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PREFACE
GEMA4.2: A work nearly and satisfactorily completed ...

Reduction of noise in GEM was the main motivation for the present project
consisting in the introduction of vertical staggering (Charney-Phillips grid). It was
deemed the first and primary ingredient to achieve this goal. In effect, there are numerical
modes which were theoretically diagnosed on the previous un-staggered grid which are
absent from the new one. As a first step therefore in this project, only the grid was
changed. Everything else, the equations, the independent as well as the dependent
variables, were kept unchanged. Very positive results were obtained with respect to
noise. But there remain problems, in particular an accuracy problem in the hydrostatic
relation at upper levels when the true resolution (in terms of height) is insufficient.

Improving the accuracy of the hydrostatic relation using logarithmic differencing
wherever appropriate was therefore the goal of a second step. The results from this
modification of the code were very satisfying with improved scores in the stratosphere.

With this incentive, it was tempting to try and implement a full log-hydrostatic-
pressure coordinate, {. A theoretical advantage of ¢ is its linear relationship with Inp,
[Inp=In(p/z)+In(z/x,)+Inz. =q+Bs+{]. Along with the fact that ¢ =1In(p / )

and s = ln(ﬂs / pmf) are already model variables, this greatly simplifies the linearization

of model equations. Again the accuracy of the hydrostatic equation is improved since the
finite differences not only are calculated logarithmically but also become defined at
logarithmic mid-points. This third step though has little impact on model performance.

An important development: it was discovered that the initial staggered version of
the semi-Lagrangian scheme, linear vertical interpolation of the departure positions for
variables arriving on thermodynamic levels, resulted in significant loss of kinetic energy.
Cubic interpolation is rather the thing to do.

A secondary motivation for the project was the resolution of accuracy and noise
problems encountered in the simulation of non-hydrostatic mountain waves, specifically
what we call Schir’s case. Well, a completely satisfactory solution has been achieved, not
via staggering though but again through modifications of the semi-Lagrangian scheme:
tri-dimensional cubic interpolation of the departure positions replacing linear ones
combined with trapezoidal means of the velocities instead of the mid-point rule.

Many new appendices appear in GEM4.2, notably Appendices 13 and 14.
Appendix 13 constitutes a major development affecting the code substantially since the
top thermodynamic level, level 3/4, is being eliminated. Theoretical analysis as well as
experimental testing has shown that this level was essentially dynamically disconnected
from the rest of the model. Improved simulations resulted from the change. Appendix 14
describes trapezoidal means.

Older versions of this document, GEM4.0 and GEM4.1, remain available.

GEM4.2.doc 06/11/2013 10:26 3



1) The meteorological equations

- 4 independent variables: t, r=(rp, 2)

- 6 dependent variables: V=(V,,w), T, p, p

- 6 scalar equations:

?+ﬂ(XV+RTV1np+gk=F
t

dinT R dlnp QO

dt

dlnp

c. dt c T

p p

+V-V=0

- There are: 5 prognostic equations (momentum + energy + mass conservation),

1 diagnostic equation (perfect gas law).

N.B. The Coriolis force is approximated (traditional meteorological approximations apply).

N.B. Many more approximations are implied if we consider that the atmospheric
substance contains, in addition to dry air, not only a variable quantity of water vapor but
also condensed water and precipitations. The above equations are valid under the
assumptions of dynamic (precipitations falling at terminal velocity) and thermodynamic
(neglecting temperature differences between air and hydrometeors) equilibrium and
neglecting precipitation fluxes. Equations for the displacement and evolution of the

hydrometeors are required to complete the system.

N.B. In the above equations the coefficients R and c, are variable. The introduction of
virtual temperature (replacing RT by R,T, where R; is now constant) and approximating
the ratio x=R/c, by the constant ratio x;=R4/c,s lead to further simplifications (see

Appendix 1).
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2) The equations transformed to generalized 77-coordinate

- Note the necessary decomposition of vector equations into their horizontal/vertical components due to the different
horizontal/vertical transformation rules.

o 0 _mo d_9d &

2 transformation rules: V V -V 7 B e A

7 azan dz azan or, o a1, 0

n

- 4 independent variables : £, 1, 7
- 8 dependent variables: Vi,w, T,0, p, N, 2

- 8 equations (6 prognostic and 2 diagnostic):

dndlnp
,+RT|V 1 V., z =F
( ™ anj '
dw RTanalnp vg=F
dr dz dn

dlnT_Kdlnp: 0

dt

dt dt c,T
d 0z on
Ll pZ v, v+ 2
dt n[panj "9
ﬂ—w=0
dt
P
P RT
z=2(n.x,.1)

- Were added then: 1 prognostic equation (dz/dt=w) for varying height in space and time,
1 diagnostic equation (yet to be specified) defining the coordinate 7.

- the continuity equation is the only one requiring more than simple manipulation:

— —+—
9z 97 0z o\ ar 4 oz on " Tag dar \ag

9 dw ana(az v,V ﬁaz):a_qavh_v Lo, d (azJ
an
hence

ow on oV on ow on 0z
v.ov oy .y 01N g W gy 00 d
S T T o T o g T (anj

- See Appendix 2 for some details on transformation rules.
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3) Eliminating p introducing In7z, log-hydrostatic pressure, eliminating z defining
the geopotential ¢ and adding ¢ (ratio of vertical acceleration to gravitational

acceleration)
or p 0¢ pdlnp
—=—gp; RIT=—"——7"—; ¢=gz; == -1
0z &P rdlnx r=8 zolnrx
- 9 dependent variables: Viw, T,p,n, ¢ 7w

- 9 equations (added diagnostic equation for u ):

v, + fkxV, +RTV, Inp+(1+u)V, ¢ =F,

dt
dw
2 ou=F
r SH=1T,
dInT Kdlnp_ 0
dt dt c,T
Ao 2207 )y oy 29
dt on d on
de
A ew=0
a 2"
"y palnp_
rolnrx
RT+2 90 _
zdlnzx

Inz=Inz(n.r,.t)

N.B. At this point 77is still a general coordinate of the hydrostatic-pressure type:
in the next section we will specify both ¢ and 7.

N.B. For the rest of the presentation, the physical forcings F,, F,, Q will be
excluded and the parameters R and x will be treated as constants.
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4) The new ¢-coordinate for GEM4 is Inzlike

§:;S+ln”;
Inz = A({)+B({)s;

;S :lnpref; pref :105
s=Inzs - :ln(ﬁs /pref)

g_é/U

>(; =In
A=§; B=A" A=max 0 §U gT é/T Pr
So—¢y OSrzrmax—(rmax—rm)/lSZOO
Inz=¢+B(E)s
transformation rules:

L 9 _ 19 9
7 9p nol ot

n

_9
&;

v, =V

- 9 dependent variables: Vi, w, T, p, { , O U, TT

- 9 equations:

d;;”+kaVh+RTV§1np+(l+,u)V§¢:O
dw
2 ou=0
” gu
dlnT_KdlanO
dt dt
Lo 29007 )45 v, +%% =0
dt 14 14
4
Z  ew=0
a °"
14 _pOlnp _
mdlnrx
RT+£i_
zrdlnrx
Inz=¢+Bs

- ObViOUSly, at this point, the form of the equations in {"and 7 coordinates is identical

N.B. p,,/p, <1<l is now but a label characterizing model ¢-levels. Another way to

characterize the levels would be to use H, a number having the units of height and
corresponding approximately to model level height (above sea level):

= 6950m

RT 16000
gzgs_H/Hrqf; Hrefz(j =
8 )y In10

See Appendix 3 for more information on the metric parameter B.
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5) Perturbation thermodynamic variables, 7°, ¢’, g, and simplifications

Introducing the logarithm of the non-hydrostatic pressure perturbation g=In(p/7) and
perturbation variables 7° and ¢ . Eliminating p, ¢ and 7. We keep T for convenience.

T'=T-T,; T. = const
¢'=9-9.; ¢.({)=—RT.({ - ¢,)
Inp=Inz+qg={+Bs+gq

- 8 variables: V,,w,TorT',q, (g“s) @', i, final number

- 8 equations [6 prognostic & 2 diagnostic], final form ready for linearization:

v, + fkxV, + RTV . (Bs+q)+(1+p)V ,¢'=0

dt
dw
2 ou=0
r su
d T .
| = |- x(Bs+q) |- x¢ =0
dt{n(nj x(Bs q)} ¢

d d :
%{Bs+ln(l+£5ﬂ+vg -V, +(¥+1j§=0

d¢' -
&Y _RT.E—ow=0
” —gw

‘ dg__
I+u—e (1+a(§+Bs)j_0

T —e"(l— o(¢'/ RT., +Bs)j 0

T 9(& + Bs)

N. B. The variable § is 2-D only and ; vanishes at the surface. The combination ( g , §) may therefore be considered to

constitute a single 3-D variable.

N.B. P=¢+RT.(Bs+q)=¢'+RT.(Inp—¢)=¢+RT. ln(p/ Prs ) , which may be called

generalized pressure, is a variable which will be convenient to invoke later on.
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6) Boundary Conditions

The model top (subscript 7 ) and bottom (subscript s for earth’s surface when
talking of the bottom of the atmosphere), are defined to be material surfaces.
Therefore we have the following top and bottom boundary conditions:

¢r=¢(¢r)=0; ¢ =¢(¢5)=0

In addition, the behavior of theses surfaces must be specified and this will lead to
an additional condition in the non-hydrostatic case. The bottom surface is assumed
to be terrain-following and not moving. In effect, the bottom geopotential ¢ is
specified, varying with position but usually fixed in time:d¢, /9t = 0. This though
does not imply a vertical velocity that necessarily vanishes at the surface. In effect,
gwg = [d¢/ dt]s # (0 generally. At the top, we consider a flexible surface whereby the
top pressure:

Pr =7r

is assumed to remain constant. This is automatic in the hydrostatic case since the top
surface pressure cannot be anything other than a material hydrostatic pressure surface.
In the non-hydrostatic case, to maintain a constant top pressure equal to the constant
top hydrostatic pressure surface provides a top boundary specification for pressure.
In terms of the non-hydrostatic pressure variable g, this becomes:

qr :hl(pT/jz-T):O

The top surface is then assumed free to move, constrained only by this artificially
imposed pressure p, (the atmosphere above exerting its weight only).

N.B. Open top boundary conditions are of course a possibility: see Appendix 9.

N.B. For the Limited Area version of the Model (LAM), there are lateral boundary
conditions. See Appendix 11.

N.B. Time varying topography, 0@ /dt#0, is also an option: see Appendix 12. In

effect, when adapting a given atmospheric state to a higher resolution topography
inter(extra)polation is required. Artificially varying ¢ in time for a short period is an
attractive alternative.

N.B. Initial conditions are time boundary conditions. At initial time, V,,7T and s are
analyzed fields; { , @ and w (in the hydrostatic case) are diagnosed: see Appendix 15

for the calculation of ; and the estimation of w. In the non-hydrostatic case, w and ¢
could be analyzed but usually w is estimated and ¢ set to vanish; g is diagnosed.
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7) Vertical discretization with staggering

For vertical discretization, the following choice is made:

d;;" + fkxV, +RT§V§(Bs+q)+ (1+ﬁ§)v;¢':o

dw
S eu=0
r 8H
i{ln(£]—KiBs+qi1—K§:O
dt T.
d _ . =<
E[Bs+ln(l+5§B§s)]+V§-Vh+5;§+§ =0
t
—¢
d¢' :
—— —RT. —gw=0
" -8

_ S.q |
l+pu—e® [1+——21 _1=0
{ 8,(¢ +Bs)

T 1_5§(¢'/RT*+BS) o
T, 8,({ +Bs)

In other words, the derivatives are replaced by simple finite differences represented by
the operator 54 and averaging operators represented by over bars are introduced where

required. From the notation, it may be gathered that V,,q,¢" are defined on the same
levels to be called full or momentum levels. They are staggered with respect to
w,T,,u,f placed on half or thermodynamic levels. With this staggering, double

operations on dependent variables are severely reduced. No difference is calculated over
more than two levels. The number of averaging operators is minimized. In the horizontal
momentum equations, they occur on non-linear terms only; in the hydrostatic case (with
g=u=0 and w dropping out of the system), only one averaging operator remains on linear

terms, namely on { in the continuity equation. Details of the discretization are given in

Appendices 4a, 4b, 5 and 6 (but first read the rest of the main document). Taking into account
the boundary conditions, it is natural to have half levels rather than full levels coincide
with the top and bottom. This essentially, though not fully, completes the description of
the vertical grid. See Figure 1, next page.

