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PREFACE
GEMA4.1: work in progress ...

Reduction of noise in GEM was the main motivation for the present project
consisting in the introduction of vertical staggering (Charney-Phillips grid). It was deemed
the first and primary ingredient to achieve this goal. In effect, there are numerical modes
which were theoretically diagnosed on the previous un-staggered grid which are absent
from the new one. As a first step therefore in this project, only the grid was changed.
Everything else, the equations, the independent as well as the dependent variables, were
kept unchanged. Very positive results were obtained with respect to noise. But there remain
problems, in particular an accuracy problem in the hydrostatic relation at upper levels when
the true resolution (in terms of height) is insufficient.

Improving the accuracy of the hydrostatic relation using logarithmic differencing
wherever appropriate was therefore the goal of a second step. The results from this
modification of the code were very satisfying with improved scores in the stratosphere.

With this incentive, it was tempting to try and implement a full log-hydrostatic-
pressure coordinate, {. A theoretical advantage of { is its linear relationship with Inp, [
Inp=In(p/m) +In(rr/m) +In7, =g+ Bs+]. Along with the fact that ¢ =In(p /)

and s = In{7z / pref) are already model variables, this greatly simplifies the linearization of

model equations. Again the accuracy of the hydrostatic equation is improved since the
finite differences not only are calculated logarithmically but also become defined at
logarithmic mid-points. This third step though has little impact on model performance.

A recent and important development: it was discovered that the initial staggered
version of the semi-Lagrangian scheme, averaging the departure positions for variables
arriving on thermodynamic levels, resulted in significant loss of kinetic energy.
Calculating independent departure positions is rather the thing to do.

Finally, a word concerning a secondary motivation for the project, namely the
resolution of accuracy and noise problems encountered in the simulation of non-hydrostatic
mountain waves, specifically what we call Schir’s case: considerable understanding was
achieved but no fully satisfactory solution is available.

For the sake of clarity, a lot of the details of the progressive model transformation

from GEM3 to GEM4, contained in the original version of this document, GEM4.0, which
remains available for consultation, have been removed from the present one.
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1) The meteorological equations in height coordinate

- 4 independent variables: t, rY=(ry, z)

- 6 dependent variables: V=(V,,w), T, p, p

- 6 scalar equations:

%+kaV+RTD1np+gk:F

dinT _Rdlnp _ O
dt c dt cT

14 P
dinp  Hov=o
d
-_P
PRy

- There are: 5 prognostic equations (momentum + energy + mass conservation),
1 diagnostic equation (perfect gas law).

N.B. The Coriolis force is approximated (traditional meteorological approximations apply).

N.B. Many more approximations are implied if we consider that the atmospheric substance
contains, in addition to dry air, not only a variable quantity of water vapor but also
condensed water and precipitations. The above equations are valid under the assumptions
of dynamic (precipitations falling at terminal velocity) and thermodynamic (neglecting
temperature differences between air and hydrometeors) equilibrium and neglecting
precipitation fluxes. Equations for the displacement and evolution of the hydrometeors are
required to complete the system.

N.B. In the above equations the coefficients R and ¢, are variable. The introduction of
virtual temperature (replacing RT by R,T, where R, is now constant) and approximating the

ratio K=R/c, by the constant ratio K,=R./c,. lead to further simplifications (see Appendix
1. Virtual temperature).
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2) The equations transformed to generalized 1)-coordinate

- Note the necessary decomposition of vector equations into their horizontal/vertical components due to the different
horizontal/vertical transformation rules.

on o 0 _0dn ad
i 0 =0 -0 z——; —=——
2 transformation rules: U, n nZ 3z an 9z 0z 0n
- 4 independent variables : L, n
- 8 dependent variables: Vi,w, T, p, p, n, z

- 8 equations (6 prognostic and 2 diagnostic):

dv, H] on alan
+ V, +RT Inp-0 z—+ =F
dt SV D”np "5, on o
A
dt 0z 0n
dlnT_Kdlnp: 0
dt dt c,T
ilnaozﬁﬂn Wh+a—,7=
o 0 ong on
= _ =
dt
=P
P RT
ZEZ(n’rhat)

- Were added then: 1 prognostic equation (dz/dt=w) for varying height in space and time,
1 diagnostic equation (yet to be specified) defining the coordinate 1.

- the continuity equation is the only one requiring more than simple manipulation:

dz 0z . 0z

= =24V, M z+7—

Y a T ar Ty
a_r]a_wza_r]i Z+Vh|]]]nz+,76_z%:a_r]avhD]]ﬂz+a_n+in%%
0z dn 0z 0n Ot ong 0z on on dt n

hence
Dzwh+6_w:anh_a_n%mnz+0_ﬂa_wzmnwh+a_'7+in%%
0z 0z dn 0z 0n on dt n

- See Appendix 2 for some details on transformation rules.
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3) Eliminating p introducing In77, log-hydrostatic pressure, eliminating z defining the
geopotential ¢ and adding u (ratio of vertical acceleration to gravitational

acceleration)
om p 0@ pOdlnp
—=-gp; RT=—-"——"—; P=gz; == -1
0z £P; molnm P=s molnrm
- 9 dependent variables: Vi, w, T, p, n, @ u i

- 9 equations (added diagnostic equation for 1 ):

{Zh+ﬂaV@+RTQﬂnp+U+pﬁ%¢:F;
dw
E_gﬂsz
dlnT_Kdlnp_ 0
dt dt cpT
L b, oy, + 9
d g onog " on
de
- _ =0
a5
1+#—£m:0
molnrr

molnmw
lanElnn(n,rh,t)

RT+2 99 _,

- N.B. For the rest of the presentation, the physical forcings ¥, F,, O will be
excluded and the parameters R and K will be treated as constants.
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4) The new {-coordinate for GEM4.1 is In7rlike

Z =ZS +ln,7; ZS :lnpref; pref =105
= AZ)+B(l)s; s=Inm, -, =In(m; / p,,)
O lnpm
: Z ZT H T ; Z _Z
% r= max _rmin) o ES 30
s =¢r

1n7T—Z+B(Z)s
0 0 _. _0{ d _190

ono7 < an ool nog

transformation rules: U, =U, —U.n—

- 9 dependent variables: Vi, w, T, p, Z , QU TT

- 9 equations:

d;;h+ijVh+RTD(lnp+(l+,u)Dz¢:0
dw
- - =0
7 gH
dlnT dlnp —0
dt
Braln”Hm v, +% =
dt 0O o O a(
ap _ _ _
a ="
1_'_y_palnp_
molnm
RT+P 99 -
molnm
Infr={ + Bs

- ObViOUSly, at this point, the form of the equations in { and 1 coordinates is identical

N.B. P.,/P,;<n<l is now but a label to characterize the model levels. Another way to

characterize the levels would be to use a number, H, having the units of height and
corresponding approximately to model level height (above ground):

o 16000 ~ 6950m
In10

See Appendix 3 for more information on the metric parameter B.

{={(,-H/H
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5) Perturbation thermodynamic variables, 7°, ¢ ’, ¢, and simplifications

Introducing the logarithm of the non-hydrostatic pressure perturbation g=In(p/77) and
perturbation variables 7” and ¢’. Eliminating p, @ and 7z We keep T for convenience.

'=T-T.; T. = const
9=0-q; @({)=-RT.({ =)
Inp=Inm+g={ +Bs+gq

- 8 variables: V,,w,TorT', q, (Z,s),(ﬂ,pl,ﬁnal number

- 8 equations [6 prognostic & 2 diagnostic], final form ready for linearization:

i+ foxV, + RTT (Bs +.) +[1+ )0, 9= 0
dw
- :0
" gH

O [
i@n%%x(wq)mxz =0
dtlj * D

d 0 3B o
Eng+lnE+ﬁS%+D( D’h +Eﬁ7+1§—0
dg

Y _RT.ZC-ow=0
g ¢ —gw

— 4 dq _
Irp-e ((+Bs)+1E_O
T _ .l -¢/RT)

0
T. d(¢ + Bs)

N. B. § is a 2-D variable and Z vanishes at the surface. The combination ( Z S ) may therefore be considered to constitute a

single 3-D variable.

N.B. @+RT.(Bs+q)=@+RT.(Inp-{)=@+RT.In{p/p,,) =P, which may be called
generalized pressure, a variable which will be convenient to invoke later on.
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6) Boundary Conditions
The model top (subscript 7 ) and bottom (subscript s for earth’s surface when

talking of the bottom of the atmosphere), are defined to be material surfaces. Therefore
we have the following two boundary conditions:

0
0

i, =4l¢,) =
s =<2y

In addition, the behavior of theses surfaces must be specified and this will lead to
one additional condition in the non-hydrostatic case. The bottom surface is assumed to

be corrugated but immobile. In effect, the bottom geopotential @s is usually taken to
vary with the geographical position (terrain-following coordinate system) but to remain

fixed in time: 0¢% /0t = 0. This though does not imply that the vertical velocity at the

surface vanishes and therefore gw, = ld @/ dl] s 7 0 generally. At the top, we consider a
flexible surface whereby a constant top pressure:

p top =Tl

is assumed to be maintained. This is automatic in the hydrostatic case since the top
surface pressure cannot be anything other than a material hydrostatic pressure surface.

