer thicknesses. Considering  
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we get, for constant r with topp =10 Pa, 
 

                   GEM4                           GEM4 
 

                variable r                         constant r 
            rmax = 100, rmin=2                        r=4.5 

 

Figure 4. GEM4 with variable r (rmax=100, rmin=2) 
compared to GEM4 with constant r=4.5. 
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( ) ( )r
pp

rthfs
topref

075.1
/ln
2ln

1 −≈−=  

 
Hence, for r=1, 925.≈thfs already. This ratio is 8% smaller than in η-coordinate (15% 
smaller with topp =10 hPa). The value thfs=0.4 is reached for r=8 and thfs=0.57 is reached 

for r= 5.7 meanwhile ( )  hPa1722.0 ≈π  with r=8 and ( )  hPa1592.0 ≈ππππ  with r=5.7, 
slightly better but no doubt insufficient rectification. Hence the need to keep r close to 0 
near the surface while faster coordinate rectification requires increasingly larger values of 
r aloft and this is what we may attempt to achieve with the present formulation. 
 
Three figures are shown above and below. In the first, Figure 3, we compare the 79 
momentum levels of GEM4 (r=4.5) to the 80 levels of GEM3 (r=1.6) used operationally 
in its global configuration (year 2011). Basically, as can be seen, GEM4 levels have been 
adjusted such that the pressures above Sπ =1000 hPa correspond one by one to GEM3 
levels. In Figures 4 and 5, we compare GEM4 with variable r (rmax=100, rmin=2) to 
GEM4 with constant r=4.5, clearly showing the rectifying possibilities inherent in 
variable r. The basic idea here is to essentially eliminate topography induced coordinate 
variation above 200 hPa. 
 

 
 
 
 

Figure 5. GEM4 with variable r (rmax=100, rmin=2) 
compared to GEM4 with constant r=4.5 below 200 hPa. 

              variable r                                r=4.5 
      rmax = 100, rmin=2 
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Appendix 4a. Detailed spatial discretization with staggering: the linear terms 
 
 In section 7, we described the vertical discretization succinctly. In section 15, we 
examined the Elliptic Problem. We showed that all variables could be readily eliminated 
in favor of P. We now go back and examine the discrete linear system leading to the 
elliptic problem in full details. As mentioned earlier, the finite differences replacing the 
derivatives are made as simple as possible, i.e. 
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In the vertical, this leads to Charney-Phillips grid (Figure 1, page 11). For the two 
vertical means, we formally write 
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The first one, averaging variables from momentum or full levels toward thermodynamic 
or half-levels, follows the rule of calculation for the half-levels, i.e. 
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This ensures optimal (second-order) accuracy for the hydrostatic equation LH in 
particular. For the second one, averaging variables from thermodynamic levels toward 
momentum levels, three choices were considered: linear interpolation, simple average, 
average commuting with difference. Due to lack of sensibility, the last was adopted 
because it simplifies the code: 
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More explicitly, 
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 We have in the vertical direction 3N [ Ch L,L ] + 3(N +1) [ φφφφLLL Tw ,',' ], i.e. 6N +3 
equations and 2 N [U,V]1,N + 2(N +1) [w,X,]1/2,N+1/2 + 2(N +2) [P,q]0,N+1 , i.e. 6N+6 
variables. As expected (section 7), we will need 3 boundary conditions in the vertical to 
close the problem. Now, 3 variables (Vh, q) can easily be eliminated by combining the 
equations as follows: 
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By further forming 
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and 
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we succeed in eliminating X and w. In effect, we have 
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The second bracket corresponds to the difference 
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ζ δδ PP −  which vanishes by 
construction (commuting average, see Appendix 5). Therefore the final result is 
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N equations and N+2 unknowns. 
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Appendix 4b.  Detailed spatial discretization: matrices of the elliptic problem 
 

The matrix of the elliptic problem is composed of the previous equations (k=1,N): 
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(note that it has been multiplied through by k ζ∆ ) plus the boundary equations: 

 

( ) ( ) Bkkkkk
k

kk

k

LLPP
PP

RT
PP

RT
−=−=

��
�

�

�

��
�

�

�
�
�
��

�
� +−

∆
−

=

�

�

�

�
− −−

−
−

+
−

−

−

−
2
1

00
2
1

00
2
1

0

2
1

0

00

2
1

0

"1
1

*
2

*
2 θ

ζ
ζ ε

ζκτ
γεδ

κτ
γ ϖϖϖϖϖϖϖϖ

 

    ( ) ( )
2
1

2
1

2
1

2

1
2
1

"' 1 
1

*
2

*
2 +

−
++

+
+

+

+

+

−=
��
�

�

�

��
�

�

�
�
�
��

�
� ++

∆
−

=

�

�

�

�
+ NNNNN

N

NN

N

LPP
PP

RT
PP

RT θ
ζ

ζ κ
ζκτ

γκδ
κτ

γ ϖϖϖϖϖϖϖϖ  

 
which are used to reduce the number of unknowns from N+2 to N. [Note: here and below 
we have replace 1 by k0 and introduce LB for reasons that will become clear in 
Appendix 9]. In effect, we find: 
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Therefore we may rewrite the equations for ( )
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to get respectively 
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The vertical matrix problem may be decomposed into a combination of a diagonal 