N. B. The metric parameter B is exactly calculated on full levels only. It is averaged for
the half levels.
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Momentum o . Thermodynamic
levels Charney - Phillips Grid levels

O I ;T_ 1/2

T w,¢ N-14
N -—------. Vi,0,q ====mmmmmmm .

e e e e = TW = = = = = N+

Q@ ’ QS_ 45 N+1/2

N+1

Figure 1. The Charney-Phillips grid, giving the position occupied by each variable in
the vertical domain. The model is composed of N layers, inside of which (in the middle
of which only if the layers are equal) are the momentum levels [1,2,...,N] where the wind
components U and V, the geopotential ¢ and g are positioned. ¢ and g are also defined on
the boundaries ( and surface level N+1). These N layers are delimited by N-1
interfaces corresponding to N-1 so-called thermodynamic levels [3/2,...,N-1/2] where are

positioned the temperature 7" and the two vertical motion fields w and { , exactly in the

middle of the momentum levels. { also has 2 additional levels [Y2 and N+Y2]
corresponding to the top and bottom surfaces. 7" and w also have 2 additional levels [%
and N+%4] positioned exactly in between, respectively, the top surface and first
momentum level and the last momentum level and bottom surface. [N.B. The 3

is absent from the numerically truncated top:
see Appendix 13]
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8) Semi-Lagrangian Implicit time discretization  (n.b. not Semi-Implicit)

Approximating the substantial derivatives and averaging the dynamical
Jorcings, each of the equations (index i) may be formally written as follows:

E+G[ =0
dt
dF, F'-FF
dl ~ A i G =b'GM+(1-b")GP; 0.5<bh" <0.6 (off - centering)
t t
’ ' D: (r-Ar,t-At) Departure

At

Separating the time levels (7 = Atb™; f = (1 -b* )/bA )

F* FP

;_,_GiA :l__lgGiD ERi
T T

Decomposing the left-hand side into linear and residual non-linear parts

F!
——+G'=L+N,=R,
T

F* F* F*
L=|—+G'| ; N, =—+G/-|—+G}
v lin v v lin

Defining the solution method (a Crank-Nicholson scheme)

L =R, - N,
Iterating (jter: departure loop, iter: non-linear loop) :

Do jter=1,2
Do iter=1,2
(Li )iter,jter — (Rl )jter _ (Nl )iter—l,jter; (Nl )0,1 — Ni (r’ t— At)

end do
end do

Ap e )

(R )™ =R, (- At,r —Ar" ), Ar’e = 5 (v(t — A+ ()" )(r -
v(t) = v(t—Ar); Ar° from previous timestep

N.B. The displacement Ar’is here calculated by the mid-point rule. A different option
consists in using the trapezoidal rule: see Appendix 14.
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9) The F’s and the G’s

—¢ -\,
F =V, G, = fkxV, +RT Vg(Bs+q)+(1+ﬂ )Vgg/ﬁ

*

T ¢
F,=In| — |- x(Bs+q) :
¢ n(Tj oS Gy=—KC

— . Z¢
FCEBs+ln(l+§§B§s) G.=V,-V, +6,{+¢

F, Eag G, =—RT.{ —gw
_ 5.q
G, =l+p—e" |1+—=1—|=0
F,=0 “ Hoe { 5§(§+Bs)}
F, =0 o T 1_§§(¢'/RT*+BS) _
o 8,(¢ +Bs)

N.B. Since F,=Fy=0 and G,=Gy=0, then of course R,=Ry=0.
The role of diagnostic equations is to abbreviate other equations. If, in the 6

prognostic equations, we replace the symbols g and T by their definitions, the
diagnostic equations as well as the associated variables vanish.
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10) The Left-Hand Side terms: L, + N,

F*
L+N,=——+G;
T

Prognostic (dropping the superscript A):

L,+N,=—-gu
T
¢
L, +N, _1 n[lj_,({;+—(&9"'q)}
T \T. T

L.+N, =%[Bs+ln(l+5;E5s)]+V§ 'V, +5{§+Z§
—¢

¢ .
L¢ +N¢ ZT—RT*g—gW

Diagnostic:

_ o.q
L +N, =1+p—e” |[1+——1 =0
#ooA { 8,(¢ +Bs)

| 6,(p/RT.+B
L,+N, = Tl—eqé“ 1- ff( +Bs)
i ;§'+Bs)
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11) The linear Left-Hand Side terms: L.

1

F!
L= {; + GiA}
v linear

Linearizing (approximating the logarithms [In(l+a)=¢a], the exponentials

[e* =1+a] and the products [(1+a)(1+B)" =1+a=*B]; note the Coriolis term
fKxV, is treated as if it was a non-linear term) yields:

L, =ﬁ+V§[¢'+RT* (Bs+q)|
T

w
L,=—-gu
T
¢
T' . (Bs+q)
L,= _,{;Jr&J
T. T

11— _ . =<
L. :—[B§§s+5§B§s]+V§-Vh+5§g“+§
T

L¢:%5—Rn§—gw
Lﬂzﬂ—(§§q+§§)¢0

' S,(¢+RT.B

T q§+ §(¢ S);tO

L, =——
"o RT.
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12) The non-linear Left-Hand side terms, N,, are the left-over differences

and therefore:

F* FA FA
N, :Pwiﬂ{;mg} :{;m,ﬂ_@
3 v linear v

N, = fkxV, +R7';V§(Bs+q)+ﬁgvg¢'
N. =0

e
T T.) T.

N, :%[Bs+1n(1+5§§§s)—§gs—5;§;s]

u :_(/l_é‘gq_q;):_l‘,u

' 0,\¢'+RT.B
H:_T —{+ g‘(¢ S) =—LH
T. RT.
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13) Elimination of the diagnostic equations from the solution system

As noted above, R,=Ry=0. It is then convenient to immediately eliminate the two
diagnostic equations, involving the diagnostic variables x# and T°, from the Left-Hand
side terms, i.e. to eliminate L,, Ly and Ny, Ny. We are left with 6 basic equations for the
linear system:

L,= A/ V, [#+RT.(Bs+q)]
T

L,+gL, EL'W=%—g(5;q+§§)

LH _ﬂ_ 54' (¢'+RT*BS) 3 é>+ (Bs+q)§
T T RT., T
L —1[§“ +8,B%s|+V, -V, +6 e
c=7 §STO,L°S ¢ VaTO;
—¢

¢ X
Lﬂ’ :T—RT*g—gW

Similarly for the non-linear system we have

N, = fkxXV, +RT*V (Bs+q)+ 'V ;¢
Nw+gNﬂEN'w:_g(/u_§§q_qg)
N 1{1 (Tj c_1§+5§(¢'+RT*Bs)

N,—2L=N'"=—
¢ T °r RT,

= % [ln(l + é'{Egs)— é'{E{s]

NC
N,=0
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i

14) The Previous time step on the Right-Hand Sides: R

FP?
Ri =——- :BGiD
T

(dropping the superscript D)

7
T

R, =2 - B(-gu)
T

R, =%{ln[%j—1(i3s+q51 —ﬂ(—l(f)

R :%[Bs+1n(1+§;§§S)] _ﬁ(vg v, +5§§+Zgj

—¢
- Bl-RT.¢ — gw)
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15) The elliptic problem

Introducing P =@¢'+RT.(Bs+¢q) and X = + , the linear system takes

iBs+qi§
T

the form:
L,=—"+VP
T
1 W -
LW———g(5;q+q )
T
L,=—\8 -
= cdT4q T
1 =Y
Lo=-—\6;q+q ) +V,-V,+6, X +X
T
—¢
L= _RT.X - g
T

The number of equations and dependent variables, V,, w, P, ¢, X, is easily reduced to 3
thus (variables left: P, w, X):

1 1 ¢ w
V,-L L-22T,° |=1 =V2P——(5 X+X )+g—
¢ ( H. A ™,
—) X
l L'9+ L' 1, EL"9=—+(5;P—8P§)——
RT. KT°RT, T
l L'6+—L' X1, EL"¢=—+(§§P+K‘T)§)+—
H, RT, KT RT. TH.

. H RT.,
with € = =— and Y= .
g’ g't K+e&

—{ ¢ . .
Here note: we have assumed 6,9 =0J,q ,i.e. we have assumed commutation of

the mean and difference operators. See Appendix 5 for details on averaging operators
and commutation.

Finally, these three equations are combined to give the structure equation:

L"C—(§§L"6+LTH§)— L', =L, =ViP+ (52P+§ R (. K)P“)

KT RT

again provided commutation holds.
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This is the elliptic problem to be solved with boundary conditions (on P) given by

¢
L,= —QK—LQP—sFﬂ—%[§+Q§iiL]

" kT°RT. T

applied at both top and bottom as follows:

{—JL—@thﬁﬁ}z—@%L

2
KT°RT. ’

}/ _g A\l ¢ m
|:?RT*(5§P+K'P ):|S :—(L H)S +Z'2TfT>k:_(L B)S

In effect
¢
[;+Q§:gl} _o
T
T
P—g°
TRT.

since fT =0, B, =0 and g, =0 at the top and (noting that X = f+

¢
{;+Qﬁiﬁl} g re)=R

T RT.

)

since 4,“ ¢ =0 and B =1 at the bottom. ¢ is a known quantity.

N.B. These are closed boundary conditions. Open top boundary conditions are
considered in Appendix 9.

N.B. The top boundary condition is X7=0. It is therefore not necessary to eliminate

X, = X, from the top continuity equation, (L"C )l, using a top thermodynamic equation,
2

(L (,)g, i.e. it is not necessary to have a top thermodynamic level % . See Appendix 13

for such a Numerically truncated top boundary condition.

N.B. Using the scale height, H. = RT./ g, the square of the Briint-Viisila frequency,
Nl=g*/ c¢,T., and the square of the speed of sound, cl = (c N CV)RT*, the structure

equation takes a more familiar form:

< ¢
S;P+6,P —
(M+%%=@h%%@ui ot 1 pE
T

T z° H? cit?
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16) The non-linear problem

To find the solution to the non-linear problem we need to perform the following
operations iteratively

(L,h )1+iter,jter — (Rh )jter _ (N,h )iter,jter
(L'W )1+irer,jrer — (Rw )jrer _ (va )irer,jrer
(L,g )1+iter,jter — (RB )jter _ (ng )iter,jter
(L )1+i1‘er,jrer _ (R )jter _ (N iter, jter
(4 T\ ¢

In order to obtain R,,R", ,R"¢ and N,,N", ,N"¢ , we transform the R’s and N’s, like was

done for the L’s to obtain L,,L",,L" 4 1.e. we compute:

1 ET ¢ y 1 ET 75¢ y
V{'Rh—;(Rc —ERW =R"; V;'Nh—;(Nc—ENW =N"¢
LR, +EER, +——R, |=R", LN+ EEN +2N, |=N,
KT H, RT, KT H, RT.
ET K ET K
LR, +ER, -2 R, |=R", LN+ -E N, | =N,
KT H, RT. KT H, RT,
R g, R" R, )R, =R, N oo N 4N, - e, = N,

Note that we have R, R, on the left and N' ,N', on the right and remember that
N,=0.
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17) Back substitution

The following equations give in a straight forward manner the 6 prognostic

variables V,,w,q, (s,{) and ¢

A%
\A Th:[Rh_Nh_vg“P]
w 4 —¢
w: =|R" ,—N" +—(5 P+xP )
—¢ : w
q: 0;9+q =——[RW—N'M—;} qr =0
Ps_¢s
S —_— —
RT. qs
: ¢
2 5 Al n 7/ ( _;) (Bs+q) 2 2
¢ ?:—RH—N 0+K‘T2RT o,P—¢P a2 s $r=¢,=0
@' ¢'= P—RT.(q+ Bs)

Finally we may compute # and 7T diagnostically:
| )
l+pu=et [14—29
9, (£ + Bs)

, ‘1_ 5.(¢'/RT, + Bs)
d; (& +Bs)

For a brief description of The Dynamic Core Code, see Appendix 6.

There is THE HYDROSTATIC OPTION. For a description, see Appendix 7.

There is THE AUTOBAROTROPIC OPTION. For a description, see Appendix 8.

Aspects of HORIZONTAL DISCRETIZATION are given in Appendix 13.
See Table 1, page 72, for a summary of the model equations and transformations.

See Table 2, page 74, for a summary of the equations, variables, etc.