In the non-hydrostatic case, to impose a constant top pressure equal to the constant

top hydrostatic pressure surface provides a boundary condition for the top pressure. In
terms of the non-hydrostatic pressure variable g, this becomes:

qr = ln(ptop /nr) =0

The surface is nevertheless free to move in response to this artificially imposed
pressure pip.

N.B. Open boundary conditions are of course a possibility: see Appendix 9. Open top
boundary conditions.
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7) Vertical discretization with staggering

For vertical discretization, the following choice is made:

d;;” + /KxV, + RTO (Bs+q)+(1+;_l()D(¢:0
dw
- =(
dt 8gH

Bs+q D—KZ 0

i

+0, D\lh+5(Z+Z =0

% Ezs + ln(l + JZBS)

—
dg :
—— —RT.( - =0
" {—gw
1+ 7 6 ID 0
H—e’ [37 =
9 +Bs] [

B T ST
T. 0 6,(¢ +Bs) i

In other words, the derivatives are replaced by simple finite differences represented by the
operator O; and averaging operators represented by over bars are introduced where

required. From the notation, it may be gathered that V,,q,@, B are defined on the same
levels to be called fu/l or momentum levels. They are staggered with respect to
w, T, 4, {,B placed on Aalf or thermodynamic levels. Note the distinction made between

the known metric parameter defined on full (B) and half (B) levels, discrete operations only
being invoked when required by later manipulations. With this staggering, double
operations on dependent variables are severely reduced. No difference is calculated over
more than two levels. The number of averaging operators is minimized. In the horizontal
momentum equations, they occur on non-linear terms only; in the hydrostatic case (with
g=M=0 and w dropping out of the system), only one averaging operator remains on linear
terms, namely on { in the continuity equation. Details of the discretization are given in
Appendices 4a, 4b, 5 and 6 (but read these after the rest of the main document). Taking into
account the boundary conditions, it is natural to have half levels rather than full levels
coincide with the top and bottom. This essentially, though not fully, completes the
description of the vertical grid. See Figure 1, next page.

N.B. For B we have chosen the numerical definition: B = B°, instead of the analytical

definition: B = B(Z() . This is a convenient but arbitrary choice.
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Momentum Charney - Phillips Grid Thermodynamic
levels levels

—— = — s Tw— = = ¥

N+1

Figure 1. The Charney-Phillips grid, giving the position occupied by each variable in the
vertical domain. The model is composed of N layers, inside of which (in the middle of
which only if the layers are equal) are the momentum levels [1,2,...,N] where the wind
components U and V, the geopotential ¢ and g are positioned. ¢ and ¢ are also defined on
the boundaries (top level 0 and surface level N+1). These N layers are delimited by N-1
interfaces corresponding to N-1 so-called thermodynamic levels [3/2,...,N-1/2] where are

positioned the temperature 7" and the two vertical motion fields w and ¢, exactly in the
middle of the momentum levels. Z also has 2 additional levels [/2 and N+%] corresponding

to the top and bottom surfaces. 7 and w also have 2 additional levels [%4 and N+V]
positioned exactly in between, respectively, the top surface and first momentum level and
the last momentum level and bottom surface.

See Table 1, page 57, for a summary of the model equations and transformations.
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8) Semi-Lagrangian Implicit time discretization  (n.b. not Semi-Implicit)

- Approximating the substantial derivatives and averaging the dynamical
Sforcings, each of the equations (index /) may be formally written as follows:

E-FG[:O
dt
A _ D
%;izflzji—; G =b'G! +(1-b")G?; b =0.5:0.6 (off - centering)

A: (r,t) Arrival
D: (r-Ar,t-At) Departure

- Separating the time levels (T = Ath”; B = (1 - bA)/bA)

4 _ D
fligfi-+bAGf+%1—bAk#>:o

- Decomposing the left-hand side into linear and residual non-linear parts

4
i+GiA =L +N, =R
T

4
L = : +GiA

T in

4 4
Ni_i+GiA_ : +GiA

T T in

- Defining the solution method (a Crank-Nicholson scheme)

L =R -N,

Iterating (jter: departure loop, iter: non-linear loop) :

Do jter=1,2
Do iter=1,2

(Li)iter,jter - (RA)jter _ (Ni)iter—l,jter; (Ni)(),l — Ni(l‘,t _ At)

1
end do
end do

(Ri)jm — Ri(t - At,r - Arjter); Ar/ = % (V(l‘ ~ D)+ V(t)jm)(r _ Ar_/re,._l)

2

v(t)l =v(t—=Ar); Ar’ from previous timestep
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9) The F’s and the G’s

—¢ —
F, =V, G, = /kxV, +RT D((BS"'Q)"'(I"'/J )quf
FWEW GWE_g”
_ G E—K‘
FTEln%%KBs+q() ’ <
F.=B's+m(1+8Bs]  G.=0,0V,+8¢ +{
FqJEaZ G¢E_RT*Z_gW
G =1+p-o* %9 _415=0
£, =0 g @Z(Z"'BS) 0
F, =0 _T . B (@/RT.+Bs) O
G, =—+e" [ -1=
. g 6(+Bs) g

N.B. Since F,=F+=0 and G,=G;=0, then of course R,=R;~0.
The role of diagnostic equations is to abbreviate other equations. If, in the 6 prognostic

equations, we replace the symbols i and 7 by their definitions, the diagnostic equations
as well as the associated variables vanish.
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10) The Left-Hand Side terms: L; + N,

A
i+G4
T

1

L +N. =

1 1

Prognostic (dropping the superscript A):

L, +N, =Yi4+ kxV, +RTZD((Bs+q)+(1+/_1()D(¢
T

L +N, :K—g

- (4
1. Or . Bs+q' [
LT+NT:—IH%E‘K +—H
T " T

. =¢
+Dz v, +5{( +{

L.+N_ = Lig¢ +1n(1+3,Bs)
T

—

_9 ;
L¢+N¢_T_RT*Z_gW

Diagnostic:
L,+N —1+y—e?‘5557q+1g—0
S %[ +Bs] [
. B,(¢/RT. +Bs) O
L,+N, = £+engz(¢ S)—lm:O
T. 0 5((Z+BS) 0

GEM4.1.doc 15/02/2011 16:45



11) The linear Left-Hand Side terms: L;

A
F U
L=rt-+G'n
DT inear

Linearizing (approximating the logarithms [ln(l +a ) =a], the exponentials [
e’ =1+ a ] and the products [(1 + a)(l + ,B)il =1+ a * 3]; note the Coriolis term fKXV,
is treated as if it was a non-linear term) yields:

L, =2+ 0, [@+RT.Bs + q)
T
w
L,=—-gH
T
LT: T - +BS+q H
TT. T H
l|=¢ ;3¢
Le=[B's+0;Bs|+ 0 OV, + ;4 +{
—¢
L¢:¢——RT*Z—gw
T
L, = _(‘5(‘]”7()7’&0
! o +RT.B
LH=£—55+—((¢ S)¢O
T. RT,

GEM4.1.doc 15/02/2011 16:45 15



12) The non-linear Left-Hand side terms, /V,, are the left-over differences

and therefore:

=
.
|

' 3, (¢+RT.Bs)
=% _ 7
% TR % iy

GEM4.1.doc 15/02/2011 16:45

16



13) Elimination of the diagnostic equations from the solution system

As noted above, R,=R;=0. It is then convenient to immediately eliminate the two
diagnostic equations, involving the diagnostic variables (4 and 7°, from the Left-Hand side
terms, i.e. to eliminate L,, Ly and N, Nu. We are left with 6 basic equations for the linear
system:

=+ O, g+RT.(Bs +
T
L +glL, =L :K—g(6(q+q()
T
¢ +RT.B : o
LT_L—HEL'T:q——JZ(w S)_K +BS+q E
T T TRT. T E
l|5¢ iy
L.==Bs+¢,Bs|+0, IV, +8,{ +{
T
—¢
1,=% -RT.G - gw
T

Similarly for the non-linear system we have

N, = /kxV, +R7'(D((BS +Q) +/TI(D<-¢
N, +gN, =N, =-glu-8,q-7°)

o, T e Bl
N, = %[h+JBA 3, Bs|
N, =0
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14) The Previous time step on the Right-Hand Sides: R,

(dropping the superscript D)

R, =Y
T
RW:K
T
R, :lgn%;%KBs+é
T *
c :% §(s+ln(1+5(Bs)
—{
¢
R,="—
T

GEM4.1.doc 15/02/2011 16:45
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R =~——-BG’
T

1

By, + RT0 (B ) |1+ B o)

- B[~ gu)
-Bl-x¢)
B v+ 8¢+ 8 f

- Bl-RT.Z - gw]
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15) The elliptic problem

—{
Introducing P = @+RT, *(BS +q) and X :Z + Bs+q , the linear system takes the
form:
V1
L, :T]+D‘P
1 - W -
Lw_?_g(d(q-'-q )
1( —() J(P
L. =—0,9+q |- -
r 479 1" R,
1 =\ —
LC——?5(q+q +0, IV, +9, X + X
—{
L= —RT.X - gw
T

The number of equations and dependent variables, V,, w, P, g, X, is easily reduced to 3 thus
(variables left: P, w, X):

-
1 L', ., _ 1 -7 g€ —7¢
U, [Lh__ELC_—H=Lc—D§P_;(JZX+X )+—w

T gT H TRT.
L' - X
Y Ly g B o Y s pogpf)- X
KT gT RT. KT’RT. T
2
KT gr RIT. KT RT. TRT.
'hf_RT* dv=
wit —g2T2 an y—K+£.

