GEM4.1: A non-hydrostatic atmospheric model (Euler equations)

in terrain-following vertical coordinate $\left(\boldsymbol{\zeta}=\boldsymbol{\zeta}_{\boldsymbol{s}}+\ln \eta ; \boldsymbol{\zeta}_{\boldsymbol{s}}=\ln p_{\text {ref }}\right)$ of the log-hydrostatic-pressure type $\left(\ln \pi=\zeta+B s ; s=\ln \left(\pi_{s} / p_{r e f}\right)\right)$ vertically discretized on a Charney-Phillips grid
 with simple differences and means

Claude Girard and André Plante
other significant contributions:
Sylvie Gravel: Semi-Lagrangian Scheme
Abdessamad Qaddouri: Non-symmetric Elliptic Solver Stéphane Chamberland: Physics Interface

Lubos Spacek: Physics
Vivian Lee: Input/Output, Cascade, Acid test Michel Desgagné: Coordination

Revision 1

Table of contents

PREFACE: A work in progress 3

1) The meteorological equations in height coordinate 4
2) The equations transformed to generalized η-coordinate 5
3) Introducing $\ln \pi$, log-hydrostatic pressure, defining ϕ and adding μ 6
4) The new ζ-coordinate for GEM 4.0 is $\ln \pi$-like 7
5) Perturbation thermodynamic variables, $T^{\prime}, \phi^{\prime}, q$, and simplifications 8
6) Boundary conditions 9
7) Vertical discretization with staggering 10
8) Semi-Lagrangian Implicit time discretization: F, G and L, N, R 12
9) The F 's and the G 's 13
10) The Left-Hand Sides: $L+N$ 14
11) The linear Left-Hand-Side terms: L 15
12) The non-linear Left-Hand-Side terms, N, are the left-over differences 16
13) Elimination of the diagnostic equations from the solution system 17
14) The previous time step on the Right-Hand Sides: R 18
15) The linear elliptic problem 19
16) The non-linear problem 21
17) Back substitution 22
Appendix 1. Virtual temperature 23
Appendix 2. Coordinate transformation rules 24
Appendix 3. The metric parameter B and its effect 28
Appendix 4a.Detailed spatial discretization with staggering: the linear terms 31
Appendix 4b.Detailed spatial discretization: matrices of the elliptic problem 35
Appendix 5. How were chosen the averaging operators and note about commutation 38
Appendix 6. The Dynamic Core Code and vertical discretization: A brief description 41
Appendix 7. The hydrostatic option 44
Appendix 8. The autobarotropic option 45
Appendix 9. Open top boundary conditions 48
Appendix 10. Aspects of horizontal discretization 51
Table 1. The equations of GEM in 5 transformations 57
Table 2. The equations of GEM vertically discretized on Charney-Phillips grid 59
N.B. In this document, only vertical discretization is discussed in depth. Time discretization is sketched for convenience. Aspects of horizontal discretization are presented in Appendix 10.

PREFACE

GEM4.1: work in progress ...

Reduction of noise in GEM was the main motivation for the present project consisting in the introduction of vertical staggering (Charney-Phillips grid). It was deemed the first and primary ingredient to achieve this goal. In effect, there are numerical modes which were theoretically diagnosed on the previous un-staggered grid which are absent from the new one. As a first step therefore in this project, only the grid was changed. Everything else, the equations, the independent as well as the dependent variables, were kept unchanged. Very positive results were obtained with respect to noise. But there remain problems, in particular an accuracy problem in the hydrostatic relation at upper levels when the true resolution (in terms of height) is insufficient.

Improving the accuracy of the hydrostatic relation using logarithmic differencing wherever appropriate was therefore the goal of a second step. The results from this modification of the code were very satisfying with improved scores in the stratosphere.

With this incentive, it was tempting to try and implement a full log-hydrostaticpressure coordinate, ζ. A theoretical advantage of ζ is its linear relationship with $\ln p$, [$\left.\ln p=\ln (p / \boldsymbol{\pi})+\ln \left(\boldsymbol{\pi} / \boldsymbol{\pi}_{*}\right)+\ln \boldsymbol{\pi}_{*}=q+B s+\boldsymbol{\zeta}\right]$. Along with the fact that $q=\ln (p / \boldsymbol{\pi})$ and $s=\ln \left(\boldsymbol{\pi}_{S} / p_{\text {ref }}\right)$ are already model variables, this greatly simplifies the linearization of model equations. Again the accuracy of the hydrostatic equation is improved since the finite differences not only are calculated logarithmically but also become defined at logarithmic mid-points. This third step though has little impact on model performance.

A recent and important development: it was discovered that the initial staggered version of the semi-Lagrangian scheme, averaging the departure positions for variables arriving on thermodynamic levels, resulted in significant loss of kinetic energy. Calculating independent departure positions is rather the thing to do.

Finally, a word concerning a secondary motivation for the project, namely the resolution of accuracy and noise problems encountered in the simulation of non-hydrostatic mountain waves, specifically what we call Schär's case: considerable understanding was achieved but no fully satisfactory solution is available.

For the sake of clarity, a lot of the details of the progressive model transformation from GEM3 to GEM4, contained in the original version of this document, GEM4.0, which remains available for consultation, have been removed from the present one.

1) The meteorological equations in height coordinate

- 4 independent variables: $\quad t, \mathbf{r}=\left(\mathbf{r}_{h}, z\right)$
- 6 dependent variables: $\mathbf{V}=\left(\mathbf{V}_{h}, w\right), T, \rho, p$
- 6 scalar equations: $\begin{aligned} \frac{d \mathbf{V}}{d t}+f \mathbf{k x} \mathbf{V}+R T \nabla \ln p+g \mathbf{k} & =\mathbf{F} \\ \frac{d \ln T}{d t}-\frac{R}{c_{p}} \frac{d \ln p}{d t} & =\frac{Q}{c_{p} T} \\ \frac{d \ln \boldsymbol{\rho}}{d t}+\nabla \cdot \mathbf{V} & =0 \\ \boldsymbol{\rho} & =\frac{p}{R T} \end{aligned}$

- There are: 5 prognostic equations (momentum + energy + mass conservation), 1 diagnostic equation (perfect gas law).
N.B. The Coriolis force is approximated (traditional meteorological approximations apply).
N.B. Many more approximations are implied if we consider that the atmospheric substance contains, in addition to dry air, not only a variable quantity of water vapor but also condensed water and precipitations. The above equations are valid under the assumptions of dynamic (precipitations falling at terminal velocity) and thermodynamic (neglecting temperature differences between air and hydrometeors) equilibrium and neglecting precipitation fluxes. Equations for the displacement and evolution of the hydrometeors are required to complete the system.
N.B. In the above equations the coefficients R and c_{p} are variable. The introduction of virtual temperature (replacing $R T$ by $R_{d} T_{v}$ where R_{d} is now constant) and approximating the ratio $\kappa=R / c_{p}$ by the constant ratio $\kappa_{d}=R_{d} / c_{p d}$ lead to further simplifications (see Appendix 1. Virtual temperature).

2) The equations transformed to generalized η-coordinate

- Note the necessary decomposition of vector equations into their horizontal/vertical components due to the different horizontal/vertical transformation rules.

2 transformation rules: $\nabla_{z} \equiv \nabla_{\eta}-\nabla_{\eta} z \frac{\partial \eta}{\partial z} \frac{\partial}{\partial \eta} ; \quad \frac{\partial}{\partial z} \equiv \frac{\partial \eta}{\partial z} \frac{\partial}{\partial \eta}$

- 4 independent variables: $\quad t, \mathbf{r}_{h}, \eta$
- 8 dependent variables: $\quad \mathbf{V}_{h}, w, T, \rho, p, \dot{\eta}, z$
- 8 equations (6 prognostic and 2 diagnostic):

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T\left(\nabla_{\eta} \ln p-\nabla_{\eta} z \frac{\partial \boldsymbol{\eta}}{\partial z} \frac{\partial \ln p}{\partial \boldsymbol{\eta}}\right) & =\mathbf{F}_{h} \\
\frac{d w}{d t}+R T \frac{\partial \boldsymbol{\eta}}{\partial z} \frac{\partial \ln p}{\partial \boldsymbol{\eta}}+g & =F_{w} \\
\frac{d \ln T}{d t}-\boldsymbol{\kappa} \frac{d \ln p}{d t} & =\frac{Q}{c_{p} T} \\
\frac{d}{d t} \ln \left(\boldsymbol{\rho} \frac{\partial z}{\partial \boldsymbol{\eta}}\right)+\nabla_{\eta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\boldsymbol{\eta}}}{\partial \boldsymbol{\eta}} & =0 \\
\frac{d z}{d t}-w & =0 \\
\boldsymbol{\rho} & =\frac{p}{R T} \\
z & \equiv z\left(\boldsymbol{\eta}, \mathbf{r}_{h}, t\right)
\end{aligned}
$$

- Were added then: 1 prognostic equation $(\boldsymbol{d z} / \boldsymbol{d t}=\mathbf{w})$ for varying height in space and time, 1 diagnostic equation (yet to be specified) defining the coordinate $\boldsymbol{\eta}$.
- the continuity equation is the only one requiring more than simple manipulation:

$$
\begin{gathered}
w=\frac{d z}{d t}=\frac{\partial z}{\partial t}+\mathbf{V}_{h} \cdot \nabla_{\eta} z+\dot{\eta} \frac{\partial z}{\partial \eta} \\
\frac{\partial \eta}{\partial z} \frac{\partial w}{\partial \eta}=\frac{\partial \eta}{\partial z} \frac{\partial}{\partial \eta}\left(\frac{\partial z}{\partial t}+\mathbf{V}_{h} \cdot \nabla_{\eta} z+\dot{\eta} \frac{\partial z}{\partial \eta}\right)=\frac{\partial \eta}{\partial z} \frac{\partial \mathbf{V}_{h}}{\partial \eta} \cdot \nabla_{\eta} z+\frac{\partial \dot{\eta}}{\partial \eta}+\frac{d}{d t} \ln \left(\frac{\partial z}{\partial \eta}\right) \\
\nabla_{z} \cdot \mathbf{V}_{h}+\frac{\partial w}{\partial z}=\nabla_{\eta} \cdot \mathbf{V}_{h}-\frac{\partial \eta}{\partial z} \frac{\partial \mathbf{V}_{h}}{\partial \eta} \cdot \nabla_{\eta} z+\frac{\partial \eta}{\partial z} \frac{\partial w}{\partial \eta}=\nabla_{\eta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\eta}}{\partial \eta}+\frac{d}{d t} \ln \left(\frac{\partial z}{\partial \eta}\right)
\end{gathered}
$$

- See Appendix 2 for some details on transformation rules.

3) Eliminating $\boldsymbol{\rho}$ introducing $\ln \pi$, log-hydrostatic pressure, eliminating z defining the geopotential ϕ and adding μ (ratio of vertical acceleration to gravitational acceleration)

$$
\frac{\partial \boldsymbol{\pi}}{\partial z}=-g \boldsymbol{\rho} ; \quad R T=-\frac{p}{\boldsymbol{\pi}} \frac{\partial \boldsymbol{\phi}}{\partial \ln \boldsymbol{\pi}} ; \quad \boldsymbol{\phi}=g z ; \quad \boldsymbol{\mu}=\frac{p}{\boldsymbol{\pi}} \frac{\partial \ln p}{\partial \ln \boldsymbol{\pi}}-1
$$

- 9 dependent variables: $\quad \mathbf{V}_{h}, w, T, p, \dot{\eta}, \phi, \mu, \pi$
- 9 equations (added diagnostic equation for μ):

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\eta} \ln p+(1+\boldsymbol{\mu}) \nabla_{\eta} \boldsymbol{\phi} & =\mathbf{F}_{h} \\
\frac{d w}{d t}-g \boldsymbol{\mu} & =F_{w} \\
\frac{d \ln T}{d t}-\boldsymbol{\kappa} \frac{d \ln p}{d t} & =\frac{Q}{c_{p} T} \\
\frac{d}{d t} \ln \left(\boldsymbol{\pi} \frac{\partial \ln \boldsymbol{\pi}}{\partial \boldsymbol{\eta}}\right)+\nabla_{\eta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\boldsymbol{\eta}}}{\partial \boldsymbol{\eta}} & =0 \\
\frac{d \boldsymbol{\phi}}{d t}-g w & =0 \\
1+\boldsymbol{\mu}-\frac{p}{\pi} \frac{\partial \ln p}{\partial \ln \boldsymbol{\pi}} & =0 \\
R T+\frac{p}{\boldsymbol{\pi}} \frac{\partial \boldsymbol{\phi}}{\partial \ln \boldsymbol{\pi}} & =0 \\
\ln \boldsymbol{\pi} & \equiv \ln \boldsymbol{\pi}\left(\boldsymbol{\eta}, \mathbf{r}_{h}, t\right)
\end{aligned}
$$

- N.B. For the rest of the presentation, the physical forcings \mathbf{F}_{h}, F_{w}, Q will be excluded and the parameters R and $\boldsymbol{\kappa}$ will be treated as constants.