THE END
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Appendix 1. Virtual temperature

In presence of water vapor ¢, and various types of hydrometeors g;, the density of
atmospheric substance is given by

p=pla,+a,+>q)
where g, is the dry air specific mass. The equation of state is given by

p=p(R,q,+R,q,)T
:de(l+&Iv —Z(][)T

where 0 =R, /R, —1=0.6 and we rewrite the equation of state as follows:
p=pRT,
defining virtual temperature thus
T,=T(+&,-Y q)
Rewriting the equations to appear in terms of virtual temperature and approximating the

ratio k=R/c, by k;=Ru/c,4, the equations of section 1 may then be replaced by the
following:

§+kaV+RdTvV1np+gk:F
t

din7, _ dlnp_Q, _ O +T(5%_Z@j

dt “odt e, T, ¢, T\ dt dt
dNp ,v.v=0
dt
__ P
p RdTv

From the point of view of the pure dynamics, these equations are formally identical to
those in section 1 in which R and ¢, would take the dry air constant values, temperature
be replaced by virtual temperature and appropriate source terms be added in the
thermodynamic equation. The advantage of this formulation is of course the fact that the
parameters R and ¢, no longer varies while all of the virtual effects, including water
vapor buoyancy and condensed water loading effects, are implicitly taken into account.
The only approximation made here, the replacement of x by &y in the thermodynamic
equation, is facultative.
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Appendix 2. Coordinate transformation rules
Appendix 2a. Invariance of the total derivative

By the chain rule we first verify the invariance of the total derivative df/dt under a
general coordinate transformation. In effect, if we consider f(x,y,z,t), then:

ﬁz(a_fj +(aij ax (9 Q{EJ dz
dt ot ),.,. \ox),_, dt \dy L dt z),,, dt

while for f{x,y, , 1), we naturally have:

d_fz(aij +(3ij e (F) A (o) 4
d \dt).,, \ox), , dt \dy) . dt \dof) . dt

Here we only have changed the vertical coordinate from z to ¢ with the result that the
horizontal components of the velocity (dx/dt,dy/dt) = (U,V) = V;, remain unchanged. The

vertical motion though has transformed from dz/dt = w intod{ /dt = { . Shortening the
notation, we also write the above relations respectively as follows:

a _(If 9 I LYy 9
dt_(BIJZ+U(BXJZ+V(8yJZ+W8Z ar TV Vel

a _(of 9 IS Y L oy - of
dt‘(atl+U(axl+V(ayl+§a; ar TV Vel Tegp

Thus we minimized the indices. We also introduced the vector notation for the
‘horizontal’ part of the advection operator. Note though that the new coordinate ¢ is
generally curvilinear and non-orthogonal and the scalar product must be interpreted with
care (see appendix 2c)

Appendix 2b. Transformation rules for derivatives.

It is remarkable that not only can all these rules be recovered from the invariance
of the total derivative but also that these derivative transformation rules suffice to
transform the Euler equations. In effect, the three velocity components may be treated as
three independent scalars (‘pseudo-scalars’), the velocity vector not being transformed.
We are left though with a ‘hybrid’ system since maintaining two vertical velocities w and

7 or ¢ and therefore needing an additional [prognostic when (0z/ Bt); #(0), diagnostic

otherwise] equation. A complete transformation to a time-varying non-orthogonal
curvilinear coordinate, a complete elimination of w, is of course possible but then the
notions of four-dimensional tensor calculus is very useful (see appendix 2d).
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The transformation rules may be obtained by equating the above two relations. In
effect, we must have

_() (& I _(F I [ o o
0‘(&1 (atj;—i_l{(axl (axjj-i_v{[ayl (aij-l_waz £5¢
and since
W:%:(%j +U(%j +V(kj +§£
dt \ot), ox ), dy), ~9¢
_|(9) () (%) U I _(F) (%) S
O{(atl (atJﬁ(azL az}UKaxl (axl{axlw az}
RO )
dy ). \dy c dy gaz 0§ dz d¢
Each bracket must vanish independently. Therefore the rules are:
(5) ) )
o). \or), \at), oz
BRERCE
ox). \ox ; \0x ), 0z
EREREE:
dy ), \9y), \9y), 9z

of _9¢ o
oz 9z 9C

then

Appendix 2¢. Vectors in non-orthogonal curvilinear coordinates

In non-orthogonal curvilinear coordinates )2:()?1,)%2,)23 ) (see Dutton, John A, The

Ceaseless Wind, chapters 5 and 7), there appear two sets of basis vectors (usually not
even of unit length) and two sets of vector components. Applying the chain rule, we
obtain the following two expansions (summation convention):

K i ap = g o (V&) dx

T 0% ox’

=1 ,d}’ =n'-dx

dx
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where T, is covariant: tangent to the curve along which only %/ varies and 7' is contra-

variant: normal to the surface %' = const. and we have the orthogonality relation

i _ S
TN =
Representing a vector A as
k k
A=At =An

we may recover the components [Ag (Ak): covariant (contravariant) components] using
the above orthogonality relation:

:14.1]i :AjTj.ni
A =A-1,=An T,

The scalar product is
A-B=A"B, =AB"

Therefore in generalized vertical coordinate % = (x, v, 4 ) the basis vectors become [the
original orthogonal Cartesian coordinate being x = (x, y,z) = xi + yj+ zk ]

ox . az

'=Vx= =— —k
" et T ox ax
ox 0z

2=Vy=j =—=j+—Kk
n y=1 T, ay =)+ ay
ox 0z

S v === =

The contravariant components of the velocity vector V' = V-5’ are found to be
U,v,v.v¢=¢
While the covariant components of the gradient df /d%’ = Vf - 1, are found to be
(58 %
ox g’ o
And the vector product V-Vf may be computed as follows:

V.Vf=Vir, naaf]

el ) (e
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_U(

since

_[a_f
i o0x

_(a_f
ox

)
)

(v Zinews o (%

o (3¢ 3z ¢ o
+f(§+58_zﬂ+v{(5l+

+§af

o of
3xj +V(3yj Cl4

)

IS

¢

82( V§+

o)

é’_

o ocor +5za_fa_:
dy dy oz 0¢ o{ oz

a:ﬁ

w9y ;_
o ox ac
Veat = Ul + Wk

0z 0z
Vcov —U _k U_ k
(l+ax j ( axj

Veont = i(U +%Wj + (k
ox

.0z )
ax

> (azfax)wl

Figure 2. Representation of the wind vector in both
orthogonal z-coordinate and oblique {-coordinate
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Appendix 2d. Complete elimination of w.

Neglecting the Coriolis force and physical forcings, the four equations of motion in 7-
coordinate (see page 5) may be written:

av, 1 oz _lap
—|V.p-V 71— — (=0 A2.1
dt +p[ 7 ”Z[anj on (A2
dw 1( 0z _lap
S22 22 =0 A2.2
dt+p(af7j 8f7+g (22
%zw (A2.3)
with
d 9 0
L=24V, .V, +— A2.4
a o ”H]an (A24)

Inserting (A2.3) in (A2.2) using (A2.1) and (A2.4), we obtain (Einstein summation
convention):

-1
ﬁ+rjﬁu”’uﬁ s L o0 02 g=0
dt p  ox* \dm

with x% = (t,x,y,n)and u® = (l,u,v,f]), and where

. = % _18—2Z
“ - \9n) ox*ox”

is a Christoffel symbol and where

h30:()_ h3l:_ % _1%_ h32:_ % _1%_ h33: % - 1+(%j2+ % ’
’ on) ox’ on) dy’ on ox ady

is a special tensor related to the metric tensor as follows:

h,uv :gyv _guOgOv

(see Charron et al. 2013 in QJRMS for all the beautiful details).
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Appendix 3. The metric parameter B.

Before investigating the relation defining the hydrostatic pressure 7 in (-

coordinate (GEM4), let us review the behavior of the similar relation in 7-coordinate
(GEM3) which is given by:

7 = Aln)+B(n)x

A=(n- B)me B = (%J ;  r21, const
T

=D, _B(pref _”s)

B is the relevant parameter although p . also plays a role. We have 0<B<1; we

calculate its derivative

B__B
Sl
Monotonicity is essential, requiring that
orn oB
—= ——\p,s =75 )>0
87] pref an(prej S)

Smallest values occur at the surface where dB/d7 is maximum and over high ground
where 7 is minimum. Hence

0
e = Pres _ﬁ(pref — 7 )> 0

1.e.

Ts oB _l_r—1+77T _r—1
Pres on r r

The concern here is model layer thicknesses, Az=—(RT/g)AInz, and unfortunately

these are also smallest near the surface. Furthermore, the temperature is lower over high
ground. Let us  therefore  compute the surface thinning factor,

thfs=(Alnz) /(Alnr) the minimum ratio of model layer thicknesses over high
ground (say 7, =~500hPa) to those at sea level (say 7, , =~1000hPa). With the top

top msl °

S msl

pressure p, =10Pa, 1, =.0001 can be neglected and

= (77—77’)19,4 +1' 7
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Since 771is close to 1, we write 77 =1—A7n. We may expand, with the result

7= (r=1Amnp,, +(1-rAn)z,

Alng="s"% zA?]{r—(r—l)p"ef}

N N

r— (r - 1)P,-ef /71:Swp

thfs =
f: r— r—l)pref/n'smsl

With Dro = 1000 hPa, thfs=2-r; thus for r=1.6, thfs=0.4. With Pro = 800 hPa,
thfs =[r—(r=18/5]/[r—(r—1)8/10] and for r=1.6, thfs=0.57. In both cases though
thfs=1 for r=1. Note that for r=1.6, 7, (0.2)=162hPa when p,, = 1000 hPa while
z,. (0.2) =137 hPa when P,s = 800 hPa. Here it is important to note that, in addition to

allow for an increase in thfs, a lower p, . forces a decrease of pressure for (a lifting of) all

levels except the surface. For r=1.6, there results a 12% increase of the thickness of the
bottom level.

In {~coordinate, the hydrostatic pressure will be given by

Inz = A($)+B(S)s; s=Inz, -, =In(z, /pwf}, P, =1000 hPa
A=¢ B=1"

Inz=¢+B[nz, -]

Here B is the unique relevant parameter as p,,, is not allowed to change. We note two

remaining differences from the similar relation in 7-coordinate: the logarithmic character
of the relation and the introduction of a variable exponent r. We again have 0 < B <1
and a positive derivative:

alnB:arlnﬂzl[r—Ar/lln/l]ZO; Ar=r,  —r.
oA oA A
Monotonicity requires that
dlnz oB oA
=1+—]|l —(|=—=>0
3 - In 7 é“s]a;

-1
In7 . k: K:I—[a—Bj (1—QJ
;S aﬂ’ max ;S
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GEM4 GEM3

r=4.5 r=1.6
Drer= 800 hPa

01

015

0.25

0.35

Pressure [hPa]

Figure 3. The structure of the 79 levels of GEM4 (r = 4.5)
compared to the 80 levels of GEM3 (r = 1.6; p,.r= 800 hPa).

When r is constant (Ar=0), (@B/0A) _ =r at the model surface A=1. K=I-
1/r(1-¢, /¢,) and the monotonicity requirement is r<ln(pmf !/ p, )/ ln(pmf / 7[8). For

Tspign = Pry /2 and p, =10 Pa, this implies r <4In10/In2=13.2 and for p,,=10 hPa,
r<2In10/In2=6.6.
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GEM4 GEM4

variable r constant r
Tmax = 100, 7pin=2 r=4.5

015 —

Pressure [hPa]
-
|

Figure 4. GEM4 with variable r (7,,,,=100, 7,,;,=2)
compared to GEM4 with constant r=4.5.

Larger admitted exponents do not necessarily mean better coordinate straightening though
and we must keep worrying about the ratio of model layer thicknesses. Considering

dInz _1_(a_Bj In(p,, /)
aé/ min - aﬂ’ max ln[pref /ptop]

we get, for constant r with Piop =10 Pa,
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In2

thfs=1—r ~(1-.075r)
lnipref /pwp )

Hence, for r=1, thfs =.925already. This ratio is 8% smaller than in 7-coordinate (15%
smaller with p, =10 hPa). The value #fs=0.4 is reached for =8 and thf5=0.57 is reached

for r= 5.7 meanwhile 7(0.2)=172hPa with r=8 and #(0.2)~159hPa with r=5.7,

slightly better but no doubt insufficient rectification. Hence the need to keep r close to 0
near the surface while faster coordinate rectification requires increasingly larger values of
r aloft and this is what we may attempt to achieve with the present formulation.

Three figures are shown above and below. In the first, Figure 3, we compare the 79
momentum levels of GEM4 (r=4.5) to the 80 levels of GEM3 (r=1.6) used operationally
in its global configuration (year 2011). Basically, as can be seen, GEM4 levels have been
adjusted such that the pressures above 7,=1000 hPa correspond one by one to GEM3

levels. In Figures 4 and 5, we compare GEM4 with variable r (7,,,=100, ry;=2) to
GEM4 with constant r=4.5, clearly showing the rectifying possibilities inherent in
variable r. The basic idea here is to essentially eliminate topography induced coordinate
variation above 200 hPa.

variable r |
Vimax = 100, rmin=2

Pressure [hPa]

Figure 5. GEM4 with variable r (7,,,=100, 7r,i,=2)
compared to GEM4 with constant r=4.5 below 200 hPa.
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Appendix 4a. Detailed spatial discretization with staggering: the linear terms

In section 7, we described the vertical discretization succinctly. In section 15, we
examined the Elliptic Problem. We showed that all variables could be readily eliminated
in favor of P. We now go back and examine the discrete linear system leading to the
elliptic problem in full details. As mentioned earlier, the finite differences replacing the
derivatives are made as simple as possible, i.e.

(§§F)k+l Ll (6.G) :_G ks _Gk—%
CoAGL k=0N) ; CTATTTAg (k=1,N)
A§k+1:§k+1_§k Aé‘k:;k%_é/k_;

with the top ¢, =¢, ={;, the surface ¢y, =¢ =¢; and the momentum levels

<k< specitie while  the intermediate  thermodynamic evels

. USk<SN ified hil h i di h d i level
+

$ =% (1<k<N-1) are calculated. The use of averaging is minimized.