_x 4

— . .
Here note: we have assumed d,¢" =9,q , i.e. we have assumed commutation of

the mean and difference operators. See Appendix 5 for further details on averaging
operators and commutation.

Finally, these three equations are combined to give:

S I S Y |xp.m5¢ _—a)
JZLT+LT) EL'y =Ly =Pt o \O(P+ 6P g(l-k)P

L"C _

again provided commutation holds.
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This is the elliptic problem to be solved with boundary conditions (on P) given by

-
J— . +
r=-—Y (JZP—sP()—l P Bita b

KT’RT, T T E

applied at both top and bottom as follows:

Oy ( —z)D .
T P-gP =-{L
TZRT* 6{ 8 |:| ( T)T

D _Z D n [— m
TZ}ZQT* (5ZP+KP )% :_(L T)S +T2¢1)§T* __(L T)S
In effect
—q
porrilog
r
¢
P_
7

since ZT =0, B, =0 and g, =0 at the top and (noting that X = Z + oy
KL,

‘+BS_+5(B=1(Q vs) =B ®
T a T’ TRT.

since ¢ ¢ =0 and Bg =1 at the bottom. @5 is a known quantity.

N.B. These are closed boundary conditions. Open top boundary conditions are

considered in Appendix 9.
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16) The non-linear problem

To find the solution to the non-linear problem we need to perform the following
operations iteratively

1+iter, jter

) Jjter ( ) iter, jter
h

) Jjter ( ) iter, jter
w

" )jter ( )zter,jter
T

R" )/ter ( " )zter,jter
R )]te) _ ( )lter,_]ter
P

L+iter, jter

)
(z,)
(L,,T)um,m
)
.

=

n |l+iter, jter
2,
( 1+iter, jter
In order to obtain Ry, R";,R", and Np, N";,N",, we transform the R’s and N’s, like was

done for the L’s to obtain Lp,L";,L",, ie.

R
(R
(
|
(

H H— " _l N'W( H— "
0, R, - THRC gTHR O¢ N, = Ve e N",

R £ N'
l T+_ 0 R"T l VT _w + N‘p NHT
KT gr  RT, KT gr RT.
R N'
l r 4+ W - K Rq; ER"¢ l vT+ wo_ K N‘p ENu‘p
KT gr RT. KT gr RT.
R'.~\8,R",+R",‘|-€R", =R, N'C_JZN"T+N"T()_£]V_"¢( =N,

Note that we have R,,R; on the left and N',, N'; on the right and remember that
N _ =0
¢ .
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17) Back substitution

The following equations give in a straight forward manner the 6 prognostic
variables V,,w,q, (S,ch and @’:

v, : Vi 2[R, -N, -0, 7]
T
O —z\0d
oo WeRRGe v Y g pexr
T g 0 KT’RT. 0
—¢ 1 w(]
q: O,9+q =——§QW—N'W——' qr =0
¢ g g
Ps—¢
S §=——-
RT. qs
—
- J l y ( —Z)D Bs +g¢q ; ;
: ~=-R".-N"+———10,P—€P ; ={.,=0
¢ T %QT " KkT*RT. ¢ E_ T’ r=4s
Ik @=P-RT.(q+Bs)

Finally we may compute ¢ and 7" diagnostically:

1+#:35(E,637q+1g

(¢ +Bs)

T _ o« 3,(¢ -@/RT.)
T. 6{(( + Bs)

For a brief description of The Dynamic Core Code, see Appendix 6.

There is THE HYDROSTATIC OPTION. For a description, see Appendix 7.
There is THE AUTOBAROTROPIC OPTION. For a description, see Appendix 8.
Aspects of HORIZONTAL DISCRETIZATION are given in Appendix 10.

See Table 2, page 59, for a summary of the equations, variables, etc.

THE END
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Appendix 1. Virtual temperature

In presence of water vapor ¢, and various types of hydrometeors ¢;, the density of
atmospheric substance is given by

p=plg, +a,+Y q)
where g, is the dry air specific mass. The equation of state is given by

p= p(qud +quv)T
= de(l +dg, = zqi)T

where 0 =R, /R, —1=0.6 and we rewrite the equation of state as follows:

p = IORd T v
defining virtual temperature thus
Rewriting the equations to appear in terms of virtual temperature and approximating the
ratio K=R/c, by Ki=Ra/c,s, the equations of section 1 may then be replaced by the

following:

dv

E+kaV+RdTvD1np+gk:F
dInT, i dlnp: o, _ TB)_dqv quiE
dt “dt e, T, e, T T 0 dt ©
dnp v =o
dt
__ P
p RdTv

From the point of view of the pure dynamics, these equations are formally identical to
those in section 1 in which R and ¢, would take the dry air constant values, temperature be
replaced by virtual temperature and appropriate source terms be added in the
thermodynamic equation. The advantage of this formulation is of course the fact that the
parameters R and ¢, no longer varies while all of the virtual effects, including water vapor
buoyancy and condensed water loading effects, are implicitly taken into account. The only
approximation made here, the replacement of K by K, in the thermodynamic equation, is
facultative.
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Appendix 2. Coordinate transformation rules
Appendix 2a. Invariance of the total derivative

By the chain rule we first verify the invariance of the total derivative df/dt under a
general coordinate transformation. In effect, if we consider f(x,y,z,f), then:

a _ E%D E@H dx %% dy+B&H dz

dt dt [0z gy,dt

while for f{x,y, {, f), we naturally have:

df _[of of
E_g%@b,(-k %EZt %E

Here we only have changed the vertical coordinate from z to ¢ with the result that the
horizontal components of the velocity (dx/dt,dy/dt) = (U V) = V, remain unchanged. The

vertical motion though has transformed from dz/dt = w intod{ /dt = { . Shortening the
notation, we also write the above relations respectively as follows:

g B‘leEﬂHw%% +V, O, f + gf

dt [0t [ Z

df BEL UHLH +V Zaf +V, M, f+ Z of
dt [0t Q 14
Thus we minimize the indices. We also introduced the vector notation for the ‘horizontal’

part of the advection operator. Note though that the new coordinate { is generally
curvilinear and non-orthogonal and the scalar product must be interpreted with care (see
appendix 2c)

Appendix 2b. Transformation rules for derivatives.

It is remarkable that not only can all these rules be recovered from the invariance of
the total derivative but also that these derivative transformation rules suffice to transform
completely the Euler equations. In effect, the three velocity components may be treated as
three independent scalars (‘pseudo-scalars’), the velocity vector not being transformed (we

are left though with a ‘hybrid’ system since maintaining two vertical velocities w and {

and therefore needing an additional predictive equation when (aZ /0t ) :£0).

The transformation rules are obtained by equating the above two relations. In effect,
we must have
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and since

then

Each bracket must vanish independently. Therefore the rules are:

PH-PH-RY

0ot 00t [0t} Oz

Zh-h Y

MOx0 [OxG [OxG 0z

wiThi s

Appendix 2¢. Vectors in non-orthogonal curvilinear coordinates

In non-orthogonal curvilinear coordinates X = ()%1,)%2,)%3) (see Dutton, John A, The
Ceaseless Wind, chapters 5 and 7), there appear two sets of basis vectors (usually not even
of unit length) and two sets of vector components. Applying the chain rule, we obtain the
following two expansions (summation convention):

ix= X g ar = g0 = (09
ox’ Ox’
=1 ,d%’ =1’ Ldix

where T; is covariant: fangent to the curve along which only %’ varies and n' is contra-

variant: normal to the surface %' = const. and we have the orthogonality relation
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i — xi
™M =9
Representing a vector A as
— fk — k
A=4"1, =4n

we may recover the components [Ay (A¥): covariant (contravariant) components] using the
above orthogonality relation:

Al =47, iy
4, =A0, =471,

The scalar product is
AB=4'B, = 4,B"

Therefore in generalized vertical coordinate X = (x, »,{ ) the basis vectors become [the
original orthogonal Cartesian coordinate being X = (x, ¥, Z) =xi+ yj+zk]

D= =i T, = =it —k
1l * "o 0x
ox 0z

2=y =i =—=3j+—k
n V=1 T, ay J ay

1]3 = DZ T, d_x = 0z k
0{ 0{

The contravariant components of the velocity vector ¥’ =V [q' are found to be
U, V,VInZ =¢

While the covariant components of the gradient 9f /0%’ = 0f [, are found to be

2R A 2
Dox 3 BovEy o¢
And the vector product V IIf" may be computed as follows:

VIIf =V'r, @ﬁi

_o O f
_§]§+aka+V% E-*Zaz D@X%H-%%“-_DZE
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Figure 2. Representation of the wind vector in both
orthogonal z-coordinate and oblique {-coordinate
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Appendix 3. The metric parameter B and its effect