P  and a set of tri-diagonal matrices,  µµµδδµδδ PPPP  , , = , representing respectively a 
double difference, a mean followed by a difference or a difference followed by a mean 
and a double mean as follows: 
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After solving the elliptic problem and therefore knowing 
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The tri-diagonal matrix elements are as follows: 
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A term,  ""     NOTOPεεεε− , has been added arbitrarily in the matrix δµP . For an explanation 
read Appendix 13. Here though this term vanishes. 
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 Appendix 5. How were chosen the averaging operators and note about commutation 
 
 Let us consider two variables, G and H, defined on separate staggered grids as 
follows: 
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indicating that G is defined on half-levels while H is defined on full ones. Only the 
independent variable ζζζζ  could and was defined on both types of levels and thus take the 
two types of indices. The metric parameter could also sometimes be defined on both 
types of level, hence two different symbols (B on full and B on half levels).  To obtain the 
variables G and H on their alternative grids, averaging operators αααα and a such that: 
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are introduced. In the following discussion, difference operators will be needed and we 
define them: 
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Now, let us consider the discretized elliptic equation derived in section 15 and which we 
write formally as follows: 
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There is a term, ( )aδδδδαδαδαδαδεεεε − , which was assumed to vanish, which has no analytic 
equivalent but which vanishes only if the mean and difference operators commute. Let us 
impose this condition and examine the consequences. We get 
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Implying that 
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If the relation between the half and full levels is given, for example if, as we have chosen: 
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and thus 
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Instead of choosing 

2
1+k

a off-hand as we have done, we might have imposed another 

condition such as the symmetry of matrix M formed by the product of the matrix obtained 
from the double averaging operator αa and the diagonal matrix with elements kζ∆ , i.e. if 
we had imposed that the tri-diagonal matrix M whose elements are 
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be symmetric, i.e. setting 1,,1 ++ = kkkk MM , i.e. ( ) �
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(c) 

2
1

2
1

11 1

1

+

+

+

+

−−
=

∆
∆

k

k

k

k

k

k

a

a

α
α

ζ
ζ

 

 
Then, combining (c) with (a), we would have again found 
  

2
1

2
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In the original formulation of the staggered-grid version of the model, we indeed wanted 
to obtain symmetric matrices in the vertical (maintaining a property of the regular-grid 
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version of the model) and commutation occurred naturally (only one mean being explicit 
in the code, the second one occurring only in the elimination process). With the new 
coordinate we lost the symmetric property due to the presence of a first derivative in the 
analytic problem. But the requirement that half-levels be exactly in the middle of full 
levels is good for the accuracy of the hydrostatic relation and the commutation 
requirement, besides simplifying the code, may serve in improving the conservative 
properties of the scheme. 
 

So far we have dealt with the difference and average operators away from the 
boundaries. Let us now look at them near the boundaries. The equations defined on half 
levels apply to the top and bottom where difference and average operators operate on 
some variables, namely φ’ and q. But their values are required at one of the boundaries 
[φ’S= φ S at the surface and qT=0 at the top] while their values at the other can be obtained 
by numerical integration provided the difference operator leading to them is defined 
which it has been (it is by construction an off-centered difference though). This is why 
we consider the top and bottom to be full levels as far as φ’ and q are concerned, 
respectively labeled 0 and N+1. The averaging operator then simply selects the 
corresponding value. 

 

One last item remains to be explained referring to Figure 1 describing Charney-
Phillips grid. In the preceding paragraph, we said that some equations applied to the 
boundaries. With the presence of φ’ and q, all required variables were also apparently 
defined there but, if so, the difference operators were off-centered and therefore only first 
order. Centered differences are recovered if we displace the thermodynamic and vertical 
momentum equations as well as the variables T and w to the middle of the half-layers 
nearing the boundaries [to levels ¾ and N+ ¼ as shown in the figure]. This is what we 
have done. We believe this is beneficial for temperature in particular which is shifted 
from the surface to a better place from the physical as well as numerical point of view. To 
better assess what we have done, here is a formal representation of the three linear 
equations affected by the change for the bottom (a similar change occurs at the top): 
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In the thermodynamic equation defined at level N+¼ the term in brackets remains 
evaluated at the boundary, level N+½. In the geopotential equation defined at level N+½, 
w is taken at level N+¼. This can be interpreted, in the first case as an interpolation, in 
the second case as  an extrapolation, constant in both cases 
[ ( )

2
1

2
1

4
1 N N N 

1
+−+

−+= fff αααααααα with αααα=0]. 



GEM4.2.doc   06/11/2013 10:26 44 

 Appendix 6. The Dynamic Core Code and vertical discretization: A brief description 
 
The dynamic core code is essentially organized as follows: 
 

set_zeta, set_dync, set_oprz, preverln: compute constants and parameters of the 
vertical discretization 

  Timestep Loop 
 

 
   tstpdyn: performs a dynamical time step calling rhs, adw, pre, nli, sol, bac 
 

- rhs: compute the 6 basic Right-Hand-Side terms: hR , Rw, Rθ, RC, Rφ  
(section 1 1 1 14444) 

 

( ) ( )( )
( )

( ) ( )

( )[ ]
( )gwRTR

sBBsR

qBs
T
T

R

g
w

R

qBsTRf

hC

w

hh

h
h

h

−−−=

�
�
�

�
�
� ++⋅∇−++=

−−

�

�

�

�
+−��

�

�
��
�

�
=

−−=

∇+++∇+−=

ζβ
τ

φ

ζζδβδ
τ

ζκβκ
τ

µβ
τ

φµβ
τ

ζ

φ

ζ

ζζ
ζ

ζ

ζ
θ

ζ
ζ

ζ
ζ

�

��

�

*

*

                                      
 '

         1ln
1

     ln
1

                                        

'1x                                      

V

Vk
V

R

 

 
  Departure Outer-Loop 

 
 

- adw: adw_pos: Compute the next estimate of the departure points. 
adw_int:  Evaluate Right-Hand-Side terms at departure points. 