Starting with (LC) Lo (Vh) (and X ., are chosen and therefore (Lh) , and P, . The

2

hydrostatic case (g being absent) suggests (L' 6) therefore (LH ) o and T ol (section

Ly
ket

W

11). In (L'g) ..+ and (LH ) 1.1 » we now introduce ¢, . This in turn suggests (L'W) s W

and finally (L,), . Hence

(Lh)k:(%wéy} (k=1,N)
k
(L), =(§—g(§;q+a§)j (k=0.N)
ks
S.q+q* O.P
Ly),. = - KX k=0,N
)P | (k=0.)
¢
S,.q+q° -
(L.), = —%+V§'V,¢+§§X+X§ (k=1,N)
k
PT?
(L,) . =| —-RT.X —gw (k=0,N)
2 T 1
ket

In the vertical, this leads to Charney-Phillips grid (Figure 1, page 11). For the two
vertical means, we formally write
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=¢ _ _ [
(F )lm—1 _wk%Fkﬁ-l +wk+%Fk (G{)k :w;—GkJrl +w',:G |
2
ket Bl wk_ :1_w;:

The first one, averaging variables from momentum or full levels toward thermodynamic
or half-levels, follows the rule of calculation for the half-levels, i.e.

o =0, w;,=l(1SkSN—l), o =1
3 22 N+3

This ensures optimal (second-order) accuracy for the hydrostatic equation Ly in
particular. For the second one, averaging variables from thermodynamic levels toward
momentum levels, three choices were considered: linear interpolation, simple average,
average commuting with difference. Due to lack of sensibility, the last was adopted
because it simplifies the code:

AG
o = ;’”5_ i —$x
p =
2A§k §k+l_§k—l

AG
§N+E _ §N+l_§N

(1<k<N-1)

D, =
Agzv §N+% _gN_%
More explicitly,
A\
(Lh)k: hk"‘Vng (k=1,N)
T
el 1 g g
! _ ktl — Yk + - —
(L yv)k+,; - r g Aé,k+l +m'k+%(]k+l +wk+%qk (k —ON)
, _1 9 — 49 + - 1 P, —-P, _
(Le)k+l _; i"'wk%q“l +wk+%(]k _zRT* TML_KXH% (k =0,N)
I e ey + - | 4x 49 + -
(LC)k __; o, Tk#'i'w,{%Qkﬂ"'w,H%Qk +@, Tk_l-i-Wk_%Qk +wk_%Qk—l
Xk+i _Xk—i
+V§.th+—2A§k > +wk+Xk+% +wk‘Xk_% (k=1,N)
1( . _
(L¢)k+% :;( k-%Pk*'l +wk+;PkJ_RT*X k+% _gwk+l (k=0,N)
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We have in the vertical direction 3N [L,, L. ]+ 3(N +1) [L' ,L';,L;], i.e. 6N +3

equations and 2 N [U,V]LN + 2(N +1) [W,X,]I/Z’N.;.l/z + 2(N +2) [P,C]]O,NH s i.e. 6N+6
variables. As expected (section 7), we will need 3 boundary conditions in the vertical to

close the problem. Now, 3 variables (V;, ¢) can easily be eliminated by combining the
equations as follows:

gz- 1 - 1 "
Vo), L), -, e (), )= ),
7 1 gT Al g ] —_ "
E|:(LT)k+] +F(L i +ﬁ( ¢)k+% =(L e)k+g
7 1 gT 1 K ] p— "
E|:(LT)k+;+ *(Lw)k-#f _R_T*( ¢)k+]2_=(L ¢)k+%
to give
" 2 1 Xk% _Xk—% + - E (v -
o) =VePo| g H O X+ OX e @i v aw
1 x
" _ 4 P, =P, + - ks
(L 6)k+—; __K'TZRT* AJré,lHl —E(WHLPM +wk+;ij - T
1w
" _ }/ Pk+l _Pk + - k+12
( ¢)k+% - K.Z.ZRT* Aé,k+l +/((wk+;Pk+l +wk+;ij + TH*
By further forming
(Lne)/ﬁ.; _(Lne)k_; . .
- A; ) _wk(l’ H)k.%_wk(l‘ e)k_%:
k
4 Il | Py—P, P —P, w.+P/<+1_P/<+ P —P,
k k
kT’RT. | AL, Aé’k% A{k_% A{k% Aé’k_%
3 1 . _ N _
_ CRT. _Aé’k [(wﬂf,m +wk+;ij—(wk_;Pk +wk_%Pk_l H
¥ + - - -
TR [wk (w;; P, +a7k+% P, j +@, (@;_;Pk +a7k_% P, H
1 X -X |
ket k=1 . _
+; T+wk Xk_% +@, Xk—%
and
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+{rn —(7rn _ ¥E +Pk1_Pk —Pk_Pk_1
_g(wk (z ¢)k+; +a;(L",), 'j_ | @ A+§ +a@, Y
* k+% k—%

K + + - - + -
+ RT [wk (le;P,{+1 +wk+%Pk j +@, (m’k_;Pk +wk_%P,€_1 ﬂ

__8¢
RT.

(w',:w ol +m',:wk_l)
2 2

and finally

(L%)migyfﬁki_aw[uﬂgki+e@fﬂkg}—w;ULz)b;+€Qfﬂkﬂ}zu*h

(L"c ) Kk

we succeed in eliminating X and w. In effect, we have

(L)=V2P+ Y 1 Pk+l_Pk_Pk_Pk—l w-+Pk+l_Pk+ - P =P,
TS RCRT AL | AL AL CAC T AL
+ - + -
n ¥ s Py =Py ‘T P —P wk*%PkH +m.k+%Pk _wk‘%Pk _wk‘%Pk_l
2 k k -
kT’ RT, Aé“k% Aé‘k_% Ag,
y(l-x)

~ PRT [w,j (w;;PM +wk‘+%P,{ j +@, (w}j_;Pk +afk‘_%P,€_1 ﬂ

The second bracket corresponds to the difference ﬁg —5;13§ which vanishes by

construction (commuting average, see Appendix 5). Therefore the final result is

P, ,—P, P, —P P —p p_p
(L) =vir+ R @ Tk g kil
KO RT)AC | AL AL AL AL
W(l_’() - * - - + _
 KT’RT. o, w"*%Pk“ +w’<+%P" +@, wk—épk "'wk—gpk—l

N equations and N+2 unknowns.
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Appendix 4b. Detailed spatial discretization: matrices of the elliptic problem

The matrix of the elliptic problem is composed of the previous equations (k=1,N):

pP.,,—-P, P, —-P P, —-P P, -P
A L =AL VP + 4 k+1 kK _ "k LA p s k4@ 2k k-1
;k( P)k gk ¢k xkT*RT. A§k+1 Aé,k_i é,k k Aé,k# k Aé,k_i

W(I_K‘) + - _ _
e Al | @, W;;PMJFWHLP/C +@, W,;Pk +@ P,

(note that it has been multiplied through by A{’, ) plus the boundary equations:

—7_(s.p-ep) A i ( - - j .,
P—ceP = —da P +@ P ||=—(L R
|:K-Z.2RT* é, 1 K-Z'ZRT* Agk _1 kO_E ko ko_g kO 1 ( g)k()_i B

ko—

7 (5 _g) 7/ PN+1 _PN /(( + ~ ) m
P+xP = @ P, +@ P —(r l
{K‘TZRE ¢ vl KT’RT, Aé‘N# N+ N NeL TN ( 19)N+E

which are used to reduce the number of unknowns from N+2 to N. [Note: here and below
we have replace 1 by ko and introduce Lp for reasons that will become clear in
Appendix 9]. In effect, we find:

Pkn_1 = OtTPkO +C, L,
Py, =a,P,-C; (Lme)N%
with

o _1/A§k0_%—€wko_%' c _K‘TZRT* 1
TN tem ] ! y VA . +em

1 ko—L
2 03

1 ko—%
1/Aé/N% —Kw';”% . _ K'Z'ZRT* 1

o, = )
s VAL +K@ s y VA +x@

Therefore we may rewrite the equations for (LP ) " and (LP ) v as follows

A;ko (L'P)ko = Agko (Lp)ko -C" Ly
A;N (L'P)N = Aé/zv (LP)N + C"S (LHVG)N%
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to get respectively

A;ko (L'P )ko = A;ko (V?P)ko

/4 Pk0+l_Pk0 _(1_aT)PkO +A§k0w.1;

A
+ 2 (Pk0+1 _Pk0)+—
KTRT.| A, . AL AL

1
ko+=
073

76(1_]() + gt + - + -
— Aé’kow'kow'k0+%Pko+l+A§ko G0, O\ B D, P

and

Y 2 /4 (a's _1)PN _Py-Py, AS\@y _ AS, @y _
AL(L,), =AL,(V2P) + RL| ol L., = i (o5 )P +- 25 ;- (Py—P,.,)

Ao (o0, o, s )

KTRT N+g ; =

2

with
/AL, =A@, (1/A§k L +e(l- K)wk‘_lj
VA +em

L)

VAL L +AS @) (1/A§N+l —e(l- zc)ijJ

1/A§N+1 + Kw;#

The vertical matrix problem may be decomposed into a combination of a diagonal

P and a set of tri-diagonal matrices, P, Py, =P,;, P, , representing respectively a

double difference, a mean followed by a difference or a difference followed by a mean
and a double mean as follows:

. y
P(L,)=PViP+ = (Py + Py, —e(1-x)P,, )P

After solving the elliptic problem and therefore knowing P, to P, , we calculate B, _,

and P, using the relations:

Pko_l = OtTPkO +C,L,
Py, =asP, —C; (L”'H)N.%

The tri-diagonal matrix elements are as follows:
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Ag, 0 0
P=| 0 A, O
0 0 Ad,
| 1-a 1 1
Aé/ko—l Aé‘ko‘*’l Aé/ko"’l
P, - 1 1 1
Agk—% Agk—% A§k+%
1
0
AL
1- o, o,
( 05,)&7,:0 -k AL, —"ENotob il AL,
AL, 1 AL ! AL el
o, o, o;
P, - -8, RS
A AG L ACL
0 ——A; N
Ag :
o (g 0 o, b @e
P~ & A, (@a saa, s,
0 B@, ALy
A term, —"& nNotor " ,

read Appendix 13. Here though this term vanishes.
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Appendix 5. How were chosen the averaging operators and note about commutation

Let us consider two variables, G and H, defined on separate staggered grids as
follows:

Gk%:G(é‘k%) s H,=H(),)

indicating that G is defined on half-levels while H is defined on full ones. Only the
independent variable ¢ could and was defined on both types of levels and thus take the
two types of indices. The metric parameter could also sometimes be defined on both
types of level, hence two different symbols (B on full and B on half levels). To obtain the
variables G and H on their alternative grids, averaging operators & and a such that:

(aG)k = akG,H; +(1_a'k )Gk_i ; (aH)k+% = ak+éHk+1 +(1_ak+i)Hk

are introduced. In the following discussion, difference operators will be needed and we
define them:
G.-G_. G_.-G_,

1 1
k+3 3 k+3 3

— Hk+l_Hk:Hk+l_Hk
gk%_é/k_% Agk

§k+l_§k A§k+1

2

(&;)k =

5 (éH )k+% =

Now, let us consider the discretized elliptic equation derived in section 15 and which we
write formally as follows:

V3P, +{K‘T+RT*(§2 +ad+elad—ou)-e(1- Ic)a/a)P} =(L,),

k
There is a term,&(ad — &), which was assumed to vanish, which has no analytic

equivalent but which vanishes only if the mean and difference operators commute. Let us
impose this condition and examine the consequences. We get

(a’ép)k = OKk(éP)k+1 +(l—0{k)(bp)k_l :aku+(l_ak)Pk -P,
2 2 Aé/k+% Aé‘k_l
(&IP) _ (aP)k+% —(aP)k_% 3 ak+%Pk+1 +(1_ak+; ij _ak_%Pk _(1_ak_; ij—l
k A A,
Implying that
AL, _ ak*% ) AL, _ 1_ak‘%
A§k+% ak ’ Aé/k_% 1_a/<
and either
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(a) Aé/lﬁ—l _ ak l_ak'% or (b) Aé‘k'% — ak 1_ak_%
AL, 1-oy, a,, Aé/k_l I-a,

k+§

If the relation between the half and full levels is given, for example if, as we have chosen:

¢ _ S tbe
2
then we most likely want
a ==
ks D
From (b) we get
o = §k+12 _ A§k+%
AL HAL L 24,
and thus
B A§k+%Gk+% +A§k—%Gk—; _H,, +H,
(aG)k = > (aH)k+l =
2AL, 2

Instead of choosing a . off-hand as we have done, we might have imposed another

condition such as the symmetry of matrix M formed by the product of the matrix obtained
from the double averaging operator au and the diagonal matrix with elements A¢, , i.e. if
we had imposed that the tri-diagonal matrix M whose elements are

(AlauP), = AL ., (ak+,Pk+1 + (1 -a,, ij j +(1-a, )AL, (ak_]Pk + (1 -a,, )Pk_lj

=M P, +Mk,kPk +Mk—1,kPk—1

k+1,k

be symmetric, i.e. settingM,,, =M, ., i.e. A{kakak% =(l-a,, )Aé’,m(l -a, ) ,i.e.