The log-hydrostatic-pressure is given by

Inm=¢ +B({)s: s=Inm, = =hlm;/ p,,]
A:Z_ZT
ZS_ZT
B=AX"; r=r ‘(” -7 )A

In7t={ +B[Inm, -

We want to investigate the behavior of this relation as a function of B and the surface
pressure 7I;. We have 0 < B <1; we calculate the derivative

dlnB _ 0rlnA l
0A 0A A

[r—Ar/\ln/\]ZO; Ar=r,, —T

min

Monotonicity requires that

Ot _ 1, 0B~z % 50
ol 0A 14
—1 —1
In 775 B {; _ B {;
K=21- “irE k=1- ~or
e K 1 s

Tlg > Doy eXP(K)

When 7 is constant (4r=0) , (OB/GA)maX =r at A=l. K=l-1/r(1—ZT/ZS) and the

. . . 1g.¢ - R
monotonicity requirement is T, > pmfl‘;%‘é E For Dip =10mb;r =4

04

;> (105)1_ 4 =316mb - Not too restrictive. Nevertheless, we must worry about the amount of

squeezing of the layer thicknesses even when 775 is larger:

Alnﬂzl_ BH L, —Inm L

Maximum squeezing ratio when
queczing A DAGWOC -4 b
Aln 7T B Un\p,, /1)L
Surface squeezing ratio when LIPS H (p L S) C
AZ EﬁA E*Jr:f n pre,f' /pwp E

Let’s say 7T;=500mb, then
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Al In100

Alnr _ 4 In2 _

With r variable, we may at the same time avoid too much squeezing near the surface where
the layers are already quite thin, while achieving fast rectification. For example, we may
choose 7,,,,=2 (r at the surface) and r,..,=15 ( at the top) with a maximum squeezing ratio
of ~.45 but a surface squeezing ratio of ~.7. Two figures are shown below: The 57 fitted
levels of the Meso-global staggered version of GEM in the new {-coordinate (a) with
Pmax=Tmi—1 (Figure 3), (b) with r,,,=15 and r,,;,=2 (Figure 4).

Levels, coef var, (1,1) Layer thicknesses, squeeze factor=0.85
o _| o |
o o
/\
——/\
N | N
[=3 /\ o
"J A ”J
© | /A\ © |
o /\\ o
o _| © _|
o o
o | o |
I I I I I I I I I I I I I I
0 1 2 3 4 5 6 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 3. The 57 fitted levels of the Meso-global staggered
version of GEM in the new {-coordinate with 7, =ru=1.

GEM4.1.doc 15/02/2011 16:45 29



Levels, coef var, (2,15) Layer thicknesses, squeeze factor=0.69

o | Q |
o o
N N
S 7 I~
B X
o o
) L)
11| 11|
© ©
o ] o ]
[+ [}
oS 7] c 7]
e e
T T T T T T 1 T T T T T T 1
0 1 2 3 4 5 6 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 4. The 57 fitted levels of the Meso-global staggered
version of GEM in the new {-coordinate with 7,,.,=15 and 7,.,,=2.

The surface pressure at the top of the hill is 500mb. The ‘squeeze factor’ is the surface
‘squeeze factor’. The red (black) curves correspond to layer thicknesses in Eta-units above

(below) the hill [Eta= Zi - ZT 1.
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Appendix 4a. Detailed spatial discretization with staggering: the linear terms

In section 7, we described the vertical discretization succinctly. In section 15, we
examined the Elliptic Problem. We showed that all variables could be readily eliminated in
favor of P. We now go back and examine the discrete linear system leading to the elliptic
problem in full details. As mentioned earlier, the finite differences replacing the derivatives
are made as simple as possible, i.e.

(JZF)k_i =Ll (5 G) :ﬁ
©O DAL k=N T T A (k=1,N)
Azk_%:Zk_(k—l AZk:ZH%_Zk_%

with the top $o = (% =4, the surface {nn=¢ Nl T {s and the momentum levels

¢, (1 <sksN ) specified ~ while the intermediate  thermodynamic  levels
{ ! = % (2 <ks<N ) are calculated. The use of averaging is minimized. Starting
with (LC) ‘s (Vh) . and X k-1 are chosen and therefore (Lh) , and P, . The hydrostatic case
(g being absent) suggests (L'T) k-1, therefore (LH) k-1 and r «-! (section 11). In (L'T) k-1
and (LH) k-1, we now introduce ¢, . This in turn suggests (L'w) k=L, Wk_'? and finally

(an) k=L Hence

(Lh)k :Bﬁ"'D(PH (kzl,N)
or 0
(), =0 - g8, +7° )% (k=1,N+1]
4
(Z)) o :?q:q —f}g; ~ KX (k=1,N+1)
—
(L), :%—qu%m(whwz)( % (k=1,N)
5X4
(%)k_;:%‘DT—RT*X—gwaJ (k=1,N +1)

In the vertical, this leads to Charney-Phillips grid (Figure 1, page 11). For the two vertical
means, we formally write
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= — - —¢
(F )k—% _wk_%Fk +wk_%Fk—l (G ) —ka A
_ . and = :,

2

The first one, averaging variables from momentum or full levels toward thermodynamic or
half-levels, follows the rule of calculation for the half-levels, i.e.

This ensures optimal (second-order) accuracy for the hydrostatic equation Ly in particular.
For the second one, averaging variables from thermodynamic levels toward momentum
levels, three choices were considered: linear interpolation, simple average, average
commuting with difference. Due to lack of sensibility, the last was adopted because it
simplifies the code:

w,j :AZ’”% - =€, (
2AZk Zk+1 _Zk—l
. AZNJri ZN+L_ZN

a =
" AZN ZN+l_ZN-l

1<k<N-1)

More explicitly,
\%
(Lh) k = :.k +|:|(])k

(') _ et qu‘

_ q k-1 + -
whi-1 = T gH ¥4 | +wk_ﬂk+wk_ﬂk—1ﬁ

+ - H_ 1 P =P, _
1 k=3 = E TRT, Al o k=3

O
(LC)k :_l% Ebgﬂ( s +w,:+%Qk+1 +w,;;qu+w ELIAZ
E kel
X —X ,

+ +—2 N +m;
O, IV, , AZ, ka“% kak_%

i, )
Loy Sp BB REX,

qkl+w lgk+w lgkl%
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We have in the vertical direction 3N [L,, L1+ 3(N +1) [L', L', L,], i.e. 6N +3
equations and 2 N [U, V]in + 2(N +1) (WX ]iannn + 2(N +2) [P,qlon+1 , 1.6. 6N+6 variables.
As expected (section 7), we will need 3 boundary conditions in the vertical to close the

problem. Now, 3 variables (V,, ¢g) can easily be eliminated by combining the equations as
follows:

1 - 1 |:|— "
Te ), - Al — il ) v (n) o= (e,
vy, RN £ O_ /0
KT %Lr)k ! +gT Lw)k—l+RT* (L‘P)k—;E (L )
y 1 1 1 K |:| n
L Ar.)  +—(L - L) =L .
P L A A - (N
to give
" — IHXIH'% _Xk_% + - ge + _
(L.), =P, _;EA—QWkX’”i +kak-iE+rRT* Eﬂkwk% +wkwk_%E
0 0O X
R E— 4 P By p v P =2
ks KrRT. O N gk ey T
O ks O
O 0
), =t PP b, vy e S
Pl KTPRT, O AL s F T "“%L TRT.
O " ks 0
By further forming
-
- AZ (L ) o wk(L T)k—% =
k
O C
y Dl Hpkﬂ - P, P PkIHw k+1_Pk+w—Pk_Pk—1[
KT’RT. DAZkHA( g ﬁ ¢ g, ¢ A7, E
ye 1

- “ P, +m P %EDJ'IP +w‘lp_%
KTZRT* AZ H wer e e T

1HX,_ : 0

wX +w, X
O Az e - O
TD A(k i
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and

0 [
_8% Ln +wk(Ln) _IE: 2y£ %I:'Pkﬂ Pk +wk—Pk Pk—1|:|
=0 kr°RT.0O° AL A O
D k+7 k—f D
_ YKE
KTRT k+Pk+1 W Pﬁ*‘ﬂkﬁv P tm P,”%
g€ . _
T IrT, el +w"wk-éﬁ
and finally
() o = (L7 ) ]
(L"C) ko ZAZ _wk %L"T) k+% + £(L"¢) k+i E_Wk %L”T) k—% + 8(L"¢) k-1 E: (LP)k
k 2 2
we succeed in eliminating X and w. In effect, we have
0 [
( ) —[2p y Dl BPkH_Pk_Pk_Pk—l +w+Pk+l_Pk+w—Pk_Pk—l|:|
T PRE 7, SAL,, A “ar Tz =
I 4 %U Pin =Py | o P =Py _w’”%PkH +w"_"lPk Bt ‘%Pk _w"_"%Pk_l E
KT’RT. D A( ’ A( AZ, E

-k
L) b Pﬁm@v e r

The second bracket corresponds to the difference 5 P -0, P° which vanishes by

construction (commuting average, see Appendix 5). Therefore the final result is

O
y Dl HPkH Pk_Pk_Pk—l " +Pk+1_Pk+w—Pk_Pk—l
. A ﬁ YA Y

_yél-k) P T P%fwﬁv P @ P,
KT’RT. ks

N equations and N+2 unknowns.