 
- pre: combine φθ RRR w ,,  into φθ "," RR , combine Cwh RR ,,R  into CR"  and 

finally φθ ","," RRR C  into PR : 
(section 16) 
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     The final version of the Right-Hand sides are:  hR , Rw, φθ "," RR , PR  

 
          Non-linear Inner_Loop 
 

- nli: compute non-linear Left-Hand sides: φNNNN CTwh ,,',',N  

(section 12) 
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and combine them into PCT NNNN ,","," φ   
(section 1 1 1 16666)  
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and obtain final Right-Hand Side of the Elliptic Problem LP= RP-NP, including 
modifications imposed by boundary conditions ( )

0 ' kPL and ( ) NPL  ' . 

  
(appendix 4b) 
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- sol: solve the Elliptic Problem 
(section 15 & appendices 4a and 4b) 
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- bac: back substitution: compute variables for next iteration/time step 

(section 17) 
 

[ ]

( )

( ) ( )

( )

( )
( )

( ) 

�

�

�

�

+
+

−=



�

�

�

�

+
+=+

+−=

==+−

�

�

�

�
−+−−=

−
−

=

=
�

�
�

� −−−=+



�

�

�

�
++−=

∇−−=

Bs

BsRT
e

T
T

T

Bs

q
e

BsqRTP

qBs
PP

RT
NR

q
RT

P
ss

q
w

NR
H

qqq

PP
RT

NR
H
w

w

P

q

q

ST

S
SS

Tww

hh
h

h

ζδ
φδ

ζδ
δ

µµ

φφ

ζζ
τ

εδ
κτ

γ
τ
ζζ

φ
τ

ετδ

κδ
κτ

γ
τ

τ

ζ

ζ

ζ

ζ

ζ
ζ

ζθθ

ζ
ζ

ζ
ζφφ

ζ

ζ

ζ

*

*

*

2
*

2

*

*

2

*
2

*

/'
1           :

11        :

'              :'

0   ;""              :

                :

0      ;'   :

""           : 

             :

��
�

�

NR
V

V

 
                                                                             end inner loop 

 
                                                            end outer loop 
 
                                             end timestep loop 

 
N.B. It is sometimes necessary to be aware of the two horizontal averages applied on T or 

T’ and µ  in Rh and Nh. Hence the above and following bar h indications: 
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More details in Appendix 10. 
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Appendix 7. The hydrostatic option 
 
 We start with the final form of the equations given in section 5: 
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The hydrostatic approximation may be considered to consist in neglecting non-
hydrostatic pressure effects, therefore assuming q=0. Then µ=0 also and the vertical 
acceleration dw/dt is neglected. In fact, the vertical motion w becomes irrelevant. Neither 
the vertical momentum nor the geopotential tendency equations are required in the 
solution system although we may still solve the geopotential tendency equation to 
diagnose w. Therefore, we only need to solve: 
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All the terms involving the prognostic vertical momentum and diagnostic µ equations 
which were not already equal to zero are set to vanish: Fw, Gw, Lw, Nw, Rw, Lµ, Nµ, L’w, 
N’w . The parameter ε =0, hence γ=1. In the code, set the switch Schm_hydro_L=.T. .  
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Appendix 8. The autobarotropic model  (to be modified to work with truncated top boundary) 
 

We build an auto-barotropic model (Dutton, The Ceaseless Wind, pp 186-7) from the 
three-dimensional code of GEM in order to simulate a barotropic model. We do that in 
 

i) eliminating the physical effects,  
ii) making the hydrostatic hypothesis,  
iii) introducing a key autobarotδ =0  to eliminate the pressure tendency d(Bs)/dt in 

both the  thermodynamic and continuity  equations, 
iv) initializing with barotropic conditions : 

      ( ) sRTBsRTconstTT SThh *** ''  ;0  ;  ; +==+===≠ φφφζζ �VV , 
conditions which will be maintained afterwards, hence the name 
autobarotropic model. 

 
      From the complete equations: 
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with B defined simply as 
TS

TB
ζζ
ζζ

−
−= , we eliminate sources and sinks of momentum and 

heat and we make the hydrostatic approximation, reducing the number of equations and 
variables to (see Appendix 7): 
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Considering barotropic initial conditions ( ( ) 0  ;  ; * ===≠ ζζ �constTThh VV ), we derive 
from the hydrostatic equation that P is uniform in the vertical: 
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We therefore have in the momentum equation: 
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and since ( )ζφ PP T ≠= , then hV  stays ( )ζhh VV ≠ . 
 