2

©) A§k+1 _ a, ak*%
Ag, I-a,, 1-a, ,

2

Then, combining (c) with (a), we would have again found
1
Kty 5

a | =

In the original formulation of the staggered-grid version of the model, we indeed wanted
to obtain symmetric matrices in the vertical (maintaining a property of the regular-grid
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version of the model) and commutation occurred naturally (only one mean being explicit
in the code, the second one occurring only in the elimination process). With the new
coordinate we lost the symmetric property due to the presence of a first derivative in the
analytic problem. But the requirement that half-levels be exactly in the middle of full
levels is good for the accuracy of the hydrostatic relation and the commutation
requirement, besides simplifying the code, may serve in improving the conservative
properties of the scheme.

So far we have dealt with the difference and average operators away from the
boundaries. Let us now look at them near the boundaries. The equations defined on half
levels apply to the top and bottom where difference and average operators operate on
some variables, namely ¢ and g. But their values are required at one of the boundaries
[#s= @5 at the surface and ¢g;=0 at the top] while their values at the other can be obtained
by numerical integration provided the difference operator leading to them is defined
which it has been (it is by construction an off-centered difference though). This is why
we consider the top and bottom to be full levels as far as ¢ and g are concerned,
respectively labeled O and N+1. The averaging operator then simply selects the
corresponding value.

One last item remains to be explained referring to Figure 1 describing Charney-
Phillips grid. In the preceding paragraph, we said that some equations applied to the
boundaries. With the presence of ¢ and ¢, all required variables were also apparently
defined there but, if so, the difference operators were off-centered and therefore only first
order. Centered differences are recovered if we displace the thermodynamic and vertical
momentum equations as well as the variables 7 and w to the middle of the half-layers
nearing the boundaries [to levels % and N+ % as shown in the figure]. This is what we
have done. We believe this is beneficial for temperature in particular which is shifted
from the surface to a better place from the physical as well as numerical point of view. To
better assess what we have done, here is a formal representation of the three linear
equations affected by the change for the bottom (a similar change occurs at the top):

W q

N+t

Lv 1= -
( W)NJrz ’Z' g Ag

, qu%_QN 1 N+, Bs+q
(LH)N+1 = g
CoT AL L wRT. AJ

1 —q
N+§ N

PN+1 :
(L) =—=—RTL  ~gw

N+-
2

In the thermodynamic equation defined at level N+% the term in brackets remains
evaluated at the boundary, level N+Y2. In the geopotential equation defined at level N+V2,
w is taken at level N+V4. This can be interpreted, in the first case as an interpolation, in
the second case as an  extrapolation, constant in both  cases

[f . =0of . +(-a)f  with a=0].
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Appendix 6. The Dynamic Core Code and vertical discretization: A brief description
The dynamic core code is essentially organized as follows:
set_zeta, set_dync, set_oprz, preverln: compute constants and parameters of the

vertical discretization
Timestep Loop

tstpdyn: performs a dynamical time step calling rhs, adw, pre, nli, sol, bac

- rhs: compute the 6 basic Right-Hand-Side terms: R, , R,, Rg R¢, Ry
(section 14)

R, = A/ —,b’(jkah +RT"V ,(Bs+q)+ (1 +ﬁ”4)v;¢')
T
w
R, =— - Bl-gu)
T
1 T ¢ :
R,=—|1In| — |- x(Bs+ - p\- K
6 T{ (T*] q } IB( ;)
1 —¢ . =<
R.=—|Bs+In\l+6,B s -BV, V,+6,0+¢
T
¢
k-0 plerr -
Departure Outer-Loop
- adw: adw_pos: Compute the next estimate of the departure points.

adw_int: Evaluate Right-Hand-Side terms at departure points.

- pre: combine R,.R,.R, into R",.R"

finally R".,R",,R", into R,:

4> combine R, R ,R. into R". and

(section 16)

4 ET & o
—(R(, +—R, +ER¢J =R",

KT H. .

4 ET K "
| R,+—R, ——R, |=
m’( ° H. " RL "’J ‘
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1 ET —¢ "
V§ ‘R, _;(Rc _ERW jER c

R g, R" R, )R, =R,

The final version of the Right-Hand sides are: R,, R.,R",.R",, R,

Non-linear Inner_Loop

- nli: compute non-linear Left-Hand sides: N,,N' ,N'; ,N.,N,,
(section 12)

= KXV, +RT"“V (Bs +q)+u" "V ¢
N'w:_g(/u_aé’q)

0,(@'+RT.B
N'g=l{ln(1]+ (9 S)}
T T. RT.

c = %[Bs +1n(1+§§l:7;s)— Eggs—Jgﬁgs]

N
N,=0

and combine them into N", ,N";,j N",N,

(section 16)

1 g —_ n
(N€+ 0 Nt N =N
N',,+ EN - N, |=N",

H. " RTL.
1 PR
VN, - (N —FTN' “l=nm,

and obtain final Right-Hand Side of the Elliptic Problem Lp= Rp-Np, including
modifications imposed by boundary conditions (L' p ) " and (L' P ) N

(appendix 4b)
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- sol: solve the Elliptic Problem
(section 15 & appendices 4a and 4b)
P(L,)=PV:P+—Y (P, +P, —(l-x)P, )P
P ¢ KZ'ZRT* 8 ou iy
- bac: back substitution: compute variables for next iteration/time step
(section 17)
\Y
V,: ~+-[R,-N,-V,P]
T
w 4 —¢
w: =|R",—N" +—(§ P+kP )
. { ¢ ¢ KTZRT* ¢ }
- e w
: d,q+q =—| R, —N' —| =0
q é’q q H* |: w w 'Z'i| qT
Ps — ¢s
s: §=———
RT,
: —)§
. ; " " 7/ ( _g) (BS + q . . .
g. ?:—RG—N 9+KT2—RT*5§P—8P —T, §T: s =
¢ ¢'=P—RT.(q+ Bs)
_ 0.q
¢ ¢
J7R l+u=e’ | 1+—————
{ o, (¢ +Bs)
- T _ 1_5§(¢'/RT*+Bs)
T. 5,(¢ +Bs)
end inner loop

end outer loop

end timestep loop

N.B. It is sometimes necessary to be aware of the two horizontal averages applied on T or
T and i in R, and N,.. Hence the above and following bar k indications:

R, = ‘:_’ —,B(kaV,l +th§V;(Bs+q)+(1+ﬁh§)vg¢')

N, = AxV, +RT"V (Bs+q)+ 1"V ;¢
More details in Appendix 10.
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Appendix 7. The hydrostatic option

We start with the final form of the equations given in section 5:

h

d‘; + fKxV, + RTV .(Bs +q)+(1+ )V .¢'=0

Rt

dw
o eu=0
I su

d J_K(Bﬁq)}xgzo

dt

*

t

e

Z {Bs+ln(l+g—?sﬂ+vg 'V, +(%+1

dg :
&Y _RT.E—ow=0
” —gw

dq
1+ p—e'| 1+——1—+1|=0
*“h( B”
—e"[l

¢+ Bs
}:o

The hydrostatic approximation may be considered to consist in neglecting non-
hydrostatic pressure effects, therefore assuming g=0. Then =0 also and the vertical
acceleration dw/dt is neglected. In fact, the vertical motion w becomes irrelevant. Neither
the vertical momentum nor the geopotential tendency equations are required in the
solution system although we may still solve the geopotential tendency equation to
diagnose w. Therefore, we only need to solve:

T

T.

_ 0(¢'/RT. +Bs)
9(¢ + Bs)

h

dt

+ fKxV, +RTV Bs+V ,¢'=0

d

d

t

T.

&

T

T.

5 {Bs+1n(1+§—?sﬂ+vg -V, +(

J-Kj}

¢

k¢ =0

o

T _1+8(¢'/RT*+Bs)

9(¢ + Bs)

All the terms involving the prognostic vertical momentum and diagnostic & equations
which were not already equal to zero are set to vanish: F,, G, L,, Ny, R,, L, N, L’,,
N’,, . The parameter €=0, hence )=1. In the code, set the switch Schm_hydro_L=.T. .
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Appendix 8. The autobarotropic model (to be modified to work with truncated top boundary)

We build an auto-barotropic model (Dutton, The Ceaseless Wind, pp 186-7) from the
three-dimensional code of GEM in order to simulate a barotropic model. We do that in

1) eliminating the physical effects,
i1) making the hydrostatic hypothesis,
1i1) introducing a key & =0 to eliminate the pressure tendency d(Bs)/dt in

autobarot
both the thermodynamic and continuity equations,
iv) initializing with barotropic conditions :
V, #V,({), T=T. =const; { =0; ¢+RT.Bs = ¢', = ¢, + RT.s

conditions which will be maintained afterwards, hence the name
autobarotropic model.

From the complete equations:

» ((Bs+q)+(+u)V ¢=F,

dw
0, —— F,
ar U=

_h{ j {_ Bs+q+§} %

:ZZI{BS—HH(H_gé’ H+V -V, +g§+§ 0

a —RT.{ —gw=0

a;+3s}:

dt
1+ﬂ—6{1+%
(

z_eq[l_a ¢'/RT*+BS)}_
T. o(& + Bs)

5 — g T

s 5T
heat and we make the hydrostatic approximation, reducing the number of equations and
variables to (see Appendix 7):

with B defined simply as B = , we eliminate sources and sinks of momentum and
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(9=0

e

g[Ban(l g? H+V -V, + §+§ 0

t ¢
1_1+a(¢'/RT*+Bs):O
T. d(¢ + Bs)

Considering barotropic initial conditions (V, #V, (&), T =T. = const; { =0), we derive
from the hydrostatic equation that P is uniform in the vertical:

P=¢+RT.Bs=¢, =@, +RT.s = P({)

and we note that
¢'T _¢S
RT.

S =

d(¢'/RT.+Bs) _oP ¢
(¢ +Bs) 9L Al +Bs)

Indeed, =0, hence a—P =0.
¢

We therefore have in the momentum equation:

v,
dt

§¢T =0
and since P=¢, # P({), thenV, staysV, #V,({).

Now, even though ¢ =0 and T =T, =const initially, temperature will change
since the thermodynamic equation still says:

However if we write

0

d (T d
E ln(_J - Kéautobaror E (BS)
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. d (T . .
making o6, =0, then EIH(FJ =0 et T will remain constant and equal to T..

*

Similarly, in the continuity equation, £ = 0 initially and introducing R
d OB ol
—| O BS+I0| 1+ — 5 [ [+V -V, + =+ =0
dt|: autobarot ( a; ]j| 4 h aé/ ;
we get
iln 1+a—Bs +V,-V, =0
dt o
Dpl1+- 2178 iy, v, =0
dt RT, (;S - ;T)
d, (9500 +V,-V,=0
dt 38
d

Eln(% _¢s)+vg -V, =0

And this relation is invariant in the vertical, hence é‘ * { (¢) and ¢ =0 is maintained
Hence, the model equations:

dv
dh + fkxV, + RTV ;Bs +V ,¢'=0
t

d T d )
S| = =xs,. . L (Bs)+|=0
dt n( T* J /(i: autobarot dt ( S) ;i|

i{%mhmBs + ln(l +a—Bsﬂ +V,-V, £ =0

dt of ¢
1_{1_8(¢'/RT*+Bs)}_O
T. 9(¢ + Bs) B

with a vertical structure (many levels, at least 3: e.g. hyb = 0.583333, 0.75, 0.9166666
with p,,,=50000., to satisfy the operations), but starting with barotropic conditions,
simulates the barotropic equations:

d;;” + fkxV, +V, ¢, =0

d
Eln(% _¢s)+vg -V, =0

It is autobarotropic.
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Appendix 9. Open top boundary conditions

The goal is to develop an open boundary condition at the top, i.e. a condition with

(é‘+ Bs+qj #0, not only fOT #0 but also B,, #0 (the top no more being
or

necessarily a hydrostatic pressure level) and g, # 0 (in the non-hydrostatic case).

First, let us deal with the linear system (Appendix 4a):

w
, k+z q —-q _
(L w)/ﬁl = -8 £l ‘ +wk++1q k4l +wk+151k
2 2

T A;k#
1 7‘k+f
L) = r T
+ Tien "9 +&7 15]A+1+w ‘Ik +@, M"‘w 151A+w Clkl
A§ AL
k+ k7
k 1
+V, V’”‘+—A 2+ar;xk+i+af,;xk4
k 2 2
1
(L¢)k+5 T(w (P 0 Pj RLX . =gw, .