Arrir
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Appendix 4b. Detailed spatial discretization: matrices of the elliptic problem

The matrix of the elliptic problem is composed of the previous equations (k=1,N):

Azk(LP)k:AZkDEPk-’- 2y %Pkﬂ_Pk _Pk _Pk—l Azk MH.U,;P" _Pk—l%
KCRT.LHAL A, F A, 8

’:?R'T( zk%% P T Pﬁﬂvﬁﬂ P +@ PH%

(note that it has been multiplied through by A{ ;) plus the boundary equations:

—z\10 -
= - P PyEe= L")
)E KT2RT. H A, € . 1+w5 o% ( T)z

d

y 3l N 4 ;
grzRT*(JZPJrKP )Hv KTRTHZ} . ﬁu Py *@,, P% AL ey

2

which are used to reduce the number of unknowns from N+2 to N. In effect, we find:

Py=a;P +C; (L" )i
Py, =agP, _CS(L'" )

with
a —; = - _
’ AL, +ea ’ y /D] +em
I/A( N+L _KwN+l KT’RT, 1
a. = 2 ; = *
’ 1/AZN+1 +Kw]‘:7+l ’ y 1/AZN+1 +Kw;\-/+l

Therefore we may rewrite the equations for (Lp) ;i and (Lp) v as follows

AZI(L'P) 1= AZI(LP) ¢ (L"T) .
AZ,(L,) y =08, (L,)  +Cg(Lmy)

to get respectively
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Az (L), =0g,(02p), +KT2};?T* EPZ;*PI - (1_A6;T1)Pl ' AAAZY (P, - P +A§%(1—aT)PE
e e+ o o e
and
S S S e GRS Et
fil R’T‘)mzvgvxﬁv;+;as+w;v+;ﬁ+w;w;_;§m+AzNw&w,;_;PN-1§

with

/8, —A(lwgﬁmzl +e(1—x)w;ﬁ
/A, +em

CHT -

1/AZN+l+A(Nw;E/AZ ~gl1- K)wwﬁ
s = 1/8d 1+Kw R

2

The vertical matrix problem may be decomposed into a combination of a diagonal

P and a set of tri-diagonal matrices, Pss, Py = P,s, Py, representing respectively a

double difference, a mean followed by a difference or a difference followed by a mean and

a double mean as follows:

P(L',)=PO2P+ KTZ’;T* P, + Py, —£(l-k)P,|P

The tri-diagonal matrix elements for 1<k <N are given by:

Py = P, =0 P, =4(,
(PJJ)kH,k =l/AL, 1 (PJJ)k—l,k =1/A{ - (Pb'b')kk ( Ja)k Lk (PJJ)kH,k
(Ptfﬂ)kﬂ, - AZ (D,:/A( k+% (PGﬂ)k—Lk = _AZ kwk_/AZ k-% (PJIJ)kk ( Jﬂ)k ~1k (PJIJ)kuk
(Pﬂl-‘)kﬂ,k :Azkw;w;% (PI-‘I-’)k—l,k =A{ o, @ : (Pw,)kk = Azkﬁﬂkw %+wkw ﬁ

and for £=1 and k=N by
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(Paa)m = _(Pacs)z,l _(1_ar)/Azi (PJJ)N,N = _(PJJ)N—I,N _(l_as)/A(

(PJ[I)H = _(PJﬂ)z +(1 a )AZIWI /AZ (PJ,U)N,N = _(Pﬁﬂ) ( )A( w /AZ

P,/ —Azlng +w§u +wa% m, -AZN% ﬁvma t@ ﬁ“‘"‘f;g
After solving the elliptic problem and therefore knowing 7, to Py, we calculate

F, and Py., using the relations:

Po = CT(L"T)% +aTP1
Py, =asPy — CS(L”'T)

N+L
2
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Appendix 5. How were chosen the averaging operators and note about commutation

Let us consider two variables, G and H, defined on separate staggered grids as
follows:

G_.=6(¢,) 5 H,=H({,)

indicating that G is defined on half-levels while H is defined on full ones. Only the
independent variable { could and was defined on both types of levels and thus take the
two types of indices. The metric parameter could also sometimes be defined on both types
of level, hence two different symbols (B on full and B on half levels). To obtain the
variables G and H on their alternative grids, averaging operators @ and a such that:

(aG)k :aka% +(1 _ak)Gk_% ; (aH)k—% = ak_%Hk + @ —ak_% %’lk—l

are introduced. In the following discussion, difference operators will be needed and we
define them:

1 H,-H,, - H,-H,,
2 Zk_(k—1 Azk_l

Now, let us consider the discretized elliptic equation derived in section 15 and which we
write formally as follows:

0:P, + %(52 +ad +&(ad - &) - (1 —K)aa)PE41 =(L,),

There is a term,&(@d — &), which was assumed to vanish, which has no analytic
equivalent but which vanishes only if the mean and difference operators commute. Let us
impose this condition and examine the consequences. We get

P, —-P P -P
(aoP), =a,(oP),.. +(1-a,)(oP),_ =a, L "k +(1-a,) L1
k k ket k k=1 k A(k% k A(k_%
(&IP) _ (ap)k+% _(ap)k—% _ ak+%Pk+l + E _ak+% %Dk _ak—%Pk - E _ak—% ﬁgk‘l
‘ e e
implying
A, 41 A, 1 ak—%
AZ]H-l ak ’ Azk—] 1 - ak
and either
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Azkﬂ _ ak l_ak_'% A(k*'l a l_a _;

(a) A, 1-a., a or (b Y4 l-a, a

If the relation between the half and full levels is given, for example if, as we have chosen:

4+l
7T
then we most likely want
a =t
k=2
From (b) we get
A(k+l Azk+l
ak = 2 - 2
Azk_l +Al ! 20,
and thus
Al G +A G
s g B _H +H,_
(aG)k = ) (aH)k—l =t —=
20, 2 2

Instead of choosing ¢

x-! off-hand as we have done, we might have imposed another
condition such as the symmetry of matrix M formed by the product of the matrix obtained
from the double averaging operator @a and the diagonal matrix with elements A | i.e. if

we had imposed that the tri-diagonal matrix M whose elements are

(A(aap)k =Ad,a, Hglﬁ,;f)kﬂ +§_ak+é ﬁi @(1 _ak)AZk Eyk_ipk +§—ak_% QJHE

= Mk+1,k])k+l + Mk,k])k + Mk—l,kljk—l
be symmetric, i.e. setting M1 =M, 411, ie. A, Q4a, = (1 - ak+1)AZk+1§ —a,.. E, ie.
2 2

© Ad,. -_a a"*é
© N, 1-a.,l-a,

2

Then, combining (c) with (a), we would have again found

N | —

2

In the original formulation of the staggered-grid version of the model, we indeed wanted to
obtain symmetric matrices in the vertical (maintaining a property of the regular-grid
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version of the model) and commutation occurred naturally (only one mean being explicit in
the code, the second one occurring only in the elimination process). With the new
coordinate we lost the symmetric property due to the presence of a first derivative in the
analytic problem. But the requirement that half-levels be exactly in the middle of full levels
is good for the accuracy of the hydrostatic relation and the commutation requirement,
besides simplifying the code, may serve in improving the conservative properties of the
scheme.

So far we have dealt with the difference and average operators away from the
boundaries. Let us now look at them near the boundaries. The equations defined on half
levels apply to the top and bottom where difference and average operators operate on some
variables, namely ¢’ and g. But their values are required at one of the boundaries [@’s—= @
s at the surface and ¢;=0 at the top] while their values at the other can be obtained by
numerical integration provided the difference operator leading to them is defined which it
has been (it is by construction an off-centered difference though). This is why we consider
the top and bottom to be full levels as far as ¢’ and ¢ are concerned, respectively labeled 0
and N+1. The averaging operator then simply selects the corresponding value.

One last item remains to be explained referring to Figure 1 describing Charney-
Phillips grid. In the preceding paragraph, we said that some equations applied to the
boundaries. With the presence of ¢’ and ¢, all required variables were also apparently
defined there but, if so, the difference operators were off-centered and therefore only first
order. Centered differences are recovered if we displace the thermodynamic and vertical
momentum equations as well as the variables 7" and w to the middle of the half-layers
nearing the boundaries [to levels ¥4 and N+ 4 as shown in the figure]. This is what we have
done. We believe this is beneficial for temperature in particular which is shifted from the
surface to a better place from the physical as well as numerical point of view. To better
assess what we have done, here is a formal representation of the three linear equations
affected by the change for the top (a similar change occurs at the bottom):

). =

_lql_ql 1 Pl_Pi Bs+qO
(2); =07 S
+ 1 AJ, TRT. AL, T B

2

(L), = = -RT,

-gw,

In the thermodynamic equation defined at level % the term in brackets remains evaluated at
the boundary, level '4. In the geopotential equation defined at level Y4, w is taken at level %a.
This can be interpreted, in the first case as an interpolation, in the second case as an

extrapolation, constant in both cases [f : =af : + (1 -a )f ! with a=0].
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Appendix 6. The Dynamic Core Code and vertical discretization: 4 brief description

The dynamic core code is essentially organized as follows:

set_zeta, set_dync, set oprz, preverln: compute constants and parameters of the

vertical discretization
Timestep Loop

tstpdyn: performs a dynamical time step calling rhs, adw, pre, nli, sol, bac

- rhs: compute the 6 basic Right-Hand-Side terms: R,,, R,, Ry, R¢, R,
(section 14 )

R, =% _B(kaVh +RT(D((BS+‘]) +(1+/_1()D(¢)
w
R, =— - B(-gp)
T
=1 m%% K(Bs+4° m -pl-xZ)
_l5 . 34
Ro=— B’ s +In(1+ 3, Bs] -pﬁjz v, +8,{ + ﬁ
—{
R,= 2 ~pl-r1¢ - ]
T
Departure Outer-Loop
- adw: adw_pos: Compute the next estimate of the departure points.

adw_int: Evaluate Right-Hand-Side terms at departure points.