Now, even though 0=ζ�  and constTT == *  initially, temperature will change 
since the thermodynamic equation still says: 
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making 0=autobarotδ , then ��
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=0 et T will remain constant and equal to *T . 

Similarly, in the continuity equation, 0=ζ�  initially and introducing  0=autobarotδ : 
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And this relation is invariant in the vertical, hence ( )ζζζ �� ≠  and ζ� =0 is maintained 
Hence, the model equations: 
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with a vertical structure (many levels, at least 3: e.g. hyb = 0.583333, 0.75, 0.9166666 
with ptop=50000., to satisfy the operations), but starting with barotropic conditions, 
simulates the barotropic equations: 
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h

dt
d

f
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d

V

VkV
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It is autobarotropic.  
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Appendix 9.  Open top boundary conditions  
 

The goal is to develop an open boundary condition at the top, i.e. a condition with 
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�
�
�

� ++=
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qBs
X

τ
ζ� , not only 0≠OTζ�  but also 0≠OTB  (the top no more being 

necessarily a hydrostatic pressure level) and 0≠OTq (in the non-hydrostatic case). 
 

First, let us deal with the linear system (Appendix 4a): 
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We know we can combine these equations into a set of only N equations in the vertical 
for N+2 unknowns kP  (k=k0,N): 
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and therefore requiring two additional equations (top and bottom boundary conditions) 
for its solution. As we have seen (Appendix 4b), a closed top boundary condition 
occurring at k0=1 ( 0 ;0 B;0 === TTT qζζζζ� ) is satisfied by using 
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to obtain a boundary condition in terms of X (generalized vertical motion ζ� ) since 

( )[ ] 0/B =++= TT qsX ττττζζζζ� . For an open top occurring at 10 ≠k , we have none of the 

above conditions ( 0 ;0 B;0 ≠≠≠ OTOTOT qζζζζ� ). Another relation must be found. There are 
two possibilities: 
 
- (i) using φφφφ"L  to obtain a boundary condition in terms of vertical motion w, specifying 

OpenTw : 
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- (ii) combining θ"L  with θL  as follows 
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to obtain a boundary condition in terms of temperature T, specifying OpenTT' : 
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Although vertical motion w seems the logical choice, there are two big objections: first, it 
is well known that vertical motion can be quite noisy and it could be difficult to get a 
suitably balanced field; second, in the hydrostatic case, w is not even a prognostic 
variable of the model.  
 

The open top case (ii) in fact leads to equations for 10 −kP , ( 10 ≠k ) formally 
identical to the closed top case with k0=1. In effect, we write 
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All of this is trivial then, except for the calculation of the right-hand sides corresponding 
to LB, i.e. RB and NB: 
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More explicitly for BN , 
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In the non-hydrostatic case, another condition is needed, namely the true pressure at the 
top, OpenTp , from which we may calculate 
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 Appendix 10. Aspects of horizontal discretization (removing a from U and V in code) 
 

 First of all, note that by ‘horizontal’ is meant a model ‘quasi-spherical’ constant 
ζ surface. In the horizontal then, the equations in spherical coordinates are discretized on 
an Arakawa C grid, with the wind image components ),1,,0( 

,
2
1 jiji

NjNiU ==
+

 and 

),0,,1( 
2
1, jiji

NjNiV ==
+

 staggered with respect to all the other variables 

),1,,1( ,'),,(,, ,,,,,, jijijijijijiji NjNisTw ==µµµµφφφφζζζζ� , an Arakawa C grid with the U points 

with indices i=0 and i= iN  coinciding by symmetry and with the V points with indices j=0 
and j=Nj respectively landing on the south and north pole and therefore vanishing. 
Looking at the equations (section 5), we find that only three equations require attention: 
the two horizontal momentum equations 
 

( ) ( ) 0'1x =∇+++∇++ φφφφµµµµ ζζζζζζζζ qBsRTf
dt

d
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with  
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1ˆˆ VUvuh +=+=V  

 

defined in terms of its longitudinal component u in the direction λλλλ̂  and its latitudinal 
component v in the direction θθθθ̂ , or the so-called corresponding wind images U and V, 
and with the gradient operator given by: 
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with dX=adλλλλ and dY=adθθθθ/cosθθθθ=adsinθθθθ/cos2θθθθ, and the continuity equation written as 
follows: 
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is the horizontal divergence discretized very simply as follows: 
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Note that in a global integration we have periodicity in the λ-(X-)direction, so 

jNj i
UU

2
1

2
1 +

= , and, since V vanishes at both poles, 0
2
1

2
1 ==

+iNi
VV , the problem is closed in 

the horizontal.  
 