We know we can combine these equations into a set of only N equations in the vertical
for N+2 unknowns P, (k=ko,N):

(Lp)k:VZP 4 1 Pk+1_Pk_Pk_Pk—1 +w]:rPk+1_Pk+w-;Pk_Pkl

et/
KT°RT.| AS, Aé‘k% A;k% A;k%

(1-'hf) + + - - + -
_rE — [afk (arhiPk+l +a7k+%Pk ) +, (wk_;Pk +wk_ij—lﬂ

KT RT,

A,

and therefore requiring two additional equations (top and bottom boundary conditions)
for its solution. As we have seen (Appendix 4b), a closed top boundary condition

occurring at ko=1 (£, =0; B, =0; ¢, =0) is satisfied by using

X P, —P, _
(L, ) L= 2}, bkl —.s'(m'+ P, +@ P, _J
T KT RT, Aé’k 1 ko=3 ko=3~ "o

073
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to obtain a boundary condition in terms of X (generalized vertical motion { ) since
X, = [{ +(Bs+q)/ Z']T =0. For an open top occurring at k, #1, we have none of the
above conditions (¢ or #0;B,, #0; g, #0). Another relation must be found. There are
two possibilities:

- (1) using L", to obtain a boundary condition in terms of vertical motion w, specifying

WOpenT :

" EWopent /4 P, =P, _
13 ¢)k = +K|@' P +@ P,
02 RT. KT RT. A;k 1 073 073

073

- (i1) combining L", with L, as follows

" 1 T'OpenT _ /4 Pko _Pko—l N _
L0 = Bt T.  &kr°RT.| AL _g(wko—ip b +wko—ip"°‘1)

07
to obtain a boundary condition in terms of temperature T, specifying T, ., :

Tl
+ - _ _ _ OpenT
—8(“’k0_;”ko +wk0_;Pk0_lj =L, =R, ~N,+—22

*

_ /4 Pko _Pko—l
2
KT RT, A;ko—lz

Although vertical motion w seems the logical choice, there are two big objections: first, it
is well known that vertical motion can be quite noisy and it could be difficult to get a
suitably balanced field; second, in the hydrostatic case, w is not even a prognostic
variable of the model.

The open top case (ii) in fact leads to equations for P, ,, (k, #1) formally

identical to the closed top case with kp=1. In effect, we write

p ko-1 = Xopent p Kt COpenTLB
with
+
I/A;ko_% —Sw'ko_l

5

KT’ RT. 1
1A, +em rT oy VAN, +em

2 2

aOpenT =

Therefore
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A;kn (LP)kO - CHOpenT L, = A;ko (VZ«P)kO

Y Pk0+1 _Pkn (l_ar )Pkn A;kowl;

" _ + (P -P )+
; ky+1 ko
KT RT. Aé‘kﬁ% A;ko—% A;ko_é

ye(l-x) - e
_K‘Z'Z—RﬂA;k“ kaw"o+%P"°“+ w"owko% +a,, wko—; +wkn—§aT Py,

with
1AL -Af @, (1/A;k L +e(l- K)wk‘_lj
/AL  +e@_

5

" _
C OpenT —

All of this is trivial then, except for the calculation of the right-hand sides corresponding
to L, i.e. Rg and Np:

More explicitly for N,

. 1| [ Tor ] T
NB:(N 0)k_1_ | In -

In the non-hydrostatic case, another condition is needed, namely the true pressure at the
top, Popenr » from which we may calculate

quenT = ln(pOpenT /”OpenT) = ln pOpenT - (;OpenT + BOpenTs) = ln pOpenT - (;ko_]z + Bko lzs)
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Appendix 10. Aspects of horizontal discretization (removing a from U and V in code)

First of all, note that by ‘horizontal’ is meant a model ‘quasi-spherical’ constant
¢ surface. In the horizontal then, the equations in spherical coordinates are discretized on
an Arakawa C grid, with the wind image components U,~+i,- (i=0,N,,j=1,N j) and

L

Viﬁl i=LN,, j=0,Nj) staggered with respect to all the other variables

wo T (8 s, o' o, (i=1N,, j=1,N,), an Arakawa C grid with the U points
with indices i=0 and i= N, coinciding by symmetry and with the V points with indices j=0
and j=N; respectively landing on the south and north pole and therefore vanishing.

Looking at the equations (section 5), we find that only three equations require attention:
the two horizontal momentum equations

d;;h + fKxV, + RTV ;(Bs + q)+ (1+ )V ,¢'= 0

with
1

o~ [U,i+vé]

Vv, —ud+v0=

defined in terms of its longitudinal component u in the direction A and its latitudinal
component v in the direction 8., or the so-called corresponding wind images U and V,

and with the gradient operator given by:
V;Z l i+£i: 1 |:Ai+éii|
acos@ oA aodl@ cos@| 0X  IY

with dX=adA and dY=ad@cos@=adsin@cos’@, and the continuity equation written as

follows:
il dlnz +D+£:0
dt ol ol
where
1 [ou d(vcosd) 1 [oU oV
D:V . = —_— = —_— —_—
¢V acosa{aﬂ,—i_ 00 } cosza[aX—i_aY}

is the horizontal divergence discretized very simply as follows:

1
D; =m[(5xU ), +(5YV)[/‘]
14_U41. V4.1_V.41
6U), =—=L = BVv) =12 "2
e AX, T Ay,

t J
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Note that in a global integration we have periodicity in the A-(X-)direction, so
U, =U Nl and, since V vanishes at both poles, V,~1 :\/W+, =0, the problem is closed in

27

the horizontal.

The ‘horizontal’ vector momentum equation is modified to be solved as a three-
dimensional vector equation in Cartesian coordinates subject however to the constraint
that the wind keeps parallel to the earth’s surface (Coté, MWR 1988):

d;;h + fkxV, + RTV ;(Bs + q)+ (1+ p)V ,¢'+mr =0

The constraint, 7r, where r is the earth’s radius and m a Lagrange multiplier, acts as a
supplementary force normal to the surface. We then introduce the semi-Lagrangian
implicit discretization (section 8) directly on the vector equation:
V) -v)
2 =Y 4 pAGE et )+ (1- 5GP +mr®)=0
At
\ A\
1+ G} +me=—"-BG) =R}
T T

A
— +G} =R} -mc=R¢
T

with ¢ =r" + Br”. Multiplying through scalarly by r*

VA
rA{—h+G2+mc}:rA-R,’f
T

A pbD
h

r*.c

coordinates

gives M = , since by construction r* is L to both V' and G;. In Cartesian

x*R? +y"R? +z"R?
m= ~ :

A A A
xtc,+yie, +z¢c,

Therefore the metric correction to be applied to R}, in order for the result to remain on
the sphere, is:

R) (R”-mc.| [R”-mlx"+Bx")
Rt =1RC —me, 1 =1R" —m(y" + B ")
RS R —mc, Rf’—m(zA+,BzD)

However, R, is given in spherical coordinates in terms of wind images:

1
cos@

R, = [RU,i+RVé]

with
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U a(Bs+q) ¢’
R, —;—ﬂ[ JV+RT === (1+u)ﬁ}

RV (Bs+q) , ¢

_1 ,B[+fU+RT >y (1+,u)ay}

To obtain the Cartesian coordinates (Rf ,Rf ,RZD ) of RhD from its spherical coordinates

(R], R})), we apply the coordinate transformation law at the departure point:

—sinl”  —sinf” cosk” cosf” cosi” | (R} /cosf” —sinl” /cosf” —tanf” cosi” e
cosi”  —sind” sind”  cosO” sinA” (< R /cosf” =1 cosi” /cos®”  —tanf” sini” { I;}
0 cosf” sinf” 0 0 1 v
Hence
R’ —y”/cos’0”  —x"z" Icos’O” e
R} p=9 x"/cos’0”  —y"z" [cos’0” {q ©
‘D RV
R! 0 1
using
x” —sinA”  —sin@” cosA”  cosf” cosA” | (0]  [cosO” cos A"
y? =1 cosA” —sind” sind”  cosf” sind” ({0} =14 cos@”sini”
z° 0 cosf” sinf” 1 sinf”

Finally, to obtain the spherical coordinates (Rj,RS) of R, from its Cartesian

coordinates (R{,R; R, ), we apply the inverse transformation at the arrival point:

RS /cosf* —sind? cosA’ 0 |[RS
Ry /cosf” t =<—sing” cosA” —sing” sink"  cosf” tq R}
0 cosf” cosA®  cosf” sind®  sin6” | |RE
hence
RS —y* x? 0 RS
RS p=1-z"x" -z y" cos’0" } RS
0 A 4 e RE
using
x* cosf* cos A*
y4*t=<cosf" sini®
24 sinf”
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The vanishing of the last row of R is true by construction, r*-R{ =0. We use the
information to simplify the middle row getting finally:

RC
R} 0 0 1 R'Vc

In summary then, having (R}, R ), i.e. R} in spherical coordinates, we

1) transform R} to Cartesian coordinates, computing R” ,Rf ,R?,
2) compute ¢, M and R| in Cartesian coordinates,
3) transform R back to spherical coordinates, i.e. compute R}, , R{

In order to solve this semi-Lagrangian equation, in fact all of the other equations as well,
we must first solve the equation for the displacements themselves. Consider

dr
a—=V=|Vlt
dt
where t is a unit vector tangent to the spherical earth in the direction of V and |V| is the

module of V assumed constant during the displacement. For simplicity, we have taken
the radius of the earth r as a unit vector all along. Then, in the plane of the displacement,

the trajectory is an arc of circle, a great circle displacement. If r”, t”and r*, t*are unit
vectors respectively at the departure and arrival points, we have

r* cosA sinA][r? r’ cosA —sinAl[r*
= OI‘ =
t* —sinA  cosA || t? tP sinA  cosA ||t?

where aA = |V|At . We therefore can write

p» _r'—sinAt”

COSA

r’ =r*cosA —sinA t* or r
where t°? =V /|V|.

Assuming that V is known in spherical coordinates (U,V) and having a first
estimate of the location (/IM, 6M) of the mid-point ' between the departure and arrival
points, we first obtain V¥ by interpolating V at that position. Then we proceed to
improve the estimate of r'/ by performing a great circle displacement solving the above
equation. We may proceed as follows:

UMy + () At
1) compute |V|=\/( C())82 6(?M ) and aA=?|V|

2) compute the arrival position r* in Cartesian coordinates (xA, yA,zA)
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3) compute V" in Cartesian coordinates using old r" position

™ —sin A" cos@” 1" —cos 1M sind™ 0"
VY =ar™ =a3y” t=al cosiM cos@ 1M —siniMsing" 0™
M cosg™ oM

—(y"UM +xM MV Jcos20
=1 (MU = y" 2"V M)/ cos0™

VM
M A - M
X . X A X
. . . tan .
4) compute new r" in Cartesian coordinates: r" =< y" | = yh - as "
w | COsSA |, |V| o
Z Z Z

M
5) obtain r" in spherical coordinates:{ M} =
0

In the model, the process is an iterative one (section 8). So we repeat the

procedure until convergence. Once the new mid-point position r" valid at +-A#/2 is
found, the true departure position r” valid at #-At is obtained by doubling the great circle

displacement:

x” xv x*
6) obtain r” =2cosAr” —r* ={y” L =2cosA{y" } —< y* L, first in Cartesian and
z° ¥ z*

iD t -1(.,D / D
7) finally in spherical coordinates: § ¢ = an. ()1) Dx )
0 sin~ (z )

We are now ready for the discretization in the horizontal. The equation

X£+GL4;+N =R¢
h = h h = h
T

is decomposed into its components (section 10):

U d(Bs + 29"
LU+NU=[?—]‘V+RT%+(1+,U)8—;¢(} =RS

_|\v d(Bs+q) a9 " _ ¢
lV+NV_[T+fU+RT—Tif—+O+y%”7 =R¢
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and horizontally discretized as follows
A

(Ly + Ny, = E—f{vyx +RT" 8, (Bs+q)+ (1+px )§X¢} = (RS )H;,»

H—?j

(LV +NV ),ﬁ—% :|:%+f<U>XY +R?Y5Y (Bs+q) +(1+luy) 5Y¢':| = (R\f )1]+12

using the following simple two-point difference and mean operators:

Ai+ '_Ai' X
(6,A),, =—L—1; (A )H;j=w",-+;A[+lj+(1—w",-+;)A..

i+ ] AX ij
i+%
A — A (—y
(6,4),.. = #; (A )tj+i =@ A, +1-" 4,
ity

as well as the four-point (cubic interpolation) mean operators:

<V>j =Q; V,-,-_; +8; ‘/ij—% Y V,j% +9, V,-,-+;
X
<V>lY+X%J :<<V>Y i) = ai+% <V>f—1j +ﬂ,‘+,; <V>: + },H.,; <V>?+1j +5i+% <V>f+2j

X
U> —a U y + B, Ui—lzj+7i Ui%j +6, U,~+§j

1 = aj+%<U>;(—1 +ﬂj+%<U>5 + },j+%<U>;(+1 +6j+%<U>;(+2

The left-hand-sides (dropping the superscript %) are linearized separately (section 11):

U .
l+EJ

+(6,P)

(LU )H% j =

R
4
12]

P=@¢+RT.(Bs+q)

(l’\/ ),‘j+l = 2 + (5YP)ij+l
2 T 2
leaving as non-linear terms (section 12):
(N )y ==F V)0 +RT L 8, (Bs +q)l,.., + 1, (8:9),..,

(Ny), =+£ (V) j‘Y + RF; (6, (Bs+q)],.. + ;_zf (6,0),.:
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Appendix 11. Lateral boundary conditions

A limited area (LAM) version of GEM exists. It requires lateral boundary
conditions. These are provided by three sets of grid point values:

(1) The first set is external to the LAM domain and allows the semi-Lagrangian
scheme to function as if no boundary existed, i.e. a sufficient number of points
exists outside of the domain so that the upwind values of all relevant fields can be
obtained by interpolation provided a predetermined Courant number is not
exceeded. The relevant fields are the R;’s, the Right-Hand Sides terms calculated
from the previous timestep history carrying model variables. If the values
provided to the LAM come from a global host-model identical to the LAM in all
respects (space and time resolutions, physical parameterizations, etc) then the
host-model results for the R;’s are reproduced.