- pre: combine R;,R,,R, into R";,R", combine R,R,.R. into R". and
finally R"c,R";,R", into R,:

(section 16)

y

£ +

RHT
KT gr  RT.

VA= S
kTH ' gr RI
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oo - B e,

¢ _
—&R 0 =R,

e Sy T

The final version of the Right-Hand sides are: R,, R,,R";,R", R,

Non-linear Inner Loop

- nli: compute non-linear Left-Hand sides: N,, N',,N'; , N, N,
(section 12)

N, _kaV +RT*O (BS+‘])+I1(D(¢
N'=—g# @q

v __@ %% ¢+RTBs D

N, = %[h+5BA @B4

I:II:I

N,=0

and combine them into N";,N",,N"-, N,

Nv
L%’\[Vr w + 8 N¢% N"T
KT gr RT.

(section 16 )

y 1 N'W K — "
T + B NrpE:N 9
KT gr RT.
—

|:| EN _l%\,c — Nw HE N"c

T eT H

" wogn ¢ N
NC—J(N PN, N =N,

and obtain final Right-Hand Side of the Elliptic Problem L= Rp-Np, including
modifications imposed by boundary conditions ( )land (L' )

(appendix 4b)
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- sol: solve the Elliptic Problem
(section 15 & appendices 4a and 4b)

P(L,)=PiP+—Y [Py +P, —e(l-k)P, )P

T’RT,

- bac: back substitution: compute variables for next iteration/time step
(section 17)

=[Rh —N, _DZP]

Vh
T
w
T

7. )% ( —Z)D
— "N 4 5<P + P
% @ ® Ia_’zRT* ]

e 1 w ]
Sq +q —§W —N', T
< g =

_—q@
S RT. qs
_Z.=_ "oo__A7" y ( P_ FZ)I:I BS +5Z
T %T N T+KT2RT* xP—& EF T
@=P —RT.(Bs +q)
lp=e 5 %141
(& +Bs) O
T _ < %\ —¢/RT)
T. &, (& +Bs)

end inner loop

end outer loop

end timestep loop
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Appendix 7. The hydrostatic option

We start with the final form of the equations given in section 5:

ZLe+ foxV, + RTT (Bs +.4) +[1+ )0, 9= 0
W _ =g
i 8

E%n%%‘ S+q D_KZ 0
d U H 0B Ba &
— Bs+Ind+—= 0, v, + +10{d =0
dtgg 0 o % TN ¢ O

a¢
dt

l+p-erB % 1P

B¢ +5s)
T _ .0 -¢/RT)
T. d(¢ + Bs)

~RT.{ - gw=0

=0

The hydrostatic approximation may be considered to consist in neglecting non-hydrostatic
pressure effects, therefore assuming g=0. Then =0 also and the vertical acceleration dw/dt
is neglected. In fact, the vertical motion w becomes irrelevant. Neither the vertical
momentum nor the geopotential tendency equations are required in the solution system

although we may still solve the geopotential tendency equation to diagnose w. Therefore,
we only need to solve:

av,
dt

+ /KxV, + RTO, Bs +0,¢ =0

—@H%E’KBSD—KZ 0
d 0 oB -
EE]ﬁS'FIHE‘FﬁS%"'D( D]h +@ﬁ7+1§ =0

T _98{-¢/RT.) _
T. d(¢ + Bs)

All the terms involving the prognostic vertical momentum and diagnostic (4 equations
which were not already equal to zero are set to vanish: F,, Gy, Ly, Ny, Ry, Ly, Ny L'y, Ny .
The parameter £ =0, hence y=I.
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Appendix 8. The autobarotropic model

We build an auto-barotropic model (Dutton, The Ceaseless Wind, pp 186-7) from the
three-dimensional code of GEM in order to simulate a barotropic model. We do that in

1) eliminating the physical effects,

i1) making the hydrostatic hypothesis,

1ii) introducing a key O,op =0 to eliminate the pressure tendency d(Bs)/dt in
both the thermodynamic and continuity equations,

1v) in initializing with barotropic conditions :

V,2V,(¢); T=T. =const; { =0; ¢g+RT.Bs = ¢, =@, +RT.s,

conditions which will be maintained afterwards, hence the name autobarotropic
model.

From the complete equations:

dv,

Tth+jkah+RTD((Bs+q)+(1+u)D((d:Fh
dw

3, —-gU=F

H dt g/-l w

4,0, o 0o
dtln%%K%(Bs+q)+za cpT

d 0 3,98 % ol
—MBs+nd+—s= O,ov, +—+{ =0
thB 0O o m ° "

dg :
¥ _RT. -aw=0
7 {—gw

l+p—et 9 415
B¢ +8s) 0
T _ 0 -@/RT.) _
T. d(¢ + Bs)
Z - ZT
{s=¢r
heat and we make the hydrostatic approximation, reducing the number of equations and
variables to (see Appendix 7):

with B defined simply as B = , we eliminate sources and sinks of momentum and
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th + fkxV, + RTU,Bs +0,¢=0

_m%% =B +ZH_

T 8¢ -¢/RT.) o

7.  9(C +Bs)
Considering barotropic initial conditions (V, # V, (Z ); T =T. = const; Z =0), we derive
from the hydrostatic equation that P is uniform in the vertical:

P=@+RT.Bs =@, =@, + RT.s # P({)

and we note that
g = (UT_(pS
RT,

_0(¢-¢/RT.) _0(¢/RT. +Bs) _d(¢/RT. +Bs) aC

ol¢+ss) — ol¢+Bs) 3( + Bs)
Indeed, M _0P _ 0
FYe (014

We therefore have in the momentum equation:

av,
dt

+/kxV, +0,¢ =0

Andsince P=¢@, # P(Z) ,thenV, staysV, # Vh(Z) )

Now, even though Z =0 and T =T. =const initially, temperature will change
since the thermodynamic equation still says:

iln%EZ Ki(Bs) 20
dt * dt
i ln% % autobarot ) = 0

However if we write
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. d T ) .
making O, s =0, then —In =0 et T will remain constant and equal to 7.
g i q

Similarly, in the continuity equation, Z =0 initially and introducing O, vionarer =0

d autobarot IHB + %’F EI l]]h t— a( + Z O
dt 0] o{
we get
iln%+a—BsE+D( v, =0
dt 0{
ilnE.FMEFDZ OV, =0
dt RT*(ZS _ZT)
Ly * 9% %Dg V, =0
dt @,
d _
“In(g -¢@)+0, 0V, =0

And this relation is invariant in the vertical, hence Z Z Z (Z ) and Z =0 is maintained
Hence, the model equations:

th

+ fkxV, + RTO,Bs +0,¢=0

. ln% % %autabw rot BS + Z E_
d
d_ autobarot BS + ln D w + + Z 0

T _o[¢- ¢/RT)
T. 9\ +Bs)

with a vertical structure (many levels, at least 3: e.g. hyb = 0.583333, 0.75, 0.9166666 with
Pip=50000., to satisty the operations), but starting with barotropic conditions, simulates the
barotropic equations:

d;;h+jka +0,¢ =0

d
E1n((p, -@)+0, 0V, =0

1t is autobarotropic.
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Appendix 9. Open top boundary conditions

The goal is to develop an open boundary condition at the top, i.e. a condition with

. Bs+ :
X :E["' . c]% #0, not only ¢, #0 but also B, #0 (the top no more being

necessarily a hydrostatic pressure level) and g, # 0 (in the non-hydrostatic case).