The ‘horizontal’ vector momentum equation is modified to be solved as a three-
dimensional vector equation in Cartesian coordinates subject however to the constraint 
that the wind keeps parallel to the earth’s surface (Côté, MWR 1988): 
 

( ) ( ) 0'1x =+∇+++∇++ rVkV
�φφφφµµµµ ζζζζζζζζ qBsRTf

dt
d

h
h  

 

The constraint, �r, where r is the earth’s radius and � a Lagrange multiplier, acts as a 
supplementary force normal to the surface. We then introduce the semi-Lagrangian 
implicit discretization (section 8) directly on the vector equation: 
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with DA rrc  ββββ+= . Multiplying through scalarly by Ar   
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Therefore the metric correction to be applied to D
hR , in order for the result to remain on 

the sphere, is: 
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However, hR  is given in spherical coordinates in terms of wind images: 
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To obtain the Cartesian coordinates ( D
z

D
y

D
x RRR ,, ) of D

hR  from its spherical coordinates 

(R D
U , R D

V ), we apply the coordinate transformation law at the departure point: 
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Finally, to obtain the spherical coordinates ( C
V

C
U RR , ) of C

hR , from its Cartesian 

coordinates ( C
z

C
y

C
x RRR ,, ), we apply the inverse transformation at the arrival point: 
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The vanishing of the last row of C
hR is true by construction, 0=⋅ C

h
A Rr . We use the 

information to simplify the middle row getting finally: 
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In summary then, having (R D
U , R D

V ), i.e. D
hR  in spherical coordinates, we 

  

1) transform D
hR  to Cartesian coordinates, computing D

z
D
y

D
x RRR ,, , 

2) compute c, �  and C
hR  in Cartesian coordinates, 

3) transform C
hR  back to spherical coordinates, i.e. compute R C

U , R C
V  

 

In order to solve this semi-Lagrangian equation, in fact all of the other equations as well, 
we must first solve the equation for the displacements themselves. Consider 
 

tVVr ==
dt
d

a  

 

where t  is a unit vector tangent to the spherical earth in the direction of V and V  is the 
module of V assumed constant during the displacement. For simplicity, we have taken 
the radius of the earth r as a unit vector all along. Then, in the plane of the displacement, 
the trajectory is an arc of circle, a great circle displacement. If DD tr   , and AA tr   , are unit 
vectors respectively at the departure and arrival points, we have 
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where ta ∆=∆ V . We therefore can write 

AAD trr  sincos ∆−∆=   or  
∆
∆−=

cos
 sin DA

D trr  

where VVt / DD = . 
 

Assuming that V is known in spherical coordinates (U,V) and having a first 
estimate of the location (λM,θM) of the mid-point rM between the departure and arrival 
points, we first obtain VM by interpolating V at that position. Then we proceed to 
improve the estimate of rM by performing a great circle displacement solving the above 
equation. We may proceed as follows: 

1) compute 
( ) ( )

M

MM VU
θ2

22

cos
+=V  and V

2
t

a
∆=∆  

 
2) compute the arrival position Ar  in Cartesian coordinates ( )AAA zyx ,,  
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3) compute MV  in Cartesian coordinates using old Mr  position 
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4) compute new Mr  in Cartesian coordinates: 
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5) obtain Mr  in spherical coordinates:
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In the model, the process is an iterative one (section 8). So we repeat the 
procedure until convergence. Once the new mid-point position Mr  valid at t-∆t/2 is 
found, the true departure position Dr  valid at t-∆t is obtained by doubling the great circle 
displacement: 

6) obtain 
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7) finally in spherical coordinates: 
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We are now ready for the discretization in the horizontal. The equation  

 

C
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A
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A
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is decomposed into its components (section 10): 
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and horizontally discretized as follows 
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using the following simple two-point difference and mean operators: 
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as well as the four-point (cubic interpolation) mean operators: 
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The left-hand-sides (dropping the superscript A) are linearized separately (section 11): 
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leaving as non-linear terms (section 12): 
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Appendix 11. Lateral boundary conditions 
 
 A limited area (LAM) version of GEM exists. It requires lateral boundary 
conditions. These are provided by three sets of grid point values:  
 

 
 

(i) The first set is external to the LAM domain and allows the semi-Lagrangian 
scheme to function as if no boundary existed, i.e. a sufficient number of points 
exists outside of the domain so that the upwind values of all relevant fields can be 
obtained by interpolation provided a predetermined Courant number is not 
exceeded. The relevant fields are the Ri’s, the Right-Hand Sides terms calculated 
from the previous timestep history carrying model variables. If the values 
provided to the LAM come from a global host-model identical to the LAM in all 
respects (space and time resolutions, physical parameterizations, etc) then the 
host-model results for the Ri’s are reproduced.  

 
(ii) The second set is the boundary set proper: it comprises exclusively the wind 

component normal to the boundary and at the boundary itself. These grid point 
values serve to close the elliptic problem in the horizontal. In effect, the so-called 
elliptic equation will contain in particular (see section 15) the following terms:  

 

( ) ( ) ( ) ......
1

2
1

1

1
+∇=≡+−⋅∇

jkjkP
jkC

jkh PL
L

ζζζζζζζζ ττττ
L  

 
To the left, the L’s must be known quantities. To the right, there is only the 
unknown P. Here we consider, as an example, the grid points with the i label 
equal to 1. This is the X-direction and we assume that i=1 is the first internal 
model cell on its left-hand side. Developing the operators, we obtain successively 

 U U 

V 

V 

P 

(i) 
(ii) 
(iii) 
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But note, the equation 

( ) ( ) jkX
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jkU P
U

L
2
1

2
1

2
1 δδδδ

ττττ
+=  

 

which has served to eliminate 
jk

U
2
1  from the continuity equation does not exists. 

( ) jkUL
2
1  is an unknown quantity. Let us restore  

jk
U

2
1  in the previous equation: 
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Thus the elliptic problem may be solved if we provide the normal wind 
component on the boundary 

jk
U

2
1  as a boundary condition. The elliptic problem 

though appears as if we had set ( ) 0
2
1 =jkX Pδδδδ  as a boundary condition on P to the 

left while replacing the unknown  ( ) jkUL
2
1  by the known value ττττ/

2
1 jk

U  to the right. 