(i1) The second set is the boundary set proper: it comprises exclusively the wind
component normal to the boundary and at the boundary itself. These grid point
values serve to close the elliptic problem in the horizontal. In effect, the so-called
elliptic equation will contain in particular (see section 15) the following terms:

L. .
(V; 'Lh)ljk B Czi]k te=(L, )ljk - (Vzp)ljk e

To the left, the L’s must be known quantities. To the right, there is only the
unknown P. Here we consider, as an example, the grid points with the i label
equal to 1. This is the X-direction and we assume that i=1 is the first internal
model cell on its left-hand side. Developing the operators, we obtain successively
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;[(JXLU )ljk +(5YLV)ljk]_ LCljk = 1 [(5)2(P)ljk +(613P)ljk]

cos? 0j T cos’ 0,—
[ =), NPT T (64 P):; = (8 P):,, L (52p)
cos? 6, AX, r r  cos’ 0, AX, S

But note, the equation

1.
7k

(Lu)%jk: T +(5XP)%jk

which has served to eliminate Uljk from the continuity equation does not exists.
2

(LU )ijk is an unknown quantity. Let us restore U, P in the previous equation:
: 2

1[G T ), | ! OxP),s 2 i(sr)
cos’ 0, AX, T T cos’ 0, AX, s

Thus the elliptic problem may be solved if we provide the normal wind

component on the boundary U 1 asa boundary condition. The elliptic problem

though appears as if we had set (& ¥ P), . =0 as a boundary condition on P to the

3k
left while replacing the unknown (LU )ljk by the known value U " /T to the right.

The same procedure is applied to the normal wind components on all the
boundaries of the LAM. Again, if the normal wind components provided to the
LAM come from an identical global host-model, then the host-model results are
reproduced. Since the solution of the elliptic problem corresponds to a future
timestep, the set of boundary winds must come from the timestep following that
from which came the external set.

(i11) Finally, a third set of grid point values are internal to the LAM domain. They
allow for a gradual relaxation of LAM-fields to the HOST-fields as we approach
the boundary. All history carrying variables are relaxed this way. Of course, if the
host-model is identical (the acid ftest), this third step of the procedure is
redundant.

In GEM presently, physical parameterization is added (split mode) after the
dynamics, i.e. after the relaxation step just mentioned. Thus for the LAM to reproduce the
host-model results, the future values provided in steps (ii) and (ii1) must come from the
host-model after the dynamics prior physical parameterization while the past values
provided in step (i) must come from the host-model after physical parameterization.

N.B. As soon as horizontal winds are modified by space and time interpolation, i.e. when
not performing the acid test, the vertical motion field ¢ should be diagnosed (see
Appendix 15)
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Appendix 12. Time varying topography

The initial conditions as well as the lateral conditions (see Appendix 11) of a
LAM are frequently provided by a host-model or by an analysis made on the host-model
grid with much coarser horizontal resolution, typically at least a factor of three coarser.
And the information usually comes in terrain-following vertical coordinates. Then the
bottom surfaces, the topography, of the host and LAM may differ considerably.
Straightforward interpolation-extrapolation often results in poorly balanced fields: a point
fairly high in the host may have relatively strong winds which may find themselves near
the surface in the LAM; vice versa a surface point with light winds in the host may find
itself fairly high in the LAM. For the first two sets of lateral conditions, i.e. outside and
on the boundary of the LAM domain, the host topography may be kept, but for the third
set, the relaxation zone, the problem cannot be avoided. One may only attenuate the
problem by relaxing the topography in essentially the same way that the other model
fields are relaxed and then interpolating-extrapolating the variables. As for the initial
imbalances, it has been found desirable to initialize the LAM with the coarser host
topography, gradually modifying it to reach the finer LAM topography after a suitable
interval of integration time: the LAM then having a so-called time-varying topography
field. Artificial though it may be for the atmosphere, this is a perfectly acceptable
mathematical procedure and, provided the induced vertical motions remain small, the
meteorological consequences may remain acceptable (a 10 cm/s topography velocity is
able to lift the terrain by more than 1 km in 3 hours).

Examining the equations, we find that a local tendency of geopotential is provided
and calculated implicitly by the equation:

dé' -
Y _RT.E—ow=0
” &-g

A surface level is present in the vertical discretization (¢ ¢ =0):

dgs
dt

—gw; =0
After time discretization, we have:

M_g(WS)A :@"'gﬂ(wsy)

T

(¢S )A is the surface geopotential at the arrival point, i.e. at the grid point at the future

time. It is an external parameter which must be externally specified. In hydrostatic-
pressure coordinate, the time varying topography option is just and only just that:
modifying @ at the appropriate place in the model code.
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Appendix 13. Numerically truncated top boundary condition

On the regular grid of GEM3, temperature as well as all other model variables
were present at the model top. A thermodynamic equation along with momentum
equations were therefore needed at the top. In developing GEM4 on the Charney-Phillips
grid, there arose the question as to whether or not to include a top thermodynamic level.
Three arguments militated in favor of its inclusion: the fact that such a level already
existed in GEM3, a level used by the analysis; a symmetry argument since we were
planning a bottom thermodynamic level to better accommodate the surface layer
parameterization; finally the fact that a similar surface layer parameterization would be
needed at the top of an ocean model. Now, we have much stronger arguments in favor of
its exclusion. First, the level is dynamically disconnected from the rest of the model: in
effect, the equation is highly simplified due to the boundary condition: dIn7/dt=Q/c,T
since by construction dlnp/dt=0. Considering that vertical advection also vanishes since

é’ =0, the resulting predicted temperature becomes dynamically very poorly connected
with the rest of the model. Second, the disconnectedness is further amplified by the
typical lack of vertical resolution near the top of operational forecast models. Third, the
boundary condition is very artificial. (Note that none of these arguments would apply to
the top of an ocean model.) Finally and foremost, experiments have shown that we obtain
better results without than with this top thermodynamic level.

In this perspective, it is very interesting to examine the equations with the hydrostatic
option (Appendix 7) once discretized:

av -
Lt fkxV, +RT'V Bs+V,§=0  (k=1,N)
t

d|, (T) = .
E{ln(?j—xﬂ%}—xgzo (k=22 N+

d _ . =<
E[Bs+ln(l+5{B§s)]+V;-Vh+5{§+§' =0  (k=LN)

" 6,(¢'/RT. +B
T, 5 o (k=22 N+
T. 6,(¢ +Bs)

Eliminating the two equations at k=3/4 will force the elimination of two degrees of
freedom, two variables: T, , and ¢' = ¢', but @', does not serve elsewhere and 7, only

3/4
serves in the pressure gradient term at level 1 of the momentum equation. But the
pressure gradient term at level 1 only subsists if the metric parameter B # 0. It is in fact
desirable to have this parameter as close to zero as possible near the model top. Thus the
top thermodynamic level can be eliminated in the hydrostatic case with little
consequences. Of course, the semi-Lagrangian scheme has to be notified of the absence
of this degree of freedom in the temperature field. But this is in fact where most of the
benefices will come from, as too large differences between the top and adjacent levels
tend to generate noise (in particular, kinks in the vertical).
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We now examine the full equations with the same perspective:

d;;" + fkxV, +RT;V{(Bs+q)+(1+Z;)V;¢':O (k=1,N)

dw

— T 8H=0 (k=3.3...N+)
d T —¢ :
E{ln[?j—K‘(BS‘Fq ):|_K'§:O (k:;,;,...,N'F%)

%[Bs+1n(1+5ﬁ‘s)]+v; -V, +6{§’+Z; =0  (k=LN)

—¢
de¢' ; 1
T—RT*;—gW:O (kZE... 5
_ 0,9
l+p—e” | 1+—2——|=0 (k=22 . N+!
poe { 6,({ + Bs) k=i 2

Il

)
~~
bl
Il
FNE
l\:\ w
=
+
PN,
N

T | S,(¢'/ RT. +Bs) |
T. 6,(¢ + Bs)

We find three new equations at k=3/4 which should logically be eliminated along with
three new variables that must disappear from the list of degrees of freedom: w, , which is

no more referred to, g, and 4, . And we must estimate ¢, and k,. Note that the presence

of g, restores the pressure gradient term in the momentum equations. However, the
simple extension of the top boundary condition on ¢ downward to level 1, i.e. setting
q, =0, essentially retires again the pressure gradient term from the top level momentum

equations. For g, setting ,t_tf =0 was chosen, again avoiding extrapolation.

Less elegant perhaps but not more arbitrary and factually less problematic than
the original procedure which for the temperature in particular added an apparently purely
numerical degree of freedom in the vertical, this procedure will be called the numerically
truncated top boundary condition. In the absence of certain degrees of freedom, we had
to estimate for the top level momentum equations the non-hydrostatic contribution to
both the pressure gradient and geopotential gradient terms. We decided to make this

contribution vanish, setting both ¢, =0 and zZf =0.

As seen before (Appendix 9), changing the top boundary condition affects the
details of the matrix problem as specified in Appendix 4b. Here we start with the original
discretized linear continuity equation (section 11):
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(Lc)kn =V Vi +[5§((+E§s/r)+i{’+§§s/r){]
(¢ 5are), ¢+ B5wre).

h Kk + :
' Ag

ko

(L), =V,V

0

For ko=1, we have the boundary condition (; +B%s/ T)ko-l =0. We may therefore

immediately write:

(LC)k :V{'th + L""w; (;"'E;S/T)k#
0 0 A;ko 0 0Ty

1 . w;%q Ko+l +w1;]+;q k
(LC)kO:V;-thO+—+ka X ,—-— :

Ag,, fota T

and proceed with the elimination process toward the elliptic equation using only the
equations for (Lh)ko,(L'w )k0+1,(L'T )k +1,(L¢)k ,1» hever in fact requiring the top level
2 07 0ty

equations (L', )ko—l’ (L, )ko_i, (L

s )ko_% . In effect, we compute

v,-(L,), —l{(Lc)k Lo (L'w)k0+;} =(L"c),,

T C W,
getting
(L") =V2P L B O o
C kg - ¢k T Aé’k ko ko‘*% TZW,,, ko ko-%%
. _
1% @ 1% @
+— - Qion T2 + dy,
T A{ko A{k N T Aé’ko Aé’kn+i
@, +
0t . .. . .
and since L — b~ (definition of w,jo) while 9y, = 0 (by construction), we get

A, AL

" 2 1 + X k0+% + WkO'%
(L C)ko =V,.P, — —A§ +0, — +ED, —;
kO

Then we compute
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1] 1 8 "
2+ ) o) =),
7 1 8 ] K' n
2, v S ) (), |- (),
i 1 x
" Y Pk0+1 ko _ ko+y
(L 9)](04.E K‘Z'ZR’ZW* A;k ] —8(52 1Pk0+1 +wk0+1Pk ) - T
" — /4 Pko 1 _Pko + - Wko*”;
( ¢)k0+% - K’Z'ZRT; A}k . +K(w.k0+;Pk0+1 +w.k0+;Pk0) + TZW*

and combine

0

(L"c)ko _LA;, ko J(L" ) —8@';0( "¢)k0% = (LP )k

getting
" _ 2 7 1 ko+1 P 1 + _
)y, =VePy, + KTRT, [A;k (Hg)wko] AL el AL, 8(wko+ipk°“ +wko+ipk°)
l1-x
A (g )
KT°RT.
P —P o O . @
(L'.), =ViP, + 27 ! +@, | —"+e h___foty P, —|—"—+
° kTR | (AL, ST S L A
y(l-x)
_K’r2—RT*wk° w Pk 4 +w P
P . -P P
(LHC) —VE'PkO + 2}’ 1 +w,k+0 ko+1 ko > ko
kT RT. A{ko A{k(ﬁ% A{ko
l-x
—ka (ﬂ Pk N +w' P j
KT RT. 0
. wl:- wko‘*’
since L= > and smcew N =1/2
Aé‘k{)"'l Agkn btz
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Considering the original expressions (Appendix 4b)

(L'P)ko = (LP)kO —C" Ly 1AG,

1 " P0+ _PO (l_a )Po wo
e =5i0), o o [ g g,
KT * ;ko ; ko +% ;ko ; k()_% ;k()_%

I-x _ _ _
_ }6(2 ) m’; (m'+ lPk 4 + IPk )+w’k (w-+ @ ]aT)Pk
KT Rn 0 k°+5 0 k0+5 0 0 k‘]_i kO_E 0

and setting L, =0 and @, =0, we get

P ., —P 1-a, )P
e, [ ven s o

ko
& K’Z'ZRT* A;ko A;k()% A;koA;ko—%
rel-x) (. -
TR Do\ Phi P ¥ B

and we note that further setting @, =1-€A{ .1 takes care of the &term.
-

2
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Appendix 14. Trapezoidal rule for trajectory calculations

Here we compare mid-point rule and trapezoidal rule for the calculation of
displacements Ar in the semi-Lagrangian scheme.