4) The new ζ-coordinate for GEM4.1 is $\ln \pi$-like

$$
\left.\begin{array}{rlrl}
\zeta & =\zeta_{S}+\ln \eta ; & \zeta_{S} & =\ln p_{r e f} ; \quad p_{r e f}=10^{5} \\
\ln \pi & =A(\zeta)+B(\zeta)_{s} ; & s & =\ln \pi_{S}-\zeta_{S}=\ln \left(\pi_{S} / p_{\text {ref }}\right)
\end{array}\right\} \begin{aligned}
\zeta_{T} & =\ln p_{\text {top }} \\
A & =\zeta ; \quad B=\left(\frac{\zeta-\zeta_{T}}{\zeta_{S}-\zeta_{T}}\right)^{r} \\
0 \leq r & =r_{\max }-\left(r_{\max }-r_{\min }\right)\left(\frac{\zeta-\zeta_{T}}{\zeta_{S}-\zeta_{T}}\right) \leq 30
\end{aligned}
$$

$\ln \pi=\zeta+B(\zeta) s$
transformation rules: $\quad \nabla_{\eta} \equiv \nabla_{\zeta}-\nabla_{\zeta} \eta \frac{\partial \zeta}{\partial \eta} \frac{\partial}{\partial \zeta}=\nabla_{\zeta} ; \quad \frac{\partial}{\partial \eta} \equiv \frac{\partial \zeta}{\partial \boldsymbol{\eta}} \frac{\partial}{\partial \zeta}=\frac{1}{\eta} \frac{\partial}{\partial \zeta}$

- 9 dependent variables: $\quad \mathbf{V}_{h}, w, T, p, \dot{\zeta}, \phi, \mu, \pi$
- 9 equations:

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta} \ln p+(1+\boldsymbol{\mu}) \nabla_{\zeta} \boldsymbol{\phi} & =0 \\
\frac{d w}{d t}-g \boldsymbol{\mu} & =0 \\
\frac{d \ln T}{d t}-\boldsymbol{\kappa} \frac{d \ln p}{d t} & =0 \\
\frac{d}{d t} \ln \left(\boldsymbol{\pi} \frac{\partial \ln \boldsymbol{\pi}}{\partial \zeta}\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\zeta}}{\partial \zeta} & =0 \\
\frac{d \boldsymbol{\phi}}{d t}-g w & =0 \\
1+\boldsymbol{\mu}-\frac{p}{\pi} \frac{\partial \ln p}{\partial \ln \boldsymbol{\pi}} & =0 \\
R T+\frac{p}{\pi} \frac{\partial \boldsymbol{\phi}}{\partial \ln \boldsymbol{\pi}} & =0 \\
\ln \boldsymbol{\pi} & \equiv \zeta+B s
\end{aligned}
$$

- obviously, at this point, the form of the equations in ζ and η coordinates is identical
N.B. $p_{\text {top }} / p_{\text {ref }}<\eta<1$ is now but a label to characterize the model levels. Another way to characterize the levels would be to use a number, H, having the units of height and corresponding approximately to model level height (above ground):

$$
\zeta=\zeta_{S}-H / H_{r e f} ; \quad H_{r e f}=\left(\frac{R T}{g}\right)_{\text {ref }}=\frac{16000}{\ln 10} \approx 6950 \mathrm{~m}
$$

See Appendix 3 for more information on the metric parameter B.
5) Perturbation thermodynamic variables, $T^{\prime}, \phi^{\prime}, q$, and simplifications

Introducing the logarithm of the non-hydrostatic pressure perturbation $q=\ln (p / \pi)$ and perturbation variables T^{\prime} and ϕ^{\prime}. Eliminating p, ϕ and π. We keep T for convenience.

$$
\begin{array}{lr}
T^{\prime}=T-T_{*} ; & T_{*}=\text { const } \\
\phi^{\prime}=\phi-\phi_{*} ; & \phi_{*}(\zeta)=-R T_{*}\left(\zeta-\zeta_{S}\right) \\
\ln p=\ln \pi+q=\zeta+B s+q
\end{array}
$$

- $\mathbf{8}$ variables: \mathbf{V}_{h}, w, T or $T^{\prime}, q,(\dot{\zeta}, s), \phi^{\prime}, \mu$, final number
- 8 equations [6 prognostic \& 2 diagnostic], final form ready for linearization:

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta}(B s+q)+(1+\boldsymbol{\mu}) \nabla_{\zeta} \boldsymbol{\phi}^{\prime} & =0 \\
\frac{d w}{d t}-g \boldsymbol{\mu} & =0 \\
\frac{d}{d t}\left[\ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}(B s+q)\right]-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}} & =0 \\
\frac{d}{d t}\left[B s+\ln \left(1+\frac{\partial B}{\partial \zeta} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\left(\frac{\partial}{\partial \zeta}+1\right) \dot{\zeta} & =0 \\
\frac{d \boldsymbol{\phi}^{\prime}}{d t}-R T_{*} \dot{\boldsymbol{\zeta}}-g w & =0 \\
1+\boldsymbol{\mu}-e^{q}\left(\frac{\partial q}{\partial(\zeta+B s)}+1\right) & =0 \\
\frac{T}{T_{*}}-e^{q} \frac{\partial\left(\boldsymbol{\zeta}-\boldsymbol{\phi}^{\prime} / R T_{*}\right)}{\partial(\zeta+B s)} & =0
\end{aligned}
$$

N. B. S is a 2-D variable and $\dot{\zeta}$ vanishes at the surface. The combination $(\dot{\zeta}, S)$ may therefore be considered to constitute a
single 3-D variable.
N.B. $\phi^{\prime}+R T_{*}(B s+q)=\phi^{\prime}+R T_{*}(\ln p-\zeta)=\phi+R T_{*} \ln \left(p / p_{\text {ref }}\right)=P$, which may be called generalized pressure, a variable which will be convenient to invoke later on.
6) Boundary Conditions

The model top (subscript ${ }_{T}$) and bottom (subscript ${ }_{S}$ for earth's surface when talking of the bottom of the atmosphere), are defined to be material surfaces. Therefore we have the following two boundary conditions:

$$
\begin{aligned}
& \dot{\zeta}_{T}=\dot{\zeta}\left(\zeta_{T}\right)=0 \\
& \dot{\zeta}_{S}=\dot{\zeta}\left(\zeta_{S}\right)=0
\end{aligned}
$$

In addition, the behavior of theses surfaces must be specified and this will lead to one additional condition in the non-hydrostatic case. The bottom surface is assumed to be corrugated but immobile. In effect, the bottom geopotential ϕ_{S} is usually taken to vary with the geographical position (terrain-following coordinate system) but to remain fixed in time: $\partial \phi_{S} / \partial t=0$. This though does not imply that the vertical velocity at the surface vanishes and therefore $g w_{S}=[d \phi / d t]_{S} \neq 0$ generally. At the top, we consider a flexible surface whereby a constant top pressure:

$$
p_{\text {top }}=\pi_{T}
$$

is assumed to be maintained. This is automatic in the hydrostatic case since the top surface pressure cannot be anything other than a material hydrostatic pressure surface.

In the non-hydrostatic case, to impose a constant top pressure equal to the constant top hydrostatic pressure surface provides a boundary condition for the top pressure. In terms of the non-hydrostatic pressure variable q, this becomes:

$$
q_{T}=\ln \left(p_{\text {top }} / \pi_{T}\right)=0
$$

The surface is nevertheless free to move in response to this artificially imposed pressure $p_{\text {top }}$.
N.B. Open boundary conditions are of course a possibility: see Appendix 9. Open top boundary conditions.

7) Vertical discretization with staggering

For vertical discretization, the following choice is made:

In other words, the derivatives are replaced by simple finite differences represented by the operator δ_{ζ} and averaging operators represented by over bars are introduced where required. From the notation, it may be gathered that $\mathbf{V}_{h}, q, \boldsymbol{\phi}^{\prime}, B$ are defined on the same levels to be called full or momentum levels. They are staggered with respect to $w, T, \boldsymbol{\mu}, \dot{\boldsymbol{\zeta}}, \mathrm{~B}$ placed on half or thermodynamic levels. Note the distinction made between the known metric parameter defined on full (B) and half (B) levels, discrete operations only being invoked when required by later manipulations. With this staggering, double operations on dependent variables are severely reduced. No difference is calculated over more than two levels. The number of averaging operators is minimized. In the horizontal momentum equations, they occur on non-linear terms only; in the hydrostatic case (with $q=\mu=0$ and w dropping out of the system), only one averaging operator remains on linear terms, namely on $\dot{\zeta}$ in the continuity equation. Details of the discretization are given in
Appendices 4a, 4b, 5 and 6 (but read these after the rest of the main document). Taking into account the boundary conditions, it is natural to have half levels rather than full levels coincide with the top and bottom. This essentially, though not fully, completes the description of the vertical grid. See Figure 1, next page.
N.B. For B we have chosen the numerical definition: $\mathrm{B}=\bar{B}^{\zeta}$, instead of the analytical definition: $\mathrm{B}=B\left(\bar{\zeta}^{\zeta}\right)$. This is a convenient but arbitrary choice.

Figure 1. The Charney-Phillips grid, giving the position occupied by each variable in the vertical domain. The model is composed of N layers, inside of which (in the middle of which only if the layers are equal) are the momentum levels $[1,2, \ldots, \mathrm{~N}]$ where the wind components U and V, the geopotential ϕ and q are positioned. ϕ and q are also defined on the boundaries (top level 0 and surface level $\mathrm{N}+1$). These N layers are delimited by $\mathrm{N}-1$ interfaces corresponding to $\mathrm{N}-1$ so-called thermodynamic levels [$3 / 2, \ldots, \mathrm{~N}-1 / 2$] where are positioned the temperature T and the two vertical motion fields w and $\dot{\zeta}$, exactly in the middle of the momentum levels. $\dot{\zeta}$ also has 2 additional levels $[1 / 2$ and $\mathrm{N}+1 / 2]$ corresponding to the top and bottom surfaces. T and w also have 2 additional levels [$3 / 4$ and $\mathrm{N}+1 / 4$] positioned exactly in between, respectively, the top surface and first momentum level and the last momentum level and bottom surface.

See Table 1, page 57, for a summary of the model equations and transformations.
8) Semi-Lagrangian Implicit time discretization (n.b. not Semi-Implicit)

- Approximating the substantial derivatives and averaging the dynamical forcings, each of the equations (index i) may be formally written as follows:

$$
\begin{array}{ll}
\frac{d F_{i}}{d t} \approx \frac{F_{i}^{A}-F_{i}^{D}}{\Delta t}+G_{i}=0 \\
\Delta t
\end{array} \quad G_{i} \approx b^{A} G_{i}^{A}+\left(1-b^{A}\right) G_{i}^{D} ; \quad b^{A} \approx 0.5: 0.6 \text { (off - centering) } \quad \begin{array}{ll}
& \\
& A:(\mathbf{r}, t) \\
& D:(\mathbf{r}-\Delta \mathbf{r}, t-\Delta t) \quad \text { Arrival } \\
& \text { Departure }
\end{array}
$$

- Separating the time levels $\left(\boldsymbol{\tau}=\Delta t b^{A} ; \boldsymbol{\beta}=\left(1-b^{A}\right) / b^{A}\right)$

$$
\begin{aligned}
\frac{F_{i}^{A}-F_{i}^{D}}{\Delta t}+b^{A} G_{i}^{A}+\left(1-b^{A}\right) G_{i}^{D} & =0 \\
\frac{F_{i}^{A}}{\tau}+G_{i}^{A} & =\frac{F_{i}^{D}}{\tau}-\boldsymbol{\beta} G_{i}^{D} \equiv R_{i}
\end{aligned}
$$

- Decomposing the left-hand side into linear and residual non-linear parts

$$
\begin{aligned}
\frac{F_{i}^{A}}{\tau}+G_{i}^{A} & =L_{i}+N_{i}=R_{i} \\
L_{i} & \equiv\left(\frac{F_{i}^{A}}{\tau}+G_{i}^{A}\right)_{\text {lin }} \\
N_{i} & \equiv \frac{F_{i}^{A}}{\tau}+G_{i}^{A}-\left(\frac{F_{i}^{A}}{\tau}+G_{i}^{A}\right)_{\text {lin }}
\end{aligned}
$$