First, let us deal with the linear system (Appendix 4a):

(Lh)k - th +D<’Pk
(L'w)k—% = :__E _ggqggkqf : +wk+ ;qk +t@, ;qk 1%
TV
17«
(L:) T
g
1 + 1 +
(LC)k:_; kEbkAlZ L t g, tO 1QkH Eb qkl"'w 1Qk tm 1‘]1(1%
0 s 2 ﬁ ﬁ k3 %
Xk+l -X 1
+0, IV, +#+w,jxk% tw X

g, _
= e P PR e

We know we can combine these equations into a set of only N equations in the vertical for
N+2 unknowns P (k=ko,N):

U
( ) —2p y ol BPk+1 P, _P —P, +w+Pk+l_Pk+w P -P
T mzkHAz A7, ﬁ ., Y A

_yél-«k N _
KiRT gv ED“ Peatr@, P ﬁ“ﬂk @Dk-%P’f +wk-%P"‘1%

and therefore requiring two additional equations (top and bottom boundary conditions) for
its solution. A closed top boundary condition occurring at k=1 ({, =0;B, =0;¢, =0) is
satisfied by using

I_|I_|l_\l_|

T KTRTDAZ 3

L
(L”T) ko=x +ﬁ =-_7 mpko . Eﬂ Pt 0_1Pk0-1 %
L
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to obtain a boundary condition in terms of X (generalized vertical motion Z ) since
X, = [( +(Bs +q)/T]T =0. For an open top occurring at k, # 1, we have none of the

above conditions (¢  720;B, #0;¢q, #0). Another relation must be found. There are two
possibilities:

- (i) using L", to obtain a boundary condition in terms of vertical motion w, specifying

Wigp:

DP L

_P

_thop -~ zy ko bl tK IPk t0 IPk —1%
TRT. KT RT. E AL kom0 ke R L

[z,

03

- (i1) combining L"; with L, as follows

' [
1 1T, P, . )
(') - __(LT)’CO‘% s Tt*p ) _KTZQT* BPkAZ - _g%ko—épk YD P
|:| k,

0

-

to obtain a boundary condition in terms of temperature T, specifying T, :

- y ko _Pkn_l - + - _ — _ T top
KT’RT, H AL eﬁu"o‘%P% +w"o‘%P"°" %_ Ly =Ry =Ny +FzT*

Although vertical motion w seems the logical choice, there are two big objections: first, it
is well known that vertical motion can be quite noisy and it could be difficult to get a
suitably balanced field; second, in the hydrostatic case, w is not even a prognostic variable
of the model.

The open top case (ii) in fact leads to equations for B -, (k, #1) formally
identical to the closed top case with k=1 (see Appendices 4a and 4b). In effect, we write

Pko-l = aTPk(, +CrLy
with
_KT’RT, 1

/0, -&d |

2.

2

a, = ; -
TN, ted ’ y 1A, +ed

5 -

Therefore

GEM4.1.doc 15/02/2011 16:45 49



A(kO(LP) W Clrls :A("O(Dép)ko

+ y EPkOH_PkO _(1_aT)Pk0 +Azk0w/:0 (P _p )+Azkowk (1_ )P B
2 ko t1 ko aT ky
KT RT. E IiV4 . IiV4 ot AL, o JiY4 ! E

ya(l—K) g + % - - L
-——1A . @ +O ﬁv o a %
KT’RT. Zk"D Phgn o B T A R

with

18, -0, E/M%—i + (1K) ﬁ
= D, +ed@

and the matrix elements for k=k, are

(P66)k0,k0 = _(P66)k0+1,k0 ~(1-a,)/8¢ -

(Péﬂ)ko,ko = _(PJ#)koﬂ,ko + (1 _aT)AZko wk_o /AZ ko=3

s _
+
( IJ/J kooko Zko %ko kot wku ﬁﬂko—% wko—gaT %

All of this is trivial then (in Appendices 4a and 4b, replace indices 1, 3/2, 1/2, respectively

by ko, kit1/2, ko-1/2 ), except for the calculation of the right-hand sides corresponding to
L3, i.e. Rg and Np:

1

R _(R"T)ko ! _K_T(RT)kU%
1

Ny = (W) (),

More explicitly for Ny,

In the non-hydrostatic case, another condition is needed, namely the true pressure at the
top, P, from which we may calculate

qT =1n(pmp /nT) =lnlyl‘op _(ZT +BTS) zlnpmp _%ko_% +Bk _1SE

03
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Appendix 10. Aspects of horizontal discretization
First of all, note that by ‘horizontal’ is meant a model ‘quasi-spherical’ constant
{ surface. In the horizontal then, the equations in spherical coordinates are discretized on

an Arakawa C grid, with the wind image components U,»%, j (=0,N,,j=LN;) and
I/i,j+% (i=LN.,j=0,N;) staggered with respect to all the other variables
wl.,].,TI.LI.,(Z'I.J,SI.J),@J M, (=1L, N,,j=1,N,), an Arakawa C grid with the U points

with indices i=0 and i= N, coinciding by symmetry and with the V" points with indices j=0
and j=N, respectively landing on the south and north pole and therefore vanishing. Looking
at the equations (section 5), we find that only three equations require attention: the two
horizontal momentum equations

Dt XV, + RTTBs +.) +[1+ )0, 0= 0
with
v, =ud+v8=—"_[ui+rg
COS

defined in terms of its longitudinal component u in the direction A and its latitudinal
component v in the direction @, or the so-called corresponding wind images U and ¥, and

with the gradient operator given by:

A 0+00_ 1 Ai_l_éa[

D(:—_ - = —
acos@0A a08 acos@f o0X OYE

with dX=dA and dY=d@/cos@=dsinB/cos’@, and the continuity equation written as

follows: .
412 MTH, 5 9
d g 9{ O 174

where

I u  dlveos8)O_ 1 U VD
D=0,V = + = +
¢ 4cos@ EDA 0 H cos’8FHx arfH

is the horizontal divergence discretized very simply as follows:

D, =—|58.),+(57),

i 20 i ij

Ul'+',,/' _Ul'—lJ' I/1'7]""l _V;,/_l
(JXU),A = . (JYV)[/‘ :T
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Note that in a global integration we have periodicity in the A-(X-)direction, so

U, i UN,,%, ;» and, since V vanishes at both poles, V,»% = V,-,N% = O, the problem is closed

>

in the horizontal.

The ‘horizontal’ vector momentum equation is modified to be solved as a three-
dimensional vector equation in Cartesian coordinates subject however to the constraint that
the wind keeps parallel to the earth’s surface (Coté, MWR 1988):

%+jkah +RTO, (Bs +g) +(1+ p)0,@+mr =0

The constraint, mr, where r is the earth’s radius and m a Lagrange multiplier, acts as a
supplementary force normal to the surface. We then introduce the semi-Lagrangian implicit
discretization (section 8) directly on the vector equation:

A _ 7D
Vi Vi AVh +bA(G;*+mrA)+(1—bA)(GhD +mrD):0
t
A D
V—h+G,f+mc:V—”—,8Gh =R,
T T
A
V—h+G;‘:Rf—mcsR,f
T

with ¢ =r” + B r”. Multiplying through scalarly by r*

A

[l

r’ gvi +G/ +Mme= r' R}
Ot []

A D

h

gives m = , since by construction y4 is [ to both V,' and G;. In Cartesian

rA

coordinates
A D A D A D
m_x RS +y"R +z"R;

A A A
x'c,tyc tzc,

Therefore the metric correction to be applied to R}, in order for the result to remain on the
sphere, is:
(REO [R” —me,0 [R® -m(x* +Bx”)
O c0_0 0_d
TR H= RY ~me, 0= (R -m(y" + B ")
kH Hee-me, B BrO-mlzt B2

zZ z 4

OO OO

However, R, is given in spherical coordinates in terms of wind images:

a

R, = R,A+R,0
COS

with
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To obtain the Cartesian coordinates (R, R, ,R.) of R} from its spherical coordinates (R

U, R}, we apply the coordinate transformation law at the departure point:

[(R” /a0 O-sinl® —sind” cosd” cosf” cosA” (LR /cos§” 0 [Fsind” /cosh” —tand” cosl”

O
D
O
%Rf /aE: E cost” —sind” sind”  cosf” sinl” EEJR,? / cosf” %: ECOSAD /cos#”  —tand” sind” %RLZ)D
ke /ad B o c0s” s B o HH o Yo
Hence
(R /a0 -y”/cos’0” —x"z"/cos’0” EDRDD
ERf/aE: ExD/coszeD -y”z” /cos’6” EEJR%D
[l U o O
using
k? 0 O-sind”  —sind” cosA”  cosf” cosA” 00O Ceosh” cos AP0
EyD E= % cost” —sind” sind”  cosf” sinl” %E: EcosﬁDsinﬂD E
H°H H o cos)” sing”  HHH Hsing” H

Finally, to obtain the spherical coordinates (RS,R;) of Rj, from its Cartesian
coordinates (Rxc R f RS ), we apply the inverse transformation at the arrival point:

(RS /cosf”’0 O —sini? cosd” 0 [RS/aO

ERVC /cosh” %: E— sinf” cosA” —sind” sinA? cosh” %Rf /a%
E 0 E ECOSHA cosA®  cosf”sini?  sinf”’ E..%]RZC /a%

hence
RO O-y"  x 0 [IR/al
%RVC %: E—zAxA -z'y* cos’6’ %Rf /a%
U O O .4 4 4 [Mpe, 0O
0o o~ Y 0 R lap
using
k'O CkosO* cos 10
%}A%= EposHA sin/IA%
[ . [
F'H e’ 0

GEM4.1.doc 15/02/2011 16:45 53



The vanishing of the last row of R is true by construction, r* [R; =0. We use the
information to simplify the middle row getting finally:

w20 oy ot o R
X

ERZD=Dg 1Dij/aD

V|:| |:| DEBZC/aD

In summary then, having (R0 ,R7), ie. R} in spherical coordinates, we

1) transform R} to Cartesian coordinates, computing R, ,R R |

2) compute ¢, M and R in Cartesian coordinates,

3) transform R} back to spherical coordinates, i.e. compute Ry, Ry

In order to solve this semi-Lagrangian equation, in fact all of the other equations as well,
we must first solve the equation for the displacements themselves. Consider

ar v =|V]t
dt

where t is a unit vector tangent to the spherical earth in the direction of V and |V] is the
module of V assumed constant during the displacement. For simplicity, we have taken the
radius of the earth r as a unit vector all along. Then, in the plane of the displacement, the

trajectory is an arc of circle, a great circle displacement. If r”, t”and r”, t"are unit
vectors respectively at the departure and arrival points, we have

00 OcosA  sinAF”0 G°0 [osA —sinAF"C
%AE H—sinA (:05A$§DBOr %DE @inA cosA %AE

where A = |V|Af . We therefore can write

A . D
r‘“ —sinAAt
. D _
r? =r?cosA —sinAt? or rfP=—""-"
cosA

where t” =V /|V]|.