The same procedure is applied to the normal wind components on all the 
boundaries of the LAM. Again, if the normal wind components provided to the 
LAM come from an identical global host-model, then the host-model results are 
reproduced. Since the solution of the elliptic problem corresponds to a future 
timestep, the set of boundary winds must come from the timestep following that 
from which came the external set.  

 
(iii) Finally, a third set of grid point values are internal to the LAM domain. They 

allow for a gradual relaxation of LAM-fields to the HOST-fields as we approach 
the boundary. All history carrying variables are relaxed this way. Of course, if the 
host-model is identical (the acid test), this third step of the procedure is 
redundant. 

 
In GEM presently, physical parameterization is added (split mode) after the 

dynamics, i.e. after the relaxation step just mentioned. Thus for the LAM to reproduce the 
host-model results, the future values provided in steps (ii) and (iii) must come from the 
host-model after the dynamics prior physical parameterization while the past values 
provided in step (i) must come from the host-model after physical parameterization. 
 
N.B. As soon as horizontal winds are modified by space and time interpolation, i.e. when 
not performing the acid test, the vertical motion field ζζζζ�  should be diagnosed (see 
Appendix 15) 
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Appendix 12. Time varying topography 
 
 The initial conditions as well as the lateral conditions (see Appendix 11) of a 
LAM are frequently provided by a host-model or by an analysis made on the host-model 
grid with much coarser horizontal resolution, typically at least a factor of three coarser. 
And the information usually comes in terrain-following vertical coordinates. Then the 
bottom surfaces, the topography, of the host and LAM may differ considerably. 
Straightforward interpolation-extrapolation often results in poorly balanced fields: a point 
fairly high in the host may have relatively strong winds which may find themselves near 
the surface in the LAM; vice versa a surface point with light winds in the host may find 
itself fairly high in the LAM. For the first two sets of lateral conditions, i.e. outside and 
on the boundary of the LAM domain, the host topography may be kept, but for the third 
set, the relaxation zone, the problem cannot be avoided. One may only attenuate the 
problem by relaxing the topography in essentially the same way that the other model 
fields are relaxed and then interpolating-extrapolating the variables. As for the initial 
imbalances, it has been found desirable to initialize the LAM with the coarser host 
topography, gradually modifying it to reach the finer LAM topography after a suitable 
interval of integration time: the LAM then having a so-called time-varying topography 
field. Artificial though it may be for the atmosphere, this is a perfectly acceptable 
mathematical procedure and, provided the induced vertical motions remain small, the 
meteorological consequences may remain acceptable (a 10 cm/s topography velocity is 
able to lift the terrain by more than 1 km in 3 hours).  
 
 Examining the equations, we find that a local tendency of geopotential is provided 
and calculated implicitly by the equation: 
 

0
'

* =−− gwRT
dt
d ζζζζφφφφ �  

 
A surface level is present in the vertical discretization ( 0=Sζζζζ� ): 
 

0=− S
S gw

dt
dφφφφ

 

 
After time discretization, we have: 
 

( ) ( ) ( ) ( )D
S

D
SA

S

A
S wgwg ββββ

ττττ
φφφφ

ττττ
φφφφ +=−  

 
( )A

Sφφφφ  is the surface geopotential at the arrival point, i.e. at the grid point at the future 
time. It is an external parameter which must be externally specified. In hydrostatic-
pressure coordinate, the time varying topography option is just and only just that: 
modifying Sφφφφ at the appropriate place in the model code.  
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Appendix 13. Numerically truncated top boundary condition 
 
 On the regular grid of GEM3, temperature as well as all other model variables 
were present at the model top. A thermodynamic equation along with momentum 
equations were therefore needed at the top. In developing GEM4 on the Charney-Phillips 
grid, there arose the question as to whether or not to include a top thermodynamic level. 
Three arguments militated in favor of its inclusion: the fact that such a level already 
existed in GEM3, a level used by the analysis; a symmetry argument since we were 
planning a bottom thermodynamic level to better accommodate the surface layer 
parameterization; finally the fact that a similar surface layer parameterization would be 
needed at the top of an ocean model. Now, we have much stronger arguments in favor of 
its exclusion. First, the level is dynamically disconnected from the rest of the model: in 
effect, the equation is highly simplified due to the boundary condition: dlnT/dt=Q/cpT 
since by construction dlnp/dt=0. Considering that vertical advection also vanishes since 

0=ζζζζ� , the resulting predicted temperature becomes dynamically very poorly connected 
with the rest of the model. Second, the disconnectedness is further amplified by the 
typical lack of vertical resolution near the top of operational forecast models. Third, the 
boundary condition is very artificial. (Note that none of these arguments would apply to 
the top of an ocean model.) Finally and foremost, experiments have shown that we obtain 
better results without than with this top thermodynamic level.  
 