The mid-point rule (a time mean followed by a space interpolation) can be
described as follows:

V@+VU—Aﬂ&_

Ar' = At Ar™/2)=AtV,,

where i is for iterations being made due to the non-linear nature of the process, while the

trapezoidal rule (a space interpolation followed by a space-time mean) can be written:

V(t,r)+V(t—At,r—ArH)
2

VotV

Ar' = At =A

Changing rule is fairly straightforward except for the ‘horizontal’ on the sphere.
In effect, consider the equation
dr

=V=|V|t
dt

where t is a unit vector tangent to the spherical earth in the direction of V and |V| is the

module of V assumed constant during the displacement. For convenience here, we take
the radius of the earth r to be a unit vector, normalizing the winds accordingly. Then, in
the plane of the displacement, the trajectory is an arc of circle, a great circle

displacement. If r,, t, and r,, t, are unit vectors respectively at the departure and
arrival points, we have

{rA}:{cosAD sinA, | rD} (1a)

t, —sinA, cosA, ||t,

or _
{rD}:{cosAA —sinA, | rA} (1b)
t, sinA, cosA, |[t,

where aA, =|VD|At and aA, =|VA|AI are the modules of the displacements and

where t, =V, /|VD| and t, =V, /|V,| are their directions. We therefore can write

or

r, =r,cosA, —sinA, t,

Ip

:rA—smAD t,

COsA,

(2a)

(2b)

Now, these are equivalent exact relations for a constant wind on the sphere. For
the semi-Lagrangian calculations though, we know the wind at some positions and
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estimate displacements assuming constant wind. For the mid-point rule, we take the
wind V,, as known at the mid-point of the trajectory and we calculate a half-

displacement from the mid-point r,, to the arrival point r,, therefore using formula (2a)

with subscript y replacing p:

_r,—sinA, t,
r, =

COsA,,

We then double this displacement backward to find the departure point r, using formula
(2b) with subscript y this time replacing subscript 4:

r, =r, cosA, —sinA, t,,
Combining the above two equations gives the geometrical formula for the mid-point:

_Iptr,
=
2cosA,,

For the trapezoidal rule, having the wind known at both ends of the trajectory,
V, and V,, we perform two half-displacements using formula (2a) for the first

S r, —sinA, t,
dl — A ’
COSA

with aA,, =AV,|/2 and t,, =V, /|V,

, and (2b) for the second
r,,=r,,cos A, ,—-sinA_,t,,

with aA =At|VA|/ 2 and t, =V, /|VA|. In sequence, therefore index 4 becomes p,

index ,, becomes 4 and we set r,, =r,,, hence

_TI,CcosA, —sinA,t,—sinA,t,

D
COsA,

having combined the previous two equations.

A first order verification of this formula (cosA, =cosA, =1;sinA, =A,;sinA, =A,)
1s:

Ar=r,-r, =A, t,+A t, 2%(VA+VD)
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Steps in the mid-point rule

The winds V(z, r,) and V(#-At, r,) are assumed known at two time levels on the grid
points r, (one Crank-Nicolson step). We compute:

V(t,r,)+V(-Arr,)

1) the Spherical Coordinates (U, V) of V(r—At/2,r . )= 5

2) 'V, = V(t —At/2,r)) ) by interpolation (Spherical Coordinates)
3) the Cartesian Coordinates (xjw Ve 2 )of Vi,

4). the module|V}, | = (i,  + (5, + (2, f

. At|V]
5) the displacement A, = — M
a
6) the Cartesian Coordinates of rj’g = # —tan A M

i M i
cosA', ‘VM‘

7) the Spherical Coordinates (ﬂ ;4,0 lM) of rj,

i

8) the Cartesian Coordinates of r;, =2cosA', r,, —r,

9) the Spherical Coordinates (ﬂ’b,&g) of r},

Only steps 2 to 7 need be repeated for the required number of iterations. Note that the
module is computed using Cartesian coordinates.

The Cartesian Coordinates (%, y, z)of V at position r =(x, y, z) are obtained from
the values (U, V) in Spherical Coordinates as follows

X —sinAcosO4 — cos Asindd ~(yU +xzV)/cos’d
V=ar=ayyr=a cosA cos 04 —sindsindd ={ (xU - yzV)/cos*6
Z cost) 0 Vv

The position vector transforms as follows

X cosAcos@ o
. A tan "' (y/ x)
y¢=1sindcos@d =4 .
. % sin”'(z)
Z sin@
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Steps in the trapezoidal rule

The winds V(z, r,) and V(#-At, r,) are assumed known at two time levels on the grid
points r, (one Crank-Nicolson step). We compute:

2 2
1) the modute [V, = [Ua) + W)
cos” @,

|y,

a

2) the angular displacement A , =

3) the Cartesian Coordinates (x,,7,,2,)of V, =V(z,r,)

4) the Cartesian Coordinates of r,, =r,cosA, —sinA,V,/ |VA|

5 V, = V(t —At,rgl) by interpolation (Spherical Coordinates)

6) the Cartesian Coordinates of (¥%,7!,2 ) of Vj,

7) the module |V}| = JG P +G )+ )

. At|V;
8) the angular displacement A’ =—|—2
a
9) the Cartesian Coordinates of r}, = rDAi —tan A —-
COsA ‘VL’)‘

10) the Spherical Coordinates (ﬂ’b,&g) of r},

Only steps 5 to 10 need be repeated for the required number of iterations. Remarkably,
these calculations to obtain rj, from r;,' and r,, using V, with the trapezoidal rule are
identical to those required to obtain rj, from r,' and r, using V,, with the mid-point

rule. Note that the module at departure is computed using Cartesian coordinates.
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Appendix 15. Diagnostic calculation of vertical motion at initial time

There are two vertical motion field required at initial time. The first, { ,1s truly a
diagnostic field. The second, w, is a diagnostic field only when the hydrostatic
approximation is made; in the non-hydrostatic case, w could become an analyzed field.

1. Diagnostic calculation of ;

From the continuity equation (section 4):

%1( a;%”jwf.vﬁ%:o
transformed as follows
%@_’th;g_’;’jw{ (,)=0
and integrated
%—’t’ ;g—ziv;-(g—zvhjd;:o (1)
s
e ey oo

we derive an explicit relation for g“ :

alnfr B % 14 or
w1 lg 2 e (Fpv e
s & s ¢
In effect, Inz = ¢ + Bs , hence
dlnz ds _ dlnz

ot o o

and
dlnz BB

In discrete form we have

B 1 ] 1 ] 1 -1
: dlnrx =Y Nt =L or
=\ 9¢ ! 7T T ! k= 5 ¢ 14 h l !
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2. Diagnostic calculation of w

We use the approximation:

The approximation seems acceptable in general but note: at the model top Z =0 by
construction while w # 0 ; similarly at the bottom, when the terrain is flat, w=0 while
7##0 in general. We obtain an explicit relation for 7 again from the integrated
continuity equation as follows:

on .07
=¥+Vh-V{7[+§—;

#=V,-V, z- jv @’; jd{

#=mBV, Vs jv( j;

and it is convenient to replace the advection term by the difference of two divergences:

d
#=mBV, sV, -sV,-V,]- jv (a? jd{

In discrete form, we have:

. |
Jk_j l]k_g

. v ¢ v ¢
V4 =7riik_;Bk_;[V;-th -sV,.-V, l —J

k=

NB. 7= —gpw+(%—ﬂ-+Vh -V]Z'J+p(%—¢+Vh -V¢J
t t
(neglected tern) (neglected tern)
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Table 1. The equations of GEM in 4 transformations

C;—V+kaV+RTV1np+gk=F
t

dlnT_K_dlnp: (0]

Vertical coordinate transformation: z to ¢ (unspecified)

¢ 9
V.=v,-v, ;252
ST
0 _94 0
dz 9z d¢

dt dt c, T
dinp . v.v=o
dt
__P
P RT
av, 3¢ dln p
dt/+kaVh+RT(V§1np—V§ZaZ aé, ]: "
@QRT%ﬁmp+g:ﬂ
dr 3z ¢ ‘
@ dlnT_Kdlnp_ (0]
dt dt c,T
0 o¢
g%npgi'+V[Vﬁ+ S o
dr 9¢ ¢
oo
dt
P
P = Rr

Vertical coordinate transformation: z to ¢ (specified)

RT =P 99
7dlnrx
9=gz
pdlnp
" zdlnx

€G+ﬂﬂW+RﬂQmP+0+mVW:E
t
dw
A u=F
ar AT
dinT _ dinp_ O
dt e ¢,T
@ iln ﬂm +V;'V/1+%=0
dt ¢ e
q
d¢
A ow=0
dt 8
- _Ealnp:
7dlnx
RT+P2 99 _
wolnx
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Going to model thermodynamic variables ¢’,q,s, {

h

dt

9=9-9.
Inp=Inz+gqg
Inw=¢ +Bs

I

dt

d {Bs+1n(1+g—?sﬂ+vg~vh +

+ fkxV, + RTV ;(Bs + q)+ (1+ 1)V .¢'=F,

dw
=7 _ =F
dl‘ gﬂ w

d (T d | _ @
Eln(EJ—Ki:E(BS+Q)+§:|—Cp—T

0 s
£+§—0

a9 RT.. —gw=0

dt

i)

_e{l_ o(¢'/ RT, +BS)J 0
9(¢ + Bs)

dq
1+ u—e1
+ 1 e[+a(

r
T,

Discretizing in the vertical

djh + fkxV, +Rf§V¢(BS+ q)+ (1 +;l;)vg¢' =F,
t

dw
——gU=F,

dt
Q

ol

p

— Y4
Z[Bs+ln(1+5;B{s)]+V§ “V,+6,0+¢ =0

—<
ag ~RT{ —gw=0
dt
_ Sq |
1= 14— =0
5,(¢+Bs)|
T 1_(Sg(gz>'/R7;+Bs) o
T. 5§(§’+Bs)
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Table 2. The Equations of GEM vertically discretized on Charney-Phillips grid

dV _ _
h +kaVh+RT;V§(Bs+q)+(l+u;)V§¢‘=F,

dt
dw
= _ou=F
o gu=1r,
d T ¢ :_ 0
—| In| — [—-K\Bs + —K{ =——
dt{ (T*] (S ! ):| ; CPT
d _ . =<
E[Bs+ln(1+§;Bgs)]+V§-Vh+§;§+§’ =0 ----
t
- ¢
a9 ~RT.{ —gw=0
dt

_ ) )
lrp—et | 14—2T g
5§(§+Bs)

T _ | S,(¢'/ RT. +Bs) | 0
——e — =
T, 8,(+Bs) | -
V, i horizontal wind, f : Coriolis parameter
w: vertical velicity, kK=R/c,
T : temperature; T'=T-T,; T. = const
¢: geopotentials $'=0-0;  0.=-RL.(C-C,)

q =In(p/x): non- hydrostatic log - pressure deviation
p: pressure, T :hydrostatic pressure, 9@/dmx =—RT/p

U =0p!/dx—1: ratioof vertical acceleration to gravitational acceleration

s = ln(f[s 1Dy ): log - surface - pressure; B,B= B metric parameter
¢=d¢ldr, ¢ : model vertical coordinate
(7)4 : averaging operator, 0, : differencing operator

Pr! Py =0y <n<l:specified wlike modellevels; p, = 10° Pa

= +ln(77)

Inp, =¢, <{<{s=Inp,, :calculated In 7like model levels
Inz=A+Bs

A={; B=1"; O<r=rmax—(rmux—rmm)/l<200; l:max{;_;u ,O}; &, 24,
;s_;u

Boundary Conditions: é;s = fT =0 [q, = ln(pmp /7ZT)= 05 @ = 8Z10po> Prp = CONST]
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