- Defining the solution method (a Crank-Nicholson scheme)

$$
L_{i}=R_{i}-N_{i}
$$

Iterating (jter: departure loop, iter: non-linear loop) :

$$
\begin{aligned}
& \begin{array}{c}
\text { Do jter }=1,2 \\
\text { Do iter }=1,2
\end{array} \\
& \left(L_{i}\right)^{\text {iter, jter }}=\left(R_{i}\right)^{\text {jiter }}-\left(N_{i}\right)^{\text {iter-1,jter }} ; \quad\left(N_{i}\right)^{0,1}=N_{i}(\mathbf{r}, t-\Delta t) \\
& \begin{array}{l}
\text { end do } \\
\text { end do }
\end{array} \\
& \left(R_{i}\right)^{j t e r}=R_{i}\left(t-\Delta t, \mathbf{r}-\Delta \mathbf{r}^{j t e r}\right) ; \quad \Delta \mathbf{r}^{j t e r}=\frac{\Delta t}{2}\left(\mathbf{v}(t-\Delta t)+\mathbf{v}(t)^{j t e r}\right)\left(\mathbf{r}-\frac{\Delta r^{j e r-1}}{2}\right) \\
& \mathbf{v}(t)^{1}=\mathbf{v}(t-\Delta t) ; \Delta \mathbf{r}^{0} \text { from previous timestep }
\end{aligned}
$$

9) The F ' and the G 's

$$
\left.\begin{array}{ll}
\mathbf{F}_{h} \equiv \mathbf{V}_{h} & \mathbf{G}_{h} \equiv f \mathbf{k x} \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\left(1+\overline{\boldsymbol{\mu}}^{\zeta}\right) \nabla_{\zeta} \boldsymbol{\phi}^{\prime} \\
F_{w} \equiv w & G_{w} \equiv-g \boldsymbol{\mu} \\
F_{T} \equiv \ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}\left(\mathrm{B} s+\bar{q}^{\zeta}\right) & G_{T} \equiv-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}}
\end{array}\right] \begin{array}{ll}
F_{C} \equiv \overline{\mathrm{~B}}^{\zeta} s+\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right) & G_{C} \equiv \nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\boldsymbol{\zeta}}+\dot{\boldsymbol{\zeta}}^{\zeta} \\
F_{\boldsymbol{\phi}} \equiv \overline{\boldsymbol{\phi}}^{\zeta} & G_{\boldsymbol{\phi}} \equiv-R T_{*} \dot{\boldsymbol{\zeta}}-g w \\
F_{\mu} \equiv 0 & G_{\mu} \equiv 1+\boldsymbol{\mu}-e^{\bar{q}^{\zeta}}\left[\frac{\boldsymbol{\delta}_{\zeta} q}{\boldsymbol{\delta}_{\zeta}(\boldsymbol{\zeta}+B s)}+1\right]=0 \\
F_{H} \equiv 0 & G_{H} \equiv \frac{T}{T_{*}}+e^{\bar{q}^{\zeta}}\left[\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime} / R T_{*}+B s\right)}{\boldsymbol{\delta}_{\zeta}(\zeta+B s)}-1\right]=0
\end{array}
$$

N.B. Since $F_{\mu}=F_{H}=0$ and $\mathrm{G}_{\mu}=\mathrm{G}_{H}=0$, then of course $R_{\mu}=R_{H}=0$.

The role of diagnostic equations is to abbreviate other equations. If, in the 6 prognostic equations, we replace the symbols μ and T by their definitions, the diagnostic equations as well as the associated variables vanish.
10) The Left-Hand Side terms: $L_{i}+N_{i}$

$$
L_{i}+N_{i} \equiv \frac{F_{i}^{A}}{\tau}+G_{i}^{A}
$$

Prognostic (dropping the superscript A):

$$
\begin{aligned}
& \mathbf{L}_{h}+\mathbf{N}_{h}=\frac{\mathbf{V}_{h}}{\boldsymbol{\tau}}+f \mathbf{k} \times \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\left(1+\overline{\boldsymbol{\mu}}^{\zeta}\right) \nabla_{\zeta} \boldsymbol{\phi}^{\prime} \\
& L_{w}+N_{w}=\frac{w}{\tau}-g \boldsymbol{\mu} \\
& L_{T}+N_{T}=\frac{1}{\tau} \ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}\left(\dot{\boldsymbol{\zeta}}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\tau}\right) \\
& L_{C}+N_{C}=\frac{1}{\tau}\left[\overline{\mathrm{~B}}^{\zeta} s+\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\zeta}+\dot{\boldsymbol{\zeta}}^{\zeta} \\
& L_{\boldsymbol{\phi}}+N_{\boldsymbol{\phi}}=\frac{\overline{\boldsymbol{\phi}}^{\zeta}}{\boldsymbol{\tau}}-R T_{*} \dot{\boldsymbol{\zeta}}-g w
\end{aligned}
$$

Diagnostic:

$$
\begin{aligned}
& L_{\mu}+N_{\mu}=1+\boldsymbol{\mu}-e^{\bar{q}^{\xi}}\left[\frac{\boldsymbol{\delta}_{\zeta} q}{\boldsymbol{\delta}_{\zeta}(\boldsymbol{\zeta}+B s)}+1\right]=0 \\
& L_{H}+N_{H}=\frac{T}{T_{*}}+e^{\bar{q}^{\zeta}}\left[\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime} / R T_{*}+B s\right)}{\boldsymbol{\delta}_{\zeta}(\boldsymbol{\zeta}+B S)}-1\right]=0
\end{aligned}
$$

11) The linear Left-Hand Side terms: L_{i}

$$
L_{i} \equiv\left[\frac{F_{i}^{A}}{\tau}+G_{i}^{A}\right]_{\text {linear }}
$$

Linearizing (approximating the logarithms $[\ln (1+\alpha) \approx \alpha]$, the exponentials [$\left.e^{\alpha} \approx 1+\boldsymbol{\alpha}\right]$ and the products $\left[(1+\alpha)(1+\beta)^{ \pm 1} \approx 1+\alpha \pm \beta\right]$; note the Coriolis term $f \mathbf{k} \times \mathbf{V}_{h}$ is treated as if it was a non-linear term) yields:

$$
\begin{aligned}
& \mathbf{L}_{h}=\frac{\mathbf{V}_{h}}{\boldsymbol{\tau}}+\nabla_{\zeta}\left[\boldsymbol{\phi}^{\prime}+R T_{*}(B s+q)\right] \\
& L_{w}=\frac{w}{\boldsymbol{\tau}}-g \boldsymbol{\mu} \\
& L_{T}=\frac{T^{\prime}}{\boldsymbol{\tau} T_{*}}-\boldsymbol{\kappa}\left(\dot{\boldsymbol{\zeta}}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\boldsymbol{\tau}}\right) \\
& L_{C}=\frac{1}{\boldsymbol{\tau}}\left[\overline{\mathrm{~B}}^{\zeta} s+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\zeta}+\bar{\zeta}^{\zeta} \\
& L_{\boldsymbol{\phi}} \\
& =\frac{\overline{\boldsymbol{\phi}}^{\boldsymbol{\zeta}}}{\boldsymbol{\tau}}-R T_{*} \dot{\boldsymbol{\zeta}}-g w \\
& L_{\mu}=\boldsymbol{\mu}-\left(\boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta}\right) \neq 0 \\
& L_{H}=\frac{T^{\prime}}{T_{*}}-\bar{q}^{\zeta}+\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime}+R T_{*} B s\right)}{R T_{*}} \neq 0
\end{aligned}
$$

12) The non-linear Left-Hand side terms, N_{i}, are the left-over differences

$$
N_{i}=\left[\frac{F_{i}^{A}}{\tau}+G_{i}^{A}\right]-\left[\frac{F_{i}^{A}}{\tau}+G_{i}^{A}\right]_{\text {linear }}=\left[\frac{F_{i}^{A}}{\tau}+G_{i}^{A}\right]-L_{i}
$$

and therefore:

$$
\begin{aligned}
& \mathbf{N}_{h}=f \mathbf{k} \times \mathbf{V}_{h}+R \bar{T}^{{ }^{\zeta}} \nabla_{\zeta}(B s+q)+\overline{\boldsymbol{\mu}}^{\zeta} \nabla_{\zeta} \boldsymbol{\phi}^{\prime} \\
& N_{w}=0 \\
& N_{T}=\frac{1}{\boldsymbol{\tau}}\left[\ln \left(\frac{T}{T_{*}}\right)-\frac{T^{\prime}}{T_{*}}\right] \\
& N_{C}=\frac{1}{\tau}\left[\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)-\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right] \\
& N_{\boldsymbol{\phi}}=0 \\
& N_{\mu}=-\left(\boldsymbol{\mu}-\boldsymbol{\delta}_{\zeta} q-\bar{q}^{\zeta}\right)=-L_{\mu} \\
& N_{H}=-\left(\frac{T^{\prime}}{T_{*}}-\bar{q}^{\zeta}+\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime}+R T_{*} B s\right)}{R T_{*}}\right)=-L_{H}
\end{aligned}
$$

13) Elimination of the diagnostic equations from the solution system

As noted above, $R_{\mu}=R_{H}=0$. It is then convenient to immediately eliminate the two diagnostic equations, involving the diagnostic variables μ and T, from the Left-Hand side terms, i.e. to eliminate L_{μ}, L_{H} and N_{μ}, N_{H}. We are left with 6 basic equations for the linear system:

$$
\begin{aligned}
\mathbf{L}_{h} & =\frac{\mathbf{V}_{h}}{\boldsymbol{\tau}}+\nabla_{\zeta}\left[\boldsymbol{\phi}^{\prime}+R T_{*}(B s+q)\right] \\
L_{w}+g L_{\mu} \equiv L_{w}^{\prime} & =\frac{w}{\boldsymbol{\tau}}-g\left(\boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta}\right) \\
L_{T}-\frac{L_{H}}{\boldsymbol{\tau}} \equiv L_{T}^{\prime} & =\frac{\bar{q}^{\zeta}}{\boldsymbol{\tau}}-\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime}+R T_{*} B s\right)}{\tau R T_{*}}-\boldsymbol{\kappa}\left(\dot{\zeta}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\boldsymbol{\tau}}\right) \\
L_{C} & =\frac{1}{\boldsymbol{\tau}}\left[\overline{\mathrm{~B}}^{\zeta} s+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\zeta}+\bar{\zeta}^{\zeta} \\
L_{\boldsymbol{\phi}} & =\frac{\overline{\boldsymbol{\phi}}^{\boldsymbol{\zeta}}}{\boldsymbol{\tau}}-R T_{*} \dot{\boldsymbol{\zeta}}-g w
\end{aligned}
$$

Similarly for the non-linear system we have

$$
\begin{aligned}
\mathbf{N}_{h} & =f \mathbf{k} \times \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\overline{\boldsymbol{\mu}}^{\zeta} \nabla_{\zeta} \boldsymbol{\phi}^{\prime} \\
N_{w}+g N_{\mu} \equiv & N_{w}^{\prime}=-g\left(\boldsymbol{\mu}-\boldsymbol{\delta}_{\zeta} q-\bar{q}^{\zeta}\right) \\
N_{T}-\frac{N_{H}}{\boldsymbol{\tau}} \equiv & N_{T}^{\prime}=\frac{1}{\boldsymbol{\tau}}\left[\ln \left(\frac{T}{T_{*}}\right)-\bar{q}^{\zeta}+\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime}+R T_{*} B s\right)}{R T_{*}}\right] \\
N_{C} & =\frac{1}{\tau}\left[\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)-\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right] \\
N_{\boldsymbol{\phi}} & =0
\end{aligned}
$$

14) The Previous time step on the Right-Hand Sides: R_{i}

$$
R_{i} \equiv \frac{F_{i}^{D}}{\tau}-\beta G_{i}^{D}
$$

(dropping the superscript D)

$$
\begin{array}{ll}
\mathbf{R}_{h}=\frac{\mathbf{V}_{h}}{\boldsymbol{\tau}} & -\boldsymbol{\beta}\left(f \mathbf{k x} \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\left(1+\overline{\boldsymbol{\mu}}^{\zeta}\right) \nabla_{\zeta} \boldsymbol{\phi}^{\prime}\right] \\
R_{w}=\frac{w}{\tau} & -\boldsymbol{\beta}(-g \boldsymbol{\mu}) \\
R_{T}=\frac{1}{\boldsymbol{\tau}}\left[\ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}\left(\mathrm{B} s+\bar{q}^{\zeta}\right)\right] & -\boldsymbol{\beta}(-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}}) \\
R_{C}=\frac{1}{\boldsymbol{\tau}}\left[\overline{\mathrm{~B}}^{\zeta} s+\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)\right] & -\boldsymbol{\beta}\left(\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\boldsymbol{\zeta}}+\dot{\boldsymbol{\zeta}}^{\zeta}\right) \\
R_{\boldsymbol{\phi}}=\frac{\overline{\boldsymbol{\phi}^{\zeta}}}{\boldsymbol{\tau}} & -\boldsymbol{\beta}\left(-R T_{*} \dot{\boldsymbol{\zeta}}-g w\right)
\end{array}
$$