In this perspective, it is very interesting to examine the equations with the hydrostatic 
option (Appendix 7) once discretized: 
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Eliminating the two equations at k=3/4 will force the elimination of two degrees of 
freedom, two variables: TT ''and  04/3 φφφφφφφφ ≡  but T'φφφφ  does not serve elsewhere and 4/3T  only 
serves in the pressure gradient term at level 1 of the momentum equation. But the 
pressure gradient term at level 1 only subsists if the metric parameter 0≠B . It is in fact 
desirable to have this parameter as close to zero as possible near the model top. Thus the 
top thermodynamic level can be eliminated in the hydrostatic case with little 
consequences. Of course, the semi-Lagrangian scheme has to be notified of the absence 
of this degree of freedom in the temperature field. But this is in fact where most of the 
benefices will come from, as too large differences between the top and adjacent levels 
tend to generate noise (in particular, kinks in the vertical). 
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 We now examine the full equations with the same perspective: 
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We find three new equations at k=3/4 which should logically be eliminated along with 
three new variables that must disappear from the list of degrees of freedom: 4/3w which is 

no more referred to, 0q  and 4/3µµµµ . And we must estimate 1q  and 1µµµµ . Note that the presence 

of 1q  restores the pressure gradient term in the momentum equations. However, the 
simple extension of the top boundary condition on q downward to level 1, i.e. setting 

01 =q , essentially retires again the pressure gradient term from the top level momentum 

equations. For µ,  setting 01 =ζζζζµµµµ  was chosen, again avoiding extrapolation.  
 

Less elegant perhaps but not more arbitrary and factually less problematic than 
the original procedure which for the temperature in particular added an apparently purely 
numerical degree of freedom in the vertical, this procedure will be called the numerically 
truncated top boundary condition. In the absence of certain degrees of freedom, we had 
to estimate for the top level momentum equations the non-hydrostatic contribution to 
both the pressure gradient and geopotential gradient terms. We decided to make this 
contribution vanish, setting both 01 =q  and 01 =ζζζζµµµµ . 
 
 As seen before (Appendix 9), changing the top boundary condition affects the 
details of the matrix problem as specified in Appendix 4b. Here we start with the original 
discretized linear continuity equation (section 11): 
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For k0=1, we have the boundary condition ( )

2
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0
/ −+ ksB ττττζζζζ ζζζζ� =0. We may therefore 

immediately write: 
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and proceed with the elimination process toward the elliptic equation using only the 
equations for ( ) ( ) ( ) ( )
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Considering the original expressions (Appendix 4b)  

 
 
( ) ( )

( ) ( ) ( ) ( )

( )
�
�
�

�
�
	

�
�
��

�
� ++�

�
��

�
� +−−






�

�




�

�
−

∆
+

∆∆
−

−
∆

−
�
�

�

�

�
�

�

�
+

∆
+∇=

∆−=

−
−

+
−

−−
++

+
+

+

−

−

−+

++

0
2
1

02
1

000
2
1

00
2
1

00

0

2
1

0

0

2
1

00

0

2
1

0

00

0

0
00

00

  1 
*

2

 

  

 

 

 1 

*
2

2

1  

1
                               

1
11

    '

/"'

kTkkkkkkkk

kT

k

k

kk

kT

k

kk
k

k
kkP

BTkPkP

PPP
RT

P
PPP

RT
PL

LCLL

ααααϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ
κτκτκτκτ

κκκκγεγεγεγε

αααα
ζζζζ
ϖϖϖϖ

ζζζζζζζζ
αααα

ζζζζ
ϖϖϖϖ

ζζζζκτκτκτκτ
γγγγ

ζζζζ

ζζζζ  

 
and setting 0=BL  and 0

0
=−

kϖϖϖϖ , we get 
 

( ) ( ) ( )

( )
�
�
��

�
� +−−






�

�




�

�

∆∆
−

−
∆

−
�
�

�

�

�
�

�

�
+

∆
+∇=

−
++

+
+

+

−+

++

0
2
1

00
2
1

00

2
1

00

0

2
1

0

00

0

0
00

 1 
*

2

 

 

 

 1 

*
2

2

1
                              

11
    '

kkkkk

kk

kT

k

kk
k

k
kkP

PP
RT

PPP

RT
PL

ϖϖϖϖϖϖϖϖϖϖϖϖ
κτκτκτκτ

κκκκγεγεγεγε

ζζζζζζζζ
αααα

ζζζζ
ϖϖϖϖ

ζζζζκτκτκτκτ
γγγγ

ζζζζ

 

 
and we note that further setting 
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kT ζζζζεεεεαααα  takes care of the ε-term. 
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Appendix 14. Trapezoidal rule for trajectory calculations  
 

Here we compare mid-point rule and trapezoidal rule for the calculation of 
displacements ∆r in the semi-Lagrangian scheme.  
 