Assuming that V is known in spherical coordinates (U,V) and having a first
estimate of the location (AY,68") of the mid-point r" between the departure and arrival
points, we first obtain V¥ by interpolating V at that position. Then we proceed to improve
the estimate of r" by performing a great circle displacement solving the above equation.
We may proceed as follows:

1) compute || = \/% and A= %|V|

2) compute the arrival position r* in Cartesian coordinates (xA, yA,zA)
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3) compute V" in Cartesian coordinates using old r* position

M0 OFsin AM cos@™ 1 —cos AMsing™ 9™ O

VY =M = dowB_H cosA™ cos M )M = sindMsinf™ oM

" 0=0 : ]
%M% E cosf™ oM E
D—(yMUM +xMzMVM)/coszﬁM 0
= E xMuM —yMZMVM)/COSZHME
U M |
o v 0
D)CM DxA |:| DxM |:|
. . . O,d_ 1 0,0 tanAQ, 0O
4) compute new r" in Cartesian coordinates: ¥ = [y~ 0= O
EZMD cosAy IVl ma
F O F O
an_l(yM /xM)D

5) obtain r" in spherical d't'EHME_Et 0
obtain " in spherical coor mae:s.[eMD . sin_l(zM) -

In the model, the process is an iterative one (section 8). So we repeat the procedure
until convergence. Once the new mid-point position r* valid at #-A#/2 is found, the true
departure position r” valid at z-At is obtained by doubling the great circle displacement:

k” 0O k™0 k0O
. D _ M _ 0,a 0,0
6) obtain r” =2cosAr” — " O0=2cosAy" O- [y O, first in Cartesian and
[LoU (a0 a0
F O F O F O
_ ' _ PO [tan_l(yD/xD O
7) finally in spherical coordinates: . ,0=0 . 7, ,\ O
M0 O sin (z ) 0

We are now ready for the discretization in the horizontal. The equation

VA
_h+G//11 =L, +N, =Rhc
T

is decomposed into its components (section 10):
1 a¢
L,+N, + — [RT — 1 +
BT_ v HR 6 U == %4
og c
L,+N, =+ + — [RT —+ |1+ ) —=—=[ =R
e L OBty GY% :
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and horizontally discretized as follows

—X —X
RT 1+ ﬁ
(L, + Ny ), = 51 —f)Y" + 553, (Bs+q) + é‘ 5,90 =(rS )HL_,.
2 gl’ a a . 2
+2ud
—y —y
)
RT 1+
(LV +NV);'7_;'+% = §+f<U>XY + az JY(BS + Q) + aél 5Y¢|:| = (Rg)i,_/+%
Lty

using the following simple two-point difference and mean operators:

A, —A _x
(3, A)H;,j = Ty iy @i, + (1 —wXﬁ;)Ai,j
A=A y
(JYA),.J% = # (A ) ol =W A gt (1 —@’ 4|4,
s
as well as the four-point (cubic interpolation) mean operators:
Y —
<V>i,j - a./ Vi,j—; + Bj Vi,j—% + y./ Vi,j+% + 6] Vi,j+;
YX r\ X Y Y
<V>i+%,j =<<V> > ! :ai+l <V> +ﬁ

i+l > i-1,j i+% <V>,Yj + y,+% <V>i+l,j + 6,~+, <V>Y
<U>i),(j = 4a Ui—3

=y i3,
Y
Wy =) =, W) ' .

i,j+% J+ ij-1 + ﬁj+%<U>,-,_,' + yj% <U>i,_,'+1 + 6 <U>1')j/+2

1
+_
J 2

+’Bf Ui—%,j Y Ui+%,j

The left-hand-sides (dropping the superscript *) are linearized separately (section 11):

Ty 1
(LU)H%,]‘ = TZ ] +_2(6XP)1'+%,_[
¢ P =@+RT.(Bs +q]
i j+e 1
(LV)[,,'% = _lj_ - +a_2(6YP)i,j+%
leaving as non-linear terms (section 12):
RT H,
(NU)H%J =- f<V>lY+);J 15, (Bs +q)] 0 +—22(8, ),-+;,,
— —Y
RT1 i,j+
(NV)z]+] = +f<U>,X,Y+% + 21 : [5Y(BS +q)] + + (61/ )i,j+%
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Table 1. The equations of GEM in 4 transformations

av
dt

—+ fkxV +RTUIn p+gk =F

dlnT_Kdlnp: o
dt dt c,T
dinp

dt

+V =0

_r
P RT

Vertical coordinate transformation: z to { (unspecified)

av,

dt

d—W+RT

dt

+ /kxV, +RTH:JZ Inp—0Ll,z
O

%alan:F

aZ I:‘ h
0{ dlnp p—y
oz ol

dinT

_Kdlnp= o

dt

dt c T

0,=0,-0,:% 2

3z 07 @
9 _0 9 =
az 0z GZ

L in Ban@D v, +az =0

dt od M

Vertical coordinate transformation: z to { (specified)

r_ 99

molnm

p=gz
_pOlnp
Cmolnm

RT =-

9,
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d;;ukav +RTO, Inp+(1+u)0,@=F,
dw
- - =F
0 gH=TF,
dlnT_Kdlnp_ 0
dt dt c,T
Ly Bz‘”“"Hm v, +% -
dt [ 14
e
—_r _ :0
a o
1+”_£01np=
molnir
RT+£E:()
molnsr
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Going to model thermodynamic variables ¢’,q,s, Z

P=9-@
Inp=Inm+gq
Int={ +Bs

Q

St floxV, + R, (85 +) +[1+ 10, 9=
dw
=F
d gy w

g o

ag .. 0 ¢
@ s+ + L0, ov, + 24+ =0
Al azS% AT

—d¢—RT*Z—gw:0
dt
0 dq N

1+ﬂ—quZ+BS B—

z_eq (Z _¢/RT*) -

0
T. 9({ + Bs)
Discretizing in the vertical
dv —
(_)( dth + KXV, +RT 0, (Bs +q) +1+ )D((p:Fh
e
5( ) ” & w
¢ 0 0
—gn%% Bs+q |[-K({ =——
O CpT
: i§(s+ln(l+5Bs)+D v, +8,¢ +¢ =0
WaTazalJ dt ¢ ¢ h ¢
—{
————— I 99 _RT.¢ - gw=0
dt
' O
_— W,T,(a# 1+IJ_ ?lDB qu +1|:|:()
2\ +Bs) g
T (((—(U/RT):O
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Table 2. The Equations of GEM vertically discretized on Charney-Phillips grid

%+jkah+RTZD((Bs+q)+(1+;_1()D(¢:Fh ----
dw
AR =F
dt gy w B ——
o .
O e Bkl e e =2
dt O O CpT
455+ (1 +8,Bs)|+0, IV, + 8,6 + ¢ =0
7 s+In , Bs (V, +6,{+{ = -
—7
a9 -RT.{ —-gw=0
d
oo —ett %9
3,(¢ + Bs)
T _ o 8¢ ~@/RT]
T. 3,(¢ + Bs) —

V, : horizontal wind;

f : Coriolis parameter

w: vertical velicity; K=R/c,
T : temperature; T'=T1-T.; T. = const
@: geopotential; ¢=9-@; @=-RL((-{)
q =In(p/m): non - hydrostatic log - pressure deviation
p: pressure; TT:hydrostatic pressure, 0Q/0mT=—-RT/p

M =0p/0m—1:ratio of

5= ln(ITS /p,,ef) :log - surface - pressure;

Z =dl/dr;

(—)Z

: averaging operator;

vertical acceleration to gravitational acceleration

—¢ .
B,B =B :metric parameter
{ : model vertical coordinate

0, : differencing operator

Piop! Prog =N <N <1:specified m-like model levels;  p,, = 10° Pa
(=05t ln(l’])
Inp,, ={; <{ <{s=Inp,, :calculated Inm —like model coordinate levels
In7Tr= A4+ Bs
A:Za %% 0<r:rmax_(rmax_rmin)%%3o
—{r s =¢r
Boundary Conditions: ZS = ZT =0 [9r = (pmp/ ) 0; = 82,05 Piop = CONSL |
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