15) The elliptic problem

Introducing $P \equiv \boldsymbol{\phi}^{\prime}+R T_{*}(B s+q)$ and $X=\dot{\zeta}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\tau}$, the linear system takes the form:

$$
\begin{aligned}
\mathbf{L}_{h} & =\frac{\mathbf{V}_{h}}{\tau}+\nabla_{\zeta} P \\
L_{w}^{\prime} & =\frac{w}{\tau}-g\left(\boldsymbol{\delta}_{\zeta} q+q^{\zeta}\right) \\
L_{T}^{\prime} & =\frac{1}{\boldsymbol{\tau}}\left(\boldsymbol{\delta}_{\zeta} q+q^{\zeta}\right)-\frac{\boldsymbol{\delta}_{\zeta} P}{\tau R T_{*}}-\boldsymbol{\kappa} X \\
L_{C} & =-\frac{1}{\tau}\left(\boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta}\right)^{\zeta}+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} X+\bar{X}^{\zeta} \\
L_{\phi} & =\frac{\bar{P}^{\zeta}}{\tau}-R T_{*} X-g w
\end{aligned}
$$

The number of equations and dependent variables, $\mathbf{V}_{h}, w, P, q, X$, is easily reduced to 3 thus (variables left: P, w, X):

$$
\begin{aligned}
& \nabla_{\zeta} \cdot \mathbf{L}_{h}-\frac{1}{\boldsymbol{\tau}}\left(L_{C}-\frac{\overline{L_{w}^{\prime}}}{g}\right) \equiv L_{C}^{\prime \prime}=\nabla_{\zeta}^{2} P-\frac{1}{\boldsymbol{\tau}}\left(\boldsymbol{\delta}_{\zeta} X+\bar{X}^{\zeta}\right)+\frac{g \boldsymbol{\varepsilon}}{\tau R T_{*}} \bar{w}^{\zeta} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau}\left(L_{T}^{\prime}+\frac{L_{w}^{\prime}}{g \tau}+\frac{\boldsymbol{\varepsilon}}{R T_{*}} L_{\boldsymbol{\phi}}\right) \equiv L_{T}^{\prime \prime}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P-\boldsymbol{\varepsilon} \bar{P}^{\zeta}\right)-\frac{X}{\boldsymbol{\tau}} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau}\left(L_{T}^{\prime}+\frac{L_{w}^{\prime}}{g \tau}-\frac{\boldsymbol{\kappa}}{R T_{*}} L_{\boldsymbol{\phi}}\right) \equiv L_{\phi}^{\prime \prime}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P+\boldsymbol{\kappa} \bar{P}^{\zeta}\right)+\frac{g w}{\tau R T_{*}}
\end{aligned}
$$

with $\varepsilon=\frac{R T_{*}}{g^{2} \tau^{2}}$ and $\gamma=\frac{\kappa}{\kappa+\varepsilon}$.
Here note: we have assumed $\boldsymbol{\delta}_{\zeta} q^{\zeta} \equiv{\overline{\boldsymbol{\delta}}{ }_{\zeta} q^{\zeta}}^{\text {, i.e. we have assumed commutation of }}$ the mean and difference operators. See Appendix 5 for further details on averaging operators and commutation.

Finally, these three equations are combined to give:
again provided commutation holds.

This is the elliptic problem to be solved with boundary conditions (on P) given by

$$
L^{\prime \prime}{ }_{T}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P-\boldsymbol{\varepsilon} \bar{P}^{\zeta}\right)-\frac{1}{\boldsymbol{\tau}}\left(\dot{\boldsymbol{\zeta}}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\boldsymbol{\tau}}\right)
$$

applied at both top and bottom as follows:

$$
\begin{aligned}
& {\left[\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P-\boldsymbol{\varepsilon} \bar{P}^{\zeta}\right)\right]_{T}=-\left(L_{T}^{\prime \prime}\right)_{T}} \\
& {\left[\frac{\gamma}{\kappa \tau^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P+\kappa \bar{P}^{\zeta}\right)\right]_{S}=-\left(L^{\prime \prime}\right)_{S}+\frac{\phi_{S}}{\tau^{2} R T_{*}}=-\left(L^{\prime \prime}{ }_{T}\right)_{S}}
\end{aligned}
$$

In effect

$$
\left(\dot{\zeta}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\tau}\right)_{T}=0
$$

since $\dot{\zeta}_{T}=0, \mathrm{~B}_{T}=0$ and $q_{T}=0$ at the top and (noting that $X \equiv \dot{\zeta}+\frac{\overline{P-\phi^{\zeta}}}{\tau R T_{*}}$)

$$
\left(\dot{\zeta}+\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\tau}\right)_{S}=\frac{1}{\tau}\left(q_{S}+s\right)=\frac{P_{S}-\boldsymbol{\phi}_{S}}{\tau R T_{*}}
$$

since $\dot{\zeta}_{S}=0$ and $\mathrm{B}_{S}=1$ at the bottom. ϕ_{S} is a known quantity.
N.B. These are closed boundary conditions. Open top boundary conditions are considered in Appendix 9.

16) The non-linear problem

To find the solution to the non-linear problem we need to perform the following operations iteratively

$$
\begin{aligned}
& \left(\mathbf{L}_{h}^{\prime}\right)^{1+i t e r, j t e r}=\left(\mathbf{R}_{h}\right)^{j \text { iter }}-\left(\mathbf{N}_{h}^{\prime}\right)^{\text {iter, jiter }} \\
& \left(L_{w}^{\prime}\right)^{1+\text { iter, jer }}=\left(R_{w}\right)^{\text {jiter }}-\left(N_{w}^{\prime}\right)^{\text {iter, jier }} \\
& \left(L^{\prime \prime}{ }_{T}\right)^{1 \text { tier, jer }}=\left(R^{\prime \prime}{ }_{T}\right)^{\text {jter }}-\left(N^{\prime \prime}{ }_{T}\right)^{\text {iter, jter }} \\
& \left(L^{\prime \prime}{ }_{\phi}\right)^{1+i t i e r, j i t e r}=\left(R_{\phi}{ }_{\phi}\right)^{\text {jiter }}-\left(N_{\phi}^{\prime \prime}\right)^{\text {iter, jter }} \\
& \left(L_{P}\right)^{1+i t e r, j t e r}=\left(R_{P}\right)^{\text {jiter }}-\left(N_{P}\right)^{\text {iter, jiter }}
\end{aligned}
$$

In order to obtain $R_{P}, R_{T}{ }_{T}, R^{\prime \prime}{ }_{\phi}$ and $N_{P}, N^{\prime \prime}{ }_{T}, N^{\prime \prime}{ }_{\phi}$, we transform the R 's and N 's, like was done for the L 's to obtain $L_{P}, L^{\prime \prime}{ }_{T}, L^{\prime \prime}{ }_{\phi}$, i.e.:

$$
\begin{aligned}
& \nabla_{\zeta} \cdot \mathbf{R}_{h}-\frac{1}{\tau}\left(R_{C}-\frac{\overline{R_{w}}}{}{ }^{\zeta} \boldsymbol{\tau}\right) \equiv R^{\prime \prime}{ }_{C} \quad \nabla_{\zeta} \cdot \mathbf{N}_{h}-\frac{1}{\tau}\left(N_{C}-\frac{\overline{N_{w}^{\prime}}}{g \tau}\right) \equiv N^{\prime \prime}{ }_{C} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(R_{T}+\frac{R_{w}}{g \boldsymbol{\tau}}+\frac{\boldsymbol{\varepsilon}}{R T_{*}} R_{\phi}\right) \equiv R^{\prime \prime}{ }_{T} \quad \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(N^{\prime}{ }_{T}+\frac{N^{\prime}{ }_{w}}{g \boldsymbol{\tau}}+\frac{\boldsymbol{\varepsilon}}{R T_{*}} N_{\phi}\right) \equiv N^{\prime \prime}{ }_{T} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau}\left(R_{T}+\frac{R_{w}}{g \tau}-\frac{\boldsymbol{\kappa}}{R T_{*}} R_{\phi}\right) \equiv R_{\phi}{ }_{\phi} \quad \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau}\left(N^{\prime}{ }_{T}+\frac{N^{\prime}{ }_{w}}{g \tau}-\frac{\boldsymbol{\kappa}}{R T_{*}} N_{\phi}\right) \equiv N^{\prime \prime}{ }_{\phi} \\
& R^{\prime \prime}{ }_{C}-\left(\boldsymbol{\delta}_{\zeta} R^{\prime \prime}{ }_{T}+\overline{R "}_{T}{ }^{\zeta}\right)-\boldsymbol{\varepsilon} \overline{R "}_{\boldsymbol{\phi}}{ }^{\zeta} \equiv R_{P} \quad \quad N{ }^{\prime \prime}{ }_{C}-\left(\boldsymbol{\delta}_{\zeta} N^{\prime \prime}{ }_{T}+{\overline{N "_{T}}}^{\zeta}\right)-\boldsymbol{\varepsilon} \overline{N "}_{\boldsymbol{\phi}}{ }^{\zeta} \equiv N_{P}
\end{aligned}
$$

Note that we have R_{w}, R_{T} on the left and $N_{w}{ }_{w}, N_{T}{ }_{T}$ on the right and remember that $N_{\phi}=0$.
17) Back substitution

The following equations give in a straight forward manner the 6 prognostic variables $\mathbf{V}_{h}, w, q,(s, \dot{\boldsymbol{\zeta}})$ and ϕ^{\prime} :

$$
\begin{array}{rlrl}
\mathbf{V}_{h}: & \frac{\mathbf{V}_{h}}{\boldsymbol{\tau}} & =\left[\mathbf{R}_{h}-\mathbf{N}_{h}-\nabla_{\zeta} P\right] \\
\mathrm{w}: & \frac{w}{\boldsymbol{\tau}} & =-\frac{R T_{*}}{g}\left[R^{\prime \prime}{ }_{\phi}-N^{\prime \prime}{ }_{\phi}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P+\boldsymbol{\kappa} \bar{P}^{\zeta}\right)\right] \\
q: & \boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta} & =-\frac{1}{g}\left[R_{w}-N_{w}^{\prime}-\frac{w}{\boldsymbol{\tau}}\right] ; \quad q_{T}=0 \\
s: & & s=\frac{P_{S}-\boldsymbol{\phi}_{S}}{R T_{*}}-q_{S} \\
\dot{\boldsymbol{\zeta}}: & & \frac{\dot{\boldsymbol{\zeta}}}{\boldsymbol{\tau}} & =-\left[R^{\prime \prime}{ }_{T}-N^{\prime \prime}{ }_{T}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P-\boldsymbol{\varepsilon} \bar{P}^{\zeta}\right)\right]-\frac{\mathrm{B} s+\bar{q}^{\zeta}}{\boldsymbol{\tau}^{2}} ; \dot{\boldsymbol{\zeta}}_{T}=\dot{\boldsymbol{\zeta}}_{S}=0 \\
\boldsymbol{\phi}^{\prime}: & & \boldsymbol{\phi}^{\prime} & =P-R T_{*}(q+B s)
\end{array}
$$

Finally we may compute μ and T diagnostically:

$$
\begin{aligned}
1+\boldsymbol{\mu} & =e^{\bar{q}^{\zeta}}\left[\frac{\boldsymbol{\delta}_{\zeta} q}{\boldsymbol{\delta}_{\zeta}(\boldsymbol{\zeta}+B s)}+1\right] \\
\frac{T}{T_{*}} & =e^{\bar{q}^{\zeta}} \frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\zeta}-\boldsymbol{\phi}^{\prime} / R T_{*}\right)}{\boldsymbol{\delta}_{\zeta}(\boldsymbol{\zeta}+B s)}
\end{aligned}
$$

For a brief description of The Dynamic Core Code, see Appendix 6.
There is THE HYDROSTATIC OPTION. For a description, see Appendix 7.
There is THE AUTOBAROTROPIC OPTION. For a description, see Appendix 8.
Aspects of HORIZONTAL DISCRETIZATION are given in Appendix 10.
See Table 2, page 59, for a summary of the equations, variables, etc.

THE END

Appendix 1. Virtual temperature

In presence of water vapor q_{v} and various types of hydrometeors q_{i}, the density of atmospheric substance is given by

$$
\rho=\rho\left(q_{d}+q_{v}+\sum q_{i}\right)
$$

where q_{d} is the dry air specific mass. The equation of state is given by

$$
\begin{aligned}
p & =\rho\left(R_{d} q_{d}+R_{v} q_{v}\right) T \\
& =\rho R_{d}\left(1+\delta q_{v}-\sum q_{i}\right) T
\end{aligned}
$$

where $\delta=R_{v} / R_{d}-1 \approx 0.6$ and we rewrite the equation of state as follows:

$$
p=\rho R_{d} T_{v}
$$

defining virtual temperature thus

$$
T_{v}=T\left(1+\delta q_{v}-\sum q_{i}\right)
$$

Rewriting the equations to appear in terms of virtual temperature and approximating the ratio $\kappa=R / c_{p}$ by $\kappa_{d}=R_{d} / c_{p d}$, the equations of section 1 may then be replaced by the following:

$$
\begin{aligned}
\frac{d \mathbf{V}}{d t}+f \mathbf{k x} \mathbf{V}+R_{d} T_{v} \nabla \ln p+g \mathbf{k} & =\mathbf{F} \\
\frac{d \ln T_{v}}{d t}-\boldsymbol{\kappa}_{d} \frac{d \ln p}{d t} & =\frac{Q_{v}}{c_{p d} T_{v}}=\frac{Q}{c_{p d} T_{v}}+\frac{T}{T_{v}}\left(\boldsymbol{\delta} \frac{d q_{v}}{d t}-\sum \frac{d q_{i}}{d t}\right) \\
\frac{d \ln \boldsymbol{\rho}}{d t}+\nabla \cdot \mathbf{V} & =0 \\
\boldsymbol{\rho} & =\frac{p}{R_{d} T_{v}}
\end{aligned}
$$

From the point of view of the pure dynamics, these equations are formally identical to those in section 1 in which R and c_{p} would take the dry air constant values, temperature be replaced by virtual temperature and appropriate source terms be added in the thermodynamic equation. The advantage of this formulation is of course the fact that the parameters R and c_{p} no longer varies while all of the virtual effects, including water vapor buoyancy and condensed water loading effects, are implicitly taken into account. The only approximation made here, the replacement of κ by κ_{d} in the thermodynamic equation, is facultative.

Appendix 2. Coordinate transformation rules

Appendix 2a. Invariance of the total derivative
By the chain rule we first verify the invariance of the total derivative $d f / d t$ under a general coordinate transformation. In effect, if we consider $f(x, y, z, t)$, then:

$$
\frac{d f}{d t}=\left(\frac{\partial f}{\partial t}\right)_{x, y, z}+\left(\frac{\partial f}{\partial x}\right)_{y, z, t} \frac{d x}{d t}+\left(\frac{\partial f}{\partial y}\right)_{x, z, t} \frac{d y}{d t}+\left(\frac{\partial f}{\partial z}\right)_{x, y, t} \frac{d z}{d t}
$$

while for $f(x, y, \zeta, t)$, we naturally have:

$$
\frac{d f}{d t}=\left(\frac{\partial f}{\partial t}\right)_{x, y, \zeta}+\left(\frac{\partial f}{\partial x}\right)_{y, \zeta, t} \frac{d x}{d t}+\left(\frac{\partial f}{\partial y}\right)_{x, \zeta, t} \frac{d y}{d t}+\left(\frac{\partial f}{\partial \zeta}\right)_{x, y, t} \frac{d \zeta}{d t}
$$

Here we only have changed the vertical coordinate from z to ζ with the result that the horizontal components of the velocity $(d x / d t, d y / d t)=(U, V)=\mathbf{V}_{h}$ remain unchanged. The vertical motion though has transformed from $d z / d t=w$ into $d \zeta / d t=\dot{\zeta}$. Shortening the notation, we also write the above relations respectively as follows:

$$
\begin{aligned}
& \frac{d f}{d t}=\left(\frac{\partial f}{\partial t}\right)_{z}+U\left(\frac{\partial f}{\partial x}\right)_{z}+V\left(\frac{\partial f}{\partial y}\right)_{z}+w \frac{\partial f}{\partial z}=\frac{\partial f}{\partial t}+\mathbf{V}_{h} \cdot \nabla_{z} f+w \frac{\partial f}{\partial z} \\
& \frac{d f}{d t}=\left(\frac{\partial f}{\partial t}\right)_{\zeta}+U\left(\frac{\partial f}{\partial x}\right)_{\zeta}+V\left(\frac{\partial f}{\partial y}\right)_{\zeta}+\dot{\zeta} \frac{\partial f}{\partial \zeta}=\frac{\partial f}{\partial t}+\mathbf{V}_{h} \cdot \nabla_{\zeta} f+\dot{\zeta} \frac{\partial f}{\partial \zeta}
\end{aligned}
$$

Thus we minimize the indices. We also introduced the vector notation for the 'horizontal' part of the advection operator. Note though that the new coordinate ζ is generally curvilinear and non-orthogonal and the scalar product must be interpreted with care (see appendix 2c)

Appendix 2b. Transformation rules for derivatives.
It is remarkable that not only can all these rules be recovered from the invariance of the total derivative but also that these derivative transformation rules suffice to transform completely the Euler equations. In effect, the three velocity components may be treated as three independent scalars ('pseudo-scalars'), the velocity vector not being transformed (we are left though with a 'hybrid' system since maintaining two vertical velocities w and $\dot{\zeta}$ and therefore needing an additional predictive equation when $\left.(\partial z / \partial t)_{\zeta} \neq 0\right)$.

The transformation rules are obtained by equating the above two relations. In effect, we must have

$$
0=\left(\frac{\partial f}{\partial t}\right)_{z}-\left(\frac{\partial f}{\partial t}\right)_{\zeta}+U\left[\left(\frac{\partial f}{\partial x}\right)_{z}-\left(\frac{\partial f}{\partial x}\right)_{\zeta}\right]+V\left[\left(\frac{\partial f}{\partial y}\right)_{z}-\left(\frac{\partial f}{\partial y}\right)_{\zeta}\right]+w \frac{\partial f}{\partial z}-\dot{\zeta} \frac{\partial f}{\partial \zeta}
$$

and since

$$
w=\frac{d z}{d t}=\left(\frac{\partial z}{\partial t}\right)_{\zeta}+U\left(\frac{\partial z}{\partial x}\right)_{\zeta}+V\left(\frac{\partial z}{\partial y}\right)_{\zeta}+\dot{\zeta} \frac{\partial z}{\partial \zeta}
$$

then

$$
\begin{gathered}
0=\left[\left(\frac{\partial f}{\partial t}\right)_{z}-\left(\frac{\partial f}{\partial t}\right)_{\zeta}+\left(\frac{\partial z}{\partial t}\right)_{\zeta} \frac{\partial f}{\partial z}\right]+U\left[\left(\frac{\partial f}{\partial x}\right)_{z}-\left(\frac{\partial f}{\partial x}\right)_{\zeta}+\left(\frac{\partial z}{\partial x}\right)_{\zeta} \frac{\partial f}{\partial z}\right] \\
+V\left[\left(\frac{\partial f}{\partial y}\right)_{z}-\left(\frac{\partial f}{\partial y}\right)_{\zeta}+\left(\frac{\partial z}{\partial y}\right)_{\zeta} \frac{\partial f}{\partial z}\right]+\dot{\zeta}\left[\frac{\partial z}{\partial \zeta} \frac{\partial f}{\partial z}-\frac{\partial f}{\partial \zeta}\right]
\end{gathered}
$$

Each bracket must vanish independently. Therefore the rules are:

$$
\begin{aligned}
\left(\frac{\partial f}{\partial t}\right)_{z} & =\left(\frac{\partial f}{\partial t}\right)_{\zeta}-\left(\frac{\partial z}{\partial t}\right)_{\zeta} \frac{\partial f}{\partial z} \\
\left(\frac{\partial f}{\partial x}\right)_{z} & =\left(\frac{\partial f}{\partial x}\right)_{\zeta}-\left(\frac{\partial z}{\partial x}\right)_{\zeta} \frac{\partial f}{\partial z} \\
\left(\frac{\partial f}{\partial y}\right)_{z} & =\left(\frac{\partial f}{\partial y}\right)_{\zeta}-\left(\frac{\partial z}{\partial y}\right)_{\zeta} \frac{\partial f}{\partial z} \\
\frac{\partial f}{\partial z} & =\frac{\partial \zeta}{\partial z} \frac{\partial f}{\partial \zeta}
\end{aligned}
$$

Appendix 2c. Vectors in non-orthogonal curvilinear coordinates
In non-orthogonal curvilinear coordinates $\hat{\mathbf{x}}=\left(\hat{x}^{1}, \hat{x}^{2}, \hat{x}^{3}\right)$ (see Dutton, John A, The Ceaseless Wind, chapters 5 and 7), there appear two sets of basis vectors (usually not even of unit length) and two sets of vector components. Applying the chain rule, we obtain the following two expansions (summation convention):

$$
\begin{array}{rlrl}
d \mathbf{x} & =\frac{\partial \mathbf{x}}{\partial \hat{x}^{j}} d \hat{x}^{j} & \mathrm{~d} \hat{x}^{i} & =\frac{\partial \hat{x}^{i}}{\partial x^{j}} d x^{j}=\left(\nabla \hat{x}^{i}\right) \cdot d \mathbf{x} \\
& =\boldsymbol{\tau}_{j} d \hat{x}^{j} & & =\boldsymbol{\eta}^{i} \cdot d \mathbf{x}
\end{array}
$$

where $\boldsymbol{\tau}_{j}$ is covariant: tangent to the curve along which only \hat{x}^{j} varies and $\boldsymbol{\eta}^{i}$ is contravariant: normal to the surface $\hat{x}^{i}=$ const. and we have the orthogonality relation

$$
\boldsymbol{\tau}_{j} \boldsymbol{\eta}^{i}=\delta_{j}^{i}
$$

Representing a vector \mathbf{A} as

$$
\mathbf{A}=A^{k} \boldsymbol{\tau}_{k}=A_{k} \boldsymbol{\eta}^{\mathrm{k}}
$$

we may recover the components [$\mathrm{A}_{\mathrm{k}}\left(\mathrm{A}^{\mathrm{k}}\right)$: covariant (contravariant) components] using the above orthogonality relation:

$$
\begin{aligned}
& A^{i}=\mathbf{A} \cdot \boldsymbol{\eta}^{\mathrm{i}}=A^{j} \boldsymbol{\tau}_{j} \cdot \boldsymbol{\eta}^{\mathrm{i}} \\
& A_{j}=\mathbf{A} \cdot \boldsymbol{\tau}_{j}=A_{i} \boldsymbol{\eta}^{\mathrm{i}} \cdot \boldsymbol{\tau}_{j}
\end{aligned}
$$

The scalar product is

$$
\mathbf{A} \cdot \mathbf{B}=A^{k} B_{k}=A_{k} B^{\mathrm{k}}
$$

Therefore in generalized vertical coordinate $\hat{\mathbf{x}}=(x, y, \zeta)$ the basis vectors become [the original orthogonal Cartesian coordinate being $\mathbf{x}=(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}]$

$$
\begin{array}{ll}
\boldsymbol{\eta}^{1}=\nabla x=\mathbf{i} & \boldsymbol{\tau}_{1}=\frac{\partial \mathbf{x}}{\partial x}=\mathbf{i}+\frac{\partial z}{\partial x} \mathbf{k} \\
\boldsymbol{\eta}^{2}=\nabla y=\mathbf{j} & \boldsymbol{\tau}_{2}=\frac{\partial \mathbf{x}}{\partial y}=\mathbf{j}+\frac{\partial z}{\partial y} \mathbf{k} \\
\boldsymbol{\eta}^{3}=\nabla \zeta & \boldsymbol{\tau}_{3}=\frac{\partial \mathbf{x}}{\partial \zeta}=\frac{\partial z}{\partial \zeta} \mathbf{k}
\end{array}
$$

The contravariant components of the velocity vector $V^{i}=\mathbf{V} \cdot \boldsymbol{\eta}^{i}$ are found to be

$$
U, V, \mathbf{V} \cdot \nabla \zeta=\dot{\zeta}
$$

While the covariant components of the gradient $\partial f / \partial \hat{x}^{j}=\nabla f \cdot \boldsymbol{\tau}_{i}$ are found to be

$$
\left(\frac{\partial f}{\partial x}\right)_{\zeta},\left(\frac{\partial f}{\partial y}\right)_{\zeta}, \frac{\partial f}{\partial \zeta}
$$

And the vector product $\mathbf{V} \cdot \nabla f$ may be computed as follows:

$$
\begin{aligned}
\mathbf{V} \cdot \nabla f & =V^{i} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\eta}^{j} \frac{\partial f}{\partial \hat{x}^{j}} \\
& =\left[U\left(\mathbf{i}+\frac{\partial z}{\partial x} \mathbf{k}\right)+V\left(\mathbf{j}+\frac{\partial z}{\partial y} \mathbf{k}\right)+\dot{\zeta} \frac{\partial z}{\partial \zeta} \mathbf{k}\right] \cdot\left[\left(\frac{\partial f}{\partial x}\right)_{\zeta} \mathbf{i}+\left(\frac{\partial f}{\partial y}\right)_{\zeta} \mathbf{j}+\frac{\partial f}{\partial \zeta} \nabla \zeta\right]
\end{aligned}
$$

$$
\begin{aligned}
& =U\left[\left(\frac{\partial f}{\partial x}\right)_{\zeta}+\frac{\partial f}{\partial \zeta}\left(\mathbf{i} \cdot \nabla \zeta+\frac{\partial z}{\partial x} \mathbf{k} \cdot \nabla \zeta\right)\right]+V\left[\left(\frac{\partial f}{\partial y}\right)_{\zeta}+\frac{\partial f}{\partial \zeta}\left(\mathbf{j} \cdot \nabla \zeta+\frac{\partial z}{\partial y} \mathbf{k} \cdot \nabla \zeta\right)\right]+\dot{\zeta} \frac{\partial z}{\partial \zeta} \frac{\partial f}{\partial \zeta} \mathbf{k} \cdot \nabla \zeta \\
& =U\left[\left(\frac{\partial f}{\partial x}\right)_{\zeta}+\frac{\partial f}{\partial \zeta}\left(\frac{\partial \zeta}{\partial x}+\frac{\partial z}{\partial x} \frac{\partial \zeta}{\partial z}\right)\right]+V\left[\left(\frac{\partial f}{\partial y}\right)_{\zeta}+\frac{\partial f}{\partial \zeta}\left(\frac{\partial \zeta}{\partial y}+\frac{\partial z}{\partial y} \frac{\partial \zeta}{\partial z}\right)\right]+\dot{\zeta} \frac{\partial z}{\partial \zeta} \frac{\partial f}{\partial \zeta} \frac{\partial \zeta}{\partial z} \\
& =U\left(\frac{\partial f}{\partial x}\right)_{\zeta}+V\left(\frac{\partial f}{\partial y}\right)_{\zeta}+\dot{\zeta} \frac{\partial f}{\partial \zeta}
\end{aligned}
$$

since

$$
\begin{aligned}
& \left(\frac{\partial \zeta}{\partial x}\right)_{z}+\left(\frac{\partial z}{\partial x}\right)_{z} \frac{\partial \zeta}{\partial z}=\left(\frac{\partial \zeta}{\partial x}\right)_{\zeta}=0 \\
& \left(\frac{\partial \zeta}{\partial y}\right)_{z}+\left(\frac{\partial z}{\partial y}\right)_{z} \frac{\partial \zeta}{\partial z}=\left(\frac{\partial \zeta}{\partial y}\right)_{\zeta}=0
\end{aligned}
$$

Figure 2. Representation of the wind vector in both orthogonal z-coordinate and oblique ζ-coordinate

Appendix 3. The metric parameter B and its effect

The log-hydrostatic-pressure is given by

$$
\begin{array}{lc}
\ln \pi=\zeta+B(\zeta)_{s ;} ; & s=\ln \pi_{S}-\zeta_{S}=\ln \left(\pi_{S} / p_{r e f}\right) \\
\lambda=\frac{\zeta-\zeta_{T}}{\zeta_{S}-\zeta_{T}} \\
\ln \pi=\zeta+B\left[\ln \pi_{S}-\zeta_{S}\right] & B=\lambda^{r} ; \quad r=r_{\max }-\left(r_{\max }-r_{\min }\right) \lambda
\end{array}
$$

We want to investigate the behavior of this relation as a function of B and the surface pressure π_{s}. We have $0 \leq B \leq 1$; we calculate the derivative

$$
\frac{\partial \ln B}{\partial \lambda}=\frac{\partial r \ln \lambda}{\partial \lambda}=\frac{1}{\lambda}[r-\Delta r \lambda \ln \lambda] \geq 0 ; \quad \Delta r=r_{\max }-r_{\min }
$$

Monotonicity requires that

$$
\begin{aligned}
& \frac{\partial \ln \pi}{\partial \zeta}=1+\frac{\partial B}{\partial \lambda}\left[\ln \pi_{S}-\zeta_{S}\right] \frac{\partial \lambda}{\partial \zeta}>0 \\
& \frac{\ln \pi_{S}}{\zeta_{S}}>K \geq 1-\left(\frac{\partial B}{\partial \lambda}\right)^{-1}\left(1-\frac{\zeta_{T}}{\zeta_{S}}\right) \quad K=1-\left(\frac{\partial B}{\partial \lambda}\right)_{\max }^{-1}\left(1-\frac{\zeta_{T}}{\zeta_{S}}\right) \\
& \pi_{S}>p_{\text {ref }} \exp (K)
\end{aligned}
$$

When r is constant $(\Delta r=0),(\partial B / \partial \lambda)_{\max }=r$ at $\lambda=1 . K=1-1 / r\left(1-\zeta_{T} / \zeta_{S}\right)$ and the monotonicity requirement is $\quad \pi_{S}>p_{\text {ref }}{ }^{1-\frac{1}{r}}\left(1-\frac{\zeta_{T}}{\zeta_{S}}\right)$. For $\quad p_{\text {top }}=10 m b ; r=4$, $\pi_{S}>\left(10^{5}\right)^{1-\frac{0.4}{4}} \approx 316 \mathrm{mb}$. Not too restrictive. Nevertheless, we must worry about the amount of squeezing of the layer thicknesses even when π_{s} is larger:

$$
\begin{aligned}
& \text { Maximum squeezing ratio when } \frac{\Delta \ln \pi}{\Delta \zeta}=1-\left(\frac{\partial B}{\partial \lambda}\right)_{\max }\left[\frac{\zeta_{S}-\ln \pi_{S}}{\zeta_{S}-\zeta_{T}}\right] \\
& \text { Surface squeezing ratio when } \frac{\Delta \ln \pi}{\Delta \zeta}=1-\left(\frac{\partial B}{\partial \lambda}\right)_{s r f}\left[\frac{\ln \left(p_{\text {ref }} / \pi_{S}\right)}{\ln \left(p_{\text {ref }} / p_{\text {top }}\right)}\right]
\end{aligned}
$$

Let's say $\pi_{s}=500 \mathrm{mb}$, then

$$
\frac{\Delta \ln \pi}{\Delta \zeta}=1-4 \frac{\ln 2}{\ln 100} \approx .4
$$

With r variable, we may at the same time avoid too much squeezing near the surface where the layers are already quite thin, while achieving fast rectification. For example, we may choose $r_{\text {min }}=2$ (r at the surface) and $r_{\max }=15$ (r at the top) with a maximum squeezing ratio of $\sim .45$ but a surface squeezing ratio of $\sim .7$. Two figures are shown below: The 57 fitted levels of the Meso-global staggered version of GEM in the new ζ-coordinate (a) with $r_{\text {max }}=r_{\text {min }}=1$ (Figure 3), (b) with $r_{\text {max }}=15$ and $r_{\text {min }}=2$ (Figure 4).

Figure 3. The 57 fitted levels of the Meso-global staggered version of GEM in the new ζ-coordinate with $r_{\max }=r_{\text {min }}=1$.

Levels, coef var, $(2,15)$

Figure 4. The 57 fitted levels of the Meso-global staggered version of GEM in the new ζ-coordinate with $r_{\max }=15$ and $r_{\min }=2$.

The surface pressure at the top of the hill is 500 mb . The 'squeeze factor' is the surface 'squeeze factor'. The red (black) curves correspond to layer thicknesses in Eta-units above (below) the hill $\left[\mathrm{Eta}=\frac{\zeta-\zeta_{T}}{\zeta_{S}-\zeta_{T}}\right]$.

Appendix 4a. Detailed spatial discretization with staggering: the linear terms

In section 7, we described the vertical discretization succinctly. In section 15, we examined the Elliptic Problem. We showed that all variables could be readily eliminated in favor of P. We now go back and examine the discrete linear system leading to the elliptic problem in full details. As mentioned earlier, the finite differences replacing the derivatives are made as simple as possible, i.e.

$$
\begin{array}{rlrl}
\left(\boldsymbol{\delta}_{\zeta} F\right)_{k-\frac{1}{2}} & =\frac{F_{k}-F_{k-1}}{\Delta \zeta_{k-\frac{1}{2}}} \quad(k=1, N+1) ; \quad\left(\boldsymbol{\delta}_{\zeta} G\right)_{k} & \left.=\frac{G_{k+\frac{1}{2}}-G_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}} \quad(k=1, N)\right) \\
\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}} & =\zeta_{k}-\boldsymbol{\zeta}_{k-1} & \Delta \boldsymbol{\zeta}_{k} & =\zeta_{k+\frac{1}{2}}-\zeta_{k-\frac{1}{2}}
\end{array} \quad
$$

with the top $\zeta_{0}=\boldsymbol{\zeta}_{\frac{1}{2}}=\boldsymbol{\zeta}_{T}$, the surface $\zeta_{N+1}=\zeta_{N+\frac{1}{2}}=\zeta_{S}$ and the momentum levels $\zeta_{k}(1 \leq k \leq N) \quad$ specified while the intermediate thermodynamic levels $\zeta_{k-\frac{1}{2}}=\frac{\boldsymbol{\zeta}_{k}+\boldsymbol{\zeta}_{k-1}}{2}(2 \leq k \leq N)$ are calculated. The use of averaging is minimized. Starting with $\left(L_{C}\right)_{k},\left(\mathbf{V}_{h}\right)_{k}$ and $X_{k-\frac{1}{2}}$ are chosen and therefore $\left(\mathbf{L}_{h}\right)_{k}$ and P_{k}. The hydrostatic case (q being absent) suggests $\left(L_{T}^{\prime}\right)_{k-\frac{1}{2}}$, therefore $\left(L_{H}\right)_{k-\frac{1}{2}}$ and $T^{\prime}{ }_{k-\frac{1}{2}}$ (section 11). In $\left(L_{T}^{\prime}\right)_{k-\frac{1}{2}}$ and $\left(L_{H}\right)_{k-\frac{1}{2}}$, we now introduce q_{k}. This in turn suggests $\left(L_{w}^{\prime}\right)_{k-\frac{1}{2}}, w_{k-\frac{1}{2}}$ and finally $\left(L_{\boldsymbol{\phi}}\right)_{k-\frac{1}{2}}$. Hence

$$
\begin{array}{rlr}
\left(\mathbf{L}_{h}\right)_{k} & =\left(\frac{\mathbf{V}_{h}}{\boldsymbol{\tau}}+\nabla_{\zeta} P\right)_{k} & (k=1, N) \\
\left(L_{w}^{\prime}\right)_{k-\frac{1}{2}} & =\left(\frac{w}{\boldsymbol{\tau}}-g\left(\boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta}\right)\right)_{k-\frac{1}{2}} & (k=1, N+1) \\
\left(L_{T}^{\prime}\right)_{k-\frac{1}{2}} & =\left(\frac{\boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta}}{\boldsymbol{\tau}}-\frac{\boldsymbol{\delta}_{\zeta} P}{\tau R T_{*}}-\boldsymbol{\kappa} X\right)_{k-\frac{1}{2}} & (k=1, N+1) \\
\left(L_{C}\right)_{k} & =\left(-\frac{\left.\overline{\boldsymbol{\delta}_{\zeta} q+\bar{q}^{\zeta}}\right)_{k}}{\boldsymbol{\tau}}+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} X+\bar{X}^{\zeta}\right)_{k} & (k=1, N) \\
\left(L_{\boldsymbol{\phi}}\right)_{k-\frac{1}{2}} & =\left(\frac{\bar{P} \boldsymbol{P}}{\boldsymbol{\tau}}-R T_{*} X-g w\right)_{k-\frac{1}{2}} & (k=1, N+1)
\end{array}
$$

In the vertical, this leads to Charney-Phillips grid (Figure 1, page 11). For the two vertical means, we formally write

$$
\begin{aligned}
\left(\bar{F}^{\zeta}\right)_{k-\frac{1}{2}} & =\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} F_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} F_{k-1} \quad \text { and } \begin{aligned}
& \left.\bar{G}^{\zeta}\right)_{k}
\end{aligned}=\boldsymbol{\boldsymbol { \sigma }}_{k}^{+} G_{k+\frac{1}{2}}+\boldsymbol{\boldsymbol { \sigma }}_{k}^{-} G_{k-\frac{1}{2}} . \\
\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} & =1-\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+}
\end{aligned}
$$

The first one, averaging variables from momentum or full levels toward thermodynamic or half-levels, follows the rule of calculation for the half-levels, i.e.

$$
\boldsymbol{\sigma}_{\frac{1}{2}}^{+}=0, \quad \boldsymbol{\sigma}_{k-\frac{1}{2}}^{+}=\frac{1}{2}(2 \leq k \leq N), \quad \boldsymbol{\boldsymbol { \sigma }}_{N+\frac{1}{2}}^{+}=1
$$

This ensures optimal (second-order) accuracy for the hydrostatic equation L_{H} in particular. For the second one, averaging variables from thermodynamic levels toward momentum levels, three choices were considered: linear interpolation, simple average, average commuting with difference. Due to lack of sensibility, the last was adopted because it simplifies the code:

$$
\begin{aligned}
& \boldsymbol{\sigma}_{k}^{+}=\frac{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}{2 \Delta \boldsymbol{\zeta}_{k}}=\frac{\boldsymbol{\zeta}_{k+1}-\boldsymbol{\zeta}_{k}}{\boldsymbol{\zeta}_{k+1}-\zeta_{k-1}}(1 \leq k \leq N-1) \\
& \boldsymbol{\sigma}_{N}^{+}=\frac{\Delta \zeta_{N+\frac{1}{2}}}{\Delta \zeta_{N}}=\frac{\zeta_{N+\frac{1}{2}}-\zeta_{N}}{\zeta_{N+\frac{1}{2}}-\zeta_{N-\frac{1}{2}}}
\end{aligned}
$$

More explicitly,

$$
\begin{aligned}
& \left(\mathbf{L}_{h}\right)_{k}=\frac{\mathbf{V}_{h k}}{\tau}+\nabla_{\zeta} P_{k} \\
& \left(L_{w}^{\prime}\right)_{k-\frac{1}{2}}=\frac{w_{k-\frac{1}{2}}}{\boldsymbol{\tau}}-g\left(\frac{q_{k}-q_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} q_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} q_{k-1}\right) \\
& \left(L_{T}^{\prime}\right)_{k-\frac{1}{2}}=\frac{1}{\boldsymbol{\tau}}\left(\frac{q_{k}-q_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} q_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} q_{k-1}\right)-\frac{1}{\tau R T_{*}} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}-\boldsymbol{\kappa} X_{k-\frac{1}{2}} \\
& \left(L_{C}\right)_{k}=-\frac{1}{\boldsymbol{\tau}}\left[\boldsymbol{\boldsymbol { \omega }}_{k}^{+}\left(\frac{q_{k+1}-q_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\boldsymbol { \sigma }}_{k+\frac{1}{2}}^{+} q_{k+1}+\boldsymbol{\boldsymbol { \omega }}_{k+\frac{1}{2}}^{-} q_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\frac{q_{k}-q_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}+\boldsymbol{\boldsymbol { \omega }}_{k-\frac{1}{2}}^{+} q_{k}+\boldsymbol{\boldsymbol { \Phi }}_{k-\frac{1}{2}}^{-} q_{k-1}\right)\right] \\
& +\nabla_{\zeta} \cdot \mathbf{V}_{h k}+\frac{X_{k+\frac{1}{2}}-X_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}}+\boldsymbol{\sigma}_{k}^{+} X_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-} X_{k-\frac{1}{2}} \\
& \left(L_{\boldsymbol{\phi}}\right)_{k-\frac{1}{2}}=\frac{1}{\tau}\left(\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)-R T_{*} X_{k-\frac{1}{2}}-g w_{k-\frac{1}{2}}
\end{aligned}
$$

We have in the vertical direction $3 N\left[\mathbf{L}_{h}, L_{C}\right]+3(N+1)\left[L_{w}^{\prime}, L_{T}^{\prime}, L_{\phi}\right]$, i.e. $6 N+3$ equations and $2 N[U, V]_{1, \mathrm{~N}}+2(N+1)[w, X,]_{1 / 2, \mathrm{~N}+1 / 2}+2(N+2)[P, q]_{0, \mathrm{~N}+1}$, i.e. $6 N+6$ variables. As expected (section 7), we will need 3 boundary conditions in the vertical to close the problem. Now, 3 variables (\mathbf{V}_{h}, q) can easily be eliminated by combining the equations as follows:

$$
\begin{aligned}
& \nabla_{\zeta} \cdot\left(\mathbf{L}_{h}\right)_{k}- \frac{1}{\boldsymbol{\tau}}\left\{\left(L_{C}\right)_{k}-\frac{1}{g \boldsymbol{\tau}}\left[\boldsymbol{\boldsymbol { \Phi }}_{k}^{+}\left(L_{w}^{\prime}\right)_{k+\frac{1}{2}}+\boldsymbol{\boldsymbol { \sigma }}_{k}^{-}\left(L_{w}^{\prime}\right)_{k-\frac{1}{2}}\right]\right\} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left[\left(L_{T}^{\prime}\right)_{k-\frac{1}{2}}+\frac{1}{g \boldsymbol{\tau}}\left(L_{w}^{\prime}\right)_{k-\frac{1}{2}}+\frac{\boldsymbol{\varepsilon}}{R T_{*}}\left(L_{\boldsymbol{\phi}}\right)_{k-\frac{1}{2}}\right)_{k} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left[\left(L_{T}^{\prime}\right)_{k-\frac{1}{2}}+\frac{1}{g \boldsymbol{\tau}}\left(L_{w}^{\prime}{ }_{T}\right)_{k-\frac{1}{2}}-\frac{\boldsymbol{\kappa}}{R T_{*}}\left(L_{\boldsymbol{\phi}}\right)_{k-\frac{1}{2}}\right] \equiv\left(L_{\boldsymbol{\phi}}^{\prime \prime}\right)_{k-\frac{1}{2}}
\end{aligned}
$$

to give

$$
\begin{aligned}
& \left(L_{C}^{\prime \prime}\right)_{k}=\nabla_{\zeta}^{2} P_{k}-\frac{1}{\boldsymbol{\tau}}\left(\frac{X_{k+\frac{1}{2}}-X_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}}+\boldsymbol{\sigma}_{k}^{+} X_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-} X_{k-\frac{1}{2}}\right)+\frac{g \boldsymbol{\varepsilon}}{\tau R T_{*}}\left(\boldsymbol{\varpi}_{k}^{+} w_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-} w_{k-\frac{1}{2}}\right) \\
& \left(L_{T}^{\prime \prime}\right)_{k-\frac{1}{2}}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}-\boldsymbol{\varepsilon}\left(\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right]-\frac{X_{k-\frac{1}{2}}}{\boldsymbol{\tau}} \\
& \left(L_{\phi}^{\prime \prime}\right)_{k-\frac{1}{2}}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left[\frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}+\boldsymbol{\kappa}\left(\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right]+\frac{g w_{k-\frac{1}{2}}}{\tau R T_{*}}
\end{aligned}
$$

By further forming

$$
\begin{aligned}
& -\frac{\left(L^{\prime \prime}\right)_{k+\frac{1}{2}}-\left(L^{\prime \prime}\right)_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}}-\boldsymbol{\sigma}_{k}^{+}\left(L^{\prime \prime}\right)_{k+\frac{1}{2}}-\boldsymbol{\sigma}_{k}^{-}\left(L^{\prime \prime}\right)_{T-\frac{1}{2}}= \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{1}{\Delta \boldsymbol{\zeta}_{k}}\left(\frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}-\frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right)+\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right] \\
& -\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}} \frac{1}{\Delta \boldsymbol{\zeta}_{k}}\left[\left(\boldsymbol{\sigma}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}\right)-\left(\boldsymbol{\boldsymbol { \sigma }}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right] \\
& -\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\varpi}_{k}^{+}\left(\boldsymbol{\varpi}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\varpi}_{k+\frac{1}{2}}^{-} P_{k}\right)+\boldsymbol{\varpi}_{k}^{-}\left(\boldsymbol{\varpi}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right] \\
& +\frac{1}{\boldsymbol{\tau}}\left(\frac{X_{k+\frac{1}{2}}-X_{k-\frac{1}{2}}}{\Delta \zeta_{k}}+\boldsymbol{\sigma}_{k}^{+} X_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-} X_{k-\frac{1}{2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& -\boldsymbol{\varepsilon}\left(\boldsymbol{\sigma}_{k}^{+}\left(L^{\prime \prime}\right)_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-}\left(L_{\boldsymbol{\phi}} \boldsymbol{\phi}_{k-\frac{1}{2}}\right)=\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right]\right. \\
& +\frac{\boldsymbol{\gamma} \boldsymbol{\kappa} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\sigma}_{k}^{+}\left(\boldsymbol{\sigma}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right] \\
& -\frac{g \boldsymbol{\varepsilon}}{\boldsymbol{\tau} R T_{*}}\left(\boldsymbol{\boldsymbol { \omega }}_{k}^{+} w_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-} w_{k-\frac{1}{2}}\right)
\end{aligned}
$$

and finally
$\left(L^{\prime \prime}{ }_{C}\right)_{k}-\frac{\left(L^{\prime \prime}\right)_{k+\frac{1}{2}}-\left(L^{\prime \prime}\right)_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}}-\boldsymbol{\sigma}_{k}^{+}\left[\left(L^{\prime \prime}\right)_{k+\frac{1}{2}}+\boldsymbol{\varepsilon}\left(L_{\phi}^{\prime \prime}\right)_{k+\frac{1}{2}}\right]-\boldsymbol{\sigma}_{k}^{-}\left[\left(L_{T}\right)_{k-\frac{1}{2}}+\boldsymbol{\varepsilon}\left(L^{\prime \prime}\right)_{k-\frac{1}{2}}\right]=\left(L_{P}\right)_{k}$
we succeed in eliminating X and w. In effect, we have

$$
\begin{aligned}
\left(L_{P}\right)_{k}= & \nabla_{\zeta}^{2} P_{k}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left[\frac{1}{\Delta \zeta_{k}}\left(\frac{P_{k+1}-P_{k}}{\Delta \zeta_{k+\frac{1}{2}}}-\frac{P_{k}-P_{k-1}}{\Delta \zeta_{k-\frac{1}{2}}}\right)+\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \zeta_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \zeta_{k-\frac{1}{2}}}\right] \\
& +\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}-\frac{\boldsymbol{\boldsymbol { \sigma }}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}-\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}-\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}}{\Delta \boldsymbol{\zeta}_{k}}\right] \\
& -\frac{\boldsymbol{\gamma \varepsilon (1 - \boldsymbol { \kappa })}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\sigma}_{k}^{+}\left(\boldsymbol{\sigma}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right]
\end{aligned}
$$

 construction (commuting average, see Appendix 5). Therefore the final result is

$$
\begin{aligned}
\left(L_{P}\right)_{k}= & \nabla_{\zeta}^{2} P_{k}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left[\frac{1}{\Delta \boldsymbol{\zeta}_{k}}\left(\frac{P_{k+1}-P_{k}}{\Delta \zeta_{k+\frac{1}{2}}}-\frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right)+\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \zeta_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right] \\
& -\frac{\boldsymbol{\gamma \varepsilon}(1-\boldsymbol{\kappa})}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\boldsymbol { \sigma }}_{k}^{+}\left(\boldsymbol{\varpi}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\boldsymbol{\varpi}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right]
\end{aligned}
$$

N equations and $N+2$ unknowns.

Appendix 4b. Detailed spatial discretization: matrices of the elliptic problem

The matrix of the elliptic problem is composed of the previous equations $(k=1, N)$:

$$
\begin{aligned}
\Delta \boldsymbol{\zeta}_{k}\left(L_{P}\right)_{k} & =\Delta \boldsymbol{\zeta}_{k} \nabla_{\zeta}^{2} P_{k}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\left(\frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}-\frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right)+\Delta \boldsymbol{\zeta}_{k}\left(\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right)\right] \\
& -\frac{\boldsymbol{\gamma}(1-\boldsymbol{\kappa})}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}} \Delta \boldsymbol{\zeta}_{k}\left[\boldsymbol{\sigma}_{k}^{+}\left(\boldsymbol{\sigma}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right]
\end{aligned}
$$

(note that it has been multiplied through by $\Delta \zeta_{k}$) plus the boundary equations:

$$
\begin{aligned}
& {\left[\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P-\boldsymbol{\varepsilon} \bar{P}^{\zeta}\right)\right]_{\frac{1}{2}}=\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\frac{P_{1}-P_{0}}{\Delta \boldsymbol{\zeta}_{\frac{1}{2}}}-\boldsymbol{\varepsilon}\left(\boldsymbol{\boldsymbol { \Phi }}_{\frac{1}{2}}^{+} P_{1}+\boldsymbol{\sigma}_{\frac{1}{2}}^{-} P_{0}\right)\right)=-\left(L_{T}^{\prime \prime}\right)_{\frac{1}{2}}} \\
& {\left[\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\boldsymbol{\delta}_{\zeta} P+\boldsymbol{\kappa} \bar{P}^{\zeta}\right)\right]_{N+\frac{1}{2}}=\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\frac{P_{N+1}-P_{N}}{\Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}}+\boldsymbol{\kappa}\left(\boldsymbol{\boldsymbol { \sigma }}_{N+\frac{1}{2}}^{+} P_{N+1}+\boldsymbol{\sigma}_{N+\frac{1}{2}}^{-} P_{N}\right)\right)=-\left(L^{\prime \prime}{ }_{T}\right)_{N+\frac{1}{2}}}
\end{aligned}
$$

which are used to reduce the number of unknowns from $N+2$ to N. In effect, we find:

$$
\begin{aligned}
P_{0} & \left.=\boldsymbol{\alpha}_{T} P_{1}+C_{T}\left(L^{\prime \prime}\right)_{T}\right)_{\frac{1}{2}} \\
P_{N+1} & =\boldsymbol{\alpha}_{S} P_{N}-C_{S}\left(L^{\prime}{ }_{T}\right)_{N+\frac{1}{2}}
\end{aligned}
$$

with

$$
\begin{aligned}
& \boldsymbol{\alpha}_{T}=\frac{1 / \Delta \boldsymbol{\zeta}_{\frac{1}{2}}-\boldsymbol{\varepsilon} \varpi_{\frac{1}{2}}^{+}}{1 / \Delta \boldsymbol{\zeta}_{\frac{1}{2}}+\boldsymbol{\varepsilon} \boldsymbol{\sigma}_{\frac{1}{2}}} ; \quad C_{T}=\frac{\boldsymbol{\kappa} \tau^{2} R T_{*}}{\boldsymbol{\gamma}} \frac{1}{1 / \Delta \boldsymbol{\zeta}_{\frac{1}{2}}+\boldsymbol{\varepsilon} \sigma_{\frac{1}{2}}} \\
& \boldsymbol{\alpha}_{S}=\frac{1 / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}-\boldsymbol{\kappa} \boldsymbol{\sigma}_{N+\frac{1}{2}}^{-}}{1 / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}+\boldsymbol{\kappa} \boldsymbol{\sigma}_{N+\frac{1}{2}}^{+}} ; \quad C_{S}=\frac{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}{\boldsymbol{\gamma}} \frac{1}{1 / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}+\boldsymbol{\kappa} \boldsymbol{\omega}_{N+\frac{1}{2}}^{+}}
\end{aligned}
$$

Therefore we may rewrite the equations for $\left(L_{P}\right)_{i j 1}$ and $\left(L_{P}\right)_{i j N}$ as follows

$$
\begin{aligned}
\Delta \boldsymbol{\zeta}_{1}\left(L_{P}^{\prime}\right)_{1} & \left.=\Delta \boldsymbol{\zeta}_{1}\left(L_{P}\right)_{1}-C^{\prime \prime}{ }_{T}\left(L^{\prime \prime}\right)_{T}\right)_{\frac{1}{2}} \\
\Delta \boldsymbol{\zeta}_{N}\left(L_{P}^{\prime}\right)_{N} & =\Delta \boldsymbol{\zeta}_{N}\left(L_{P}\right)_{N}+C^{\prime \prime}{ }_{S}\left(L^{\prime}{ }_{T}\right)_{N+\frac{1}{2}}
\end{aligned}
$$

to get respectively

$$
\begin{aligned}
\Delta \boldsymbol{\zeta}_{1}\left(L_{P}^{\prime}\right)_{1}= & \Delta \boldsymbol{\zeta}_{1}\left(\nabla_{\zeta}^{2} P\right)_{1}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{P_{2}-P_{1}}{\Delta \boldsymbol{\zeta}_{\frac{3}{2}}}-\frac{\left(1-\boldsymbol{\alpha}_{T}\right) P_{1}}{\Delta \boldsymbol{\zeta}_{\frac{1}{2}}}+\frac{\Delta \boldsymbol{\zeta}_{1} \boldsymbol{\sigma}_{1}^{+}}{\Delta \boldsymbol{\zeta}_{\frac{3}{2}}}\left(P_{2}-P_{1}\right)+\frac{\Delta \boldsymbol{\zeta}_{1} \boldsymbol{\sigma}_{1}^{-}}{\Delta \boldsymbol{\zeta}_{\frac{1}{2}}}\left(1-\boldsymbol{\alpha}_{T}\right) P_{1}\right] \\
& -\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon}(1-\boldsymbol{\kappa})}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left\{\Delta \boldsymbol{\zeta}_{1} \boldsymbol{\sigma}_{1}^{+} \boldsymbol{\omega}_{\frac{3}{2}}^{+} P_{2}+\Delta \boldsymbol{\zeta}_{1}\left[\boldsymbol{\sigma}_{1}^{+} \boldsymbol{\omega}_{\frac{3}{2}}^{-}+\boldsymbol{\sigma}_{1}^{-}\left(\boldsymbol{\sigma}_{\frac{1}{2}}^{+}+\boldsymbol{\sigma}_{\frac{1}{2}}^{-} \boldsymbol{\alpha}_{T}\right)\right] P_{1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta \boldsymbol{\zeta}_{N}\left(L_{P}^{\prime}\right)_{N} & =\Delta \boldsymbol{\zeta}_{N}\left(\nabla_{\zeta}^{2} P\right)_{N}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\frac{\left(\boldsymbol{\alpha}_{S}-1\right) P_{N}}{\Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}}-\frac{P_{N}-P_{N-1}}{\Delta \zeta_{N-\frac{1}{2}}}+\frac{\Delta \boldsymbol{\zeta}_{N} \boldsymbol{\sigma}_{N}^{+}}{\Delta \zeta_{N+\frac{1}{2}}}\left(\boldsymbol{\alpha}_{S}-1\right) P_{N}+\frac{\Delta \boldsymbol{\zeta}_{N} \boldsymbol{\sigma}_{N}^{-}}{\Delta \boldsymbol{\zeta}_{N-\frac{1}{2}}}\left(P_{N}-P_{N-1}\right)\right) \\
& -\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon}(1-\boldsymbol{\kappa})}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left\{\Delta \boldsymbol{\zeta}_{N}\left[\boldsymbol{\sigma}_{N}^{+}\left(\boldsymbol{\sigma}_{N+\frac{1}{2}}^{+} \boldsymbol{\alpha}_{S}+\boldsymbol{\sigma}_{N+\frac{1}{2}}^{-}\right)+\boldsymbol{\sigma}_{N}^{-} \boldsymbol{\sigma}_{N-\frac{1}{2}}^{+}\right] P_{N}+\Delta \boldsymbol{\zeta}_{N} \boldsymbol{\sigma}_{N}^{-} \boldsymbol{\sigma}_{N-\frac{1}{2}}^{-} P_{N-1}\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
C^{\prime \prime}{ }_{T} & =\frac{1 / \Delta \boldsymbol{\zeta}_{\frac{1}{2}}-\Delta \boldsymbol{\zeta}_{1} \boldsymbol{\sigma}_{1}^{-}\left(1 / \Delta \boldsymbol{\zeta}_{\frac{1}{2}}+\boldsymbol{\varepsilon}(1-\boldsymbol{\kappa}) \boldsymbol{\sigma}_{\frac{1}{2}}^{-}\right)}{1 / \Delta \boldsymbol{\zeta}_{\frac{1}{2}}+\boldsymbol{\varepsilon} \boldsymbol{\sigma}_{\frac{1}{2}}^{-}} \\
C^{\prime \prime}{ }_{S}= & \frac{1 / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}+\Delta \boldsymbol{\zeta}_{N} \boldsymbol{\sigma}_{N}^{+}\left(1 / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}-\boldsymbol{\varepsilon}(1-\boldsymbol{\kappa}) \boldsymbol{\omega}_{N+\frac{1}{2}}^{+}\right)}{1 / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}}+\boldsymbol{\kappa} \boldsymbol{\sigma}_{N+\frac{1}{2}}^{+}}
\end{aligned}
$$

The vertical matrix problem may be decomposed into a combination of a diagonal \mathbf{P} and a set of tri-diagonal matrices, $\mathbf{P}_{\delta \delta}, \mathbf{P}_{\delta \mu}=\mathbf{P}_{\mu \delta}, \mathbf{P}_{\mu \mu}$, representing respectively a double difference, a mean followed by a difference or a difference followed by a mean and a double mean as follows:

$$
\mathbf{P}\left(L_{P}^{\prime}\right)=\mathbf{P} \nabla_{\zeta}^{2} P+\frac{\gamma}{\kappa \tau^{2} R T_{*}}\left(\mathbf{P}_{\delta \delta}+\mathbf{P}_{\delta \mu}-\varepsilon(1-\kappa) \mathbf{P}_{\mu \mu}\right) P
$$

The tri-diagonal matrix elements for $1<k<N$ are given by:

$$
\begin{aligned}
& \mathbf{P}_{k+1, k}=0 \\
& \left(\mathbf{P}_{\delta \delta}\right)_{k+1, k}=1 / \Delta \boldsymbol{\zeta}_{k+\frac{1}{2}} \quad\left(\mathbf{P}_{\delta \delta}\right)_{k-1, k}=1 / \Delta \boldsymbol{\zeta}_{k-\frac{1}{2}} \\
& \left(\mathbf{P}_{\delta \mu}\right)_{k+1, k}=\Delta \boldsymbol{\zeta}_{k} \boldsymbol{\sigma}_{k}^{+} / \Delta \boldsymbol{\zeta}_{k+\frac{1}{2}} \quad\left(\mathbf{P}_{\delta \mu}\right)_{k-1, k}=-\Delta \boldsymbol{\zeta}_{k} \boldsymbol{\sigma}_{k}^{-} / \Delta \boldsymbol{\zeta}_{k-\frac{1}{2}} \quad\left(\mathbf{P}_{\delta \mu}\right)_{k, k}=-\left(\mathbf{P}_{\delta \mu}\right)_{k-1, k}-\left(\mathbf{P}_{\delta \mu}\right)_{k+1, k} \\
& \left(\mathbf{P}_{\mu \mu}\right)_{k+1, k}=\Delta \zeta_{k} \boldsymbol{\sigma}_{k}^{+} \boldsymbol{\sigma}_{k+\frac{1}{2}}^{+} \quad\left(\mathbf{P}_{\mu \mu}\right)_{k-1, k}=\Delta \boldsymbol{\zeta}_{k} \boldsymbol{\sigma}_{k}^{-} \boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} \quad\left(\mathbf{P}_{\mu \mu}\right)_{k, k}=\Delta \boldsymbol{\zeta}_{k}\left(\boldsymbol{\sigma}_{k}^{+} \boldsymbol{\sigma}_{k+\frac{1}{2}}^{-}+\boldsymbol{\sigma}_{k}^{-} \boldsymbol{\sigma}_{k-\frac{1}{2}}^{+}\right)
\end{aligned}
$$

and for $k=1$ and $k=N$ by

$$
\begin{array}{ll}
\left(\mathbf{P}_{\delta \delta}\right)_{1,1}=-\left(\mathbf{P}_{\delta \boldsymbol{\delta}}\right)_{2,1}-\left(1-\boldsymbol{\alpha}_{T}\right) / \Delta \boldsymbol{\zeta}_{\frac{1}{2}} & \left(\mathbf{P}_{\delta \boldsymbol{\delta}}\right)_{N, N}=-\left(\mathbf{P}_{\delta \delta}\right)_{N-1, N}-\left(1-\boldsymbol{\alpha}_{S}\right) / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}} \\
\left(\mathbf{P}_{\delta \boldsymbol{\mu}}\right)_{1,1}=-\left(\mathbf{P}_{\delta \mu}\right)_{2,1}+\left(1-\boldsymbol{\alpha}_{T}\right) \Delta \boldsymbol{\zeta}_{1} \boldsymbol{\sigma}_{1}^{-} / \Delta \boldsymbol{\zeta}_{\frac{1}{2}} & \left(\mathbf{P}_{\delta \mu}\right)_{N, N}=-\left(\mathbf{P}_{\delta \mu}\right)_{N-1, N}-\left(1-\boldsymbol{\alpha}_{S}\right) \Delta \boldsymbol{\zeta}_{N} \boldsymbol{\sigma}_{N}^{+} / \Delta \boldsymbol{\zeta}_{N+\frac{1}{2}} \\
\left(\mathbf{P}_{\mu \mu}\right)_{1,1}=\Delta \boldsymbol{\zeta}_{1}\left[\boldsymbol{\sigma}_{1}^{+} \boldsymbol{\sigma}_{\frac{3}{2}}^{-}+\boldsymbol{\sigma}_{1}^{-}\left(\boldsymbol{\sigma}_{\frac{1}{2}}^{+}+\boldsymbol{\sigma}_{\frac{1}{2}}^{-} \boldsymbol{\alpha}_{T}\right)\right] & \left(\mathbf{P}_{\mu \mu}\right)_{N, N}=\Delta \boldsymbol{\zeta}_{N}\left[\boldsymbol{\sigma}_{N}^{+}\left(\boldsymbol{\sigma}_{N+\frac{1}{2}}^{+} \boldsymbol{\alpha}_{S}+\boldsymbol{\sigma}_{N+\frac{1}{2}}^{-}\right)+\boldsymbol{\sigma}_{N}^{-} \boldsymbol{\sigma}_{N-\frac{1}{2}}^{+}\right]
\end{array}
$$

After solving the elliptic problem and therefore knowing P_{1} to P_{N}, we calculate P_{0} and P_{N+1} using the relations:

$$
\begin{aligned}
P_{0} & \left.=C_{T}\left(L_{T}\right)_{T}\right)_{\frac{1}{2}}+\boldsymbol{\alpha}_{T} P_{1} \\
P_{N+1} & =\boldsymbol{\alpha}_{S} P_{N}-C_{S}\left(L^{\prime \prime}{ }_{T}\right)_{N+\frac{1}{2}}
\end{aligned}
$$

Appendix 5. How were chosen the averaging operators and note about commutation

Let us consider two variables, G and H, defined on separate staggered grids as follows:

$$
G_{k-\frac{1}{2}}=G\left(\zeta_{k-\frac{1}{2}}\right) \quad ; \quad H_{k}=H\left(\zeta_{k}\right)
$$

indicating that G is defined on half-levels while H is defined on full ones. Only the independent variable ζ could and was defined on both types of levels and thus take the two types of indices. The metric parameter could also sometimes be defined on both types of level, hence two different symbols (B on full and B on half levels). To obtain the variables G and H on their alternative grids, averaging operators $\boldsymbol{\alpha}$ and a such