The mid-point rule (a time mean followed by a space interpolation) can be 
described as follows: 

( ) ( ) ( ) M
ii t

ttt
t VrrVVr ∆=∆−∆−+∆=∆ − 2/

2
1  

 

where i is for iterations being made due to the non-linear nature of the process, while the 
trapezoidal rule (a space interpolation followed by a space-time mean) can be written: 
 

( ) ( )
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,, 1
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i
i t

ttt
t

VVrrVrVr +
∆=∆−∆−+∆=∆
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Changing rule is fairly straightforward except for the ‘horizontal’ on the sphere. 
In effect, consider the equation 

tVVr ==
dt
d

 

 

where t  is a unit vector tangent to the spherical earth in the direction of V and V  is the 
module of V assumed constant during the displacement. For convenience here, we take 
the radius of the earth r to be a unit vector, normalizing the winds accordingly. Then, in 
the plane of the displacement, the trajectory is an arc of circle, a great circle 
displacement. If DD tr   ,  and AA tr   ,  are unit vectors respectively at the departure and 
arrival points, we have 
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where ta DD ∆=∆ V  and ta AA ∆=∆ V  are the modules of the displacements and 

where DDD VVt / =  and AAA VVt / =  are their directions. We therefore can write 
 

( )2a            
cos

 sin

D

DDA
D ∆

∆−
=

trr  

or 
( )2b      sincos AAAAD trr ∆−∆=  

 

Now, these are equivalent exact relations for a constant wind on the sphere. For 
the semi-Lagrangian calculations though, we know the wind at some positions and 
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estimate displacements assuming constant wind. For the mid-point rule, we take the 
wind MV  as known at the mid-point of the trajectory and we calculate a half-
displacement from the mid-point Mr  to the arrival point Ar , therefore using formula (2a) 
with subscript M replacing D: 

M

MMA
M ∆

∆−
=

cos
 sin trr  

 
We then double this displacement backward to find the departure point Dr  using formula 
(2b) with subscript M this time replacing subscript A: 

  
MMMMD trr  sincos ∆−∆=  

 
Combining the above two equations gives the geometrical formula for the mid-point: 
 

M

AD
M ∆

+
=

cos2
rrr  

 
For the trapezoidal rule, having the wind known at both ends of the trajectory, 

DV  and AV , we perform two half-displacements using formula (2a) for the first 
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with 2/1 Dd ta V∆=∆  and DDd VVt /1 = ,  and (2b) for the second 
 

22222  sincos aaaad trr ∆−∆=  
 
with 2/1 Aa ta V∆=∆  and AAa VVt /2 = . In sequence, therefore index d1 becomes D,  

index a2 becomes A and we set 21 da rr = , hence 
 

D

DDAAAA
D ∆

∆−∆−∆
=

cos
 sin sincos ttrr  

 

having combined the previous two equations. 
 
A first order verification of this formula ( 1coscos ≈∆≈∆ DA ; DD ∆≈∆sin ; AA ∆≈∆sin ) 
is: 

( )DADDAADA
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2

  



GEM4.2.doc   06/11/2013 10:26 70 

Steps in the mid-point rule 
 
The winds V(t, Ar ) and V(t-∆t, Ar ) are assumed known at two time levels on the grid 
points Ar  (one Crank-Nicolson step). We compute: 
 

 

1) the Spherical Coordinates (U,V) of ( ) ( ) ( )
2

,,
 ,2/ AA

A

ttt
tt

rVrVrV ∆−+
=∆−  

 
2) ( )1 ,2/ −∆−= i

M
i
M tt rVV  by interpolation (Spherical Coordinates) 
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M

i
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i
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i
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i
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i
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9)  the Spherical Coordinates ( )i

D
i
D θθθθλλλλ ,  of i

Dr  
 

 
Only steps 2 to 7 need be repeated for the required number of iterations. Note that the 
module is computed using Cartesian coordinates. 

 
The Cartesian Coordinates ( )z, y, x ��� of V  at position ( )zyx  , ,=r are obtained from 

the values (U, V) in Spherical Coordinates as follows 
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The position vector transforms as follows 
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Steps in the trapezoïdal rule 
 
The winds V(t, Ar ) and V(t-∆t, Ar ) are assumed known at two time levels on the grid 
points Ar  (one Crank-Nicolson step). We compute: 
 

 

1) the module 
( ) ( )
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θθθθ2
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Only steps 5 to 10 need be repeated for the required number of iterations. Remarkably, 
these calculations to obtain i

Dr  from 1−i
Dr  and DAr  using i

DV  with the trapezoidal rule are 

identical to those required to obtain i
Mr  from  1−i

Mr  and Ar  using i
MV  with the mid-point 

rule. Note that the module at departure is computed using Cartesian coordinates. 
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Appendix 15. Diagnostic calculation of vertical motion at initial time 
 
 There are two vertical motion field required at initial time. The first, ζζζζ� , is truly a 
diagnostic field. The second, w, is a diagnostic field only when the hydrostatic 
approximation is made; in the non-hydrostatic case, w could become an analyzed field. 
 
1. Diagnostic calculation of ζζζζ�  

 
From the continuity equation (section 4): 
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we derive an explicit relation for ζ� : 
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2. Diagnostic calculation of w 
 

We use the approximation: 
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The approximation seems acceptable in general but note: at the model top 0=ππππ�  by 
construction while 0≠w ; similarly at the bottom, when the terrain is flat, 0=w  while 

0≠ππππ�  in general. We obtain an explicit relation for π�  again from the integrated 
continuity equation as follows: 
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and it is convenient to replace the advection term by the difference of two divergences: 
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Table 1. The equations of GEM in 4 transformations 
 

 
 

Vertical coordinate transformation: z to ζ (unspecified) 
 
 

 
 

Vertical coordinate transformation: z to ζ (specified) 
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Going to model thermodynamic variables φ’,q,s,ζ�  
 

 
 
Discretizing in the vertical 
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Table 2. The Equations of GEM vertically discretized on Charney-Phillips grid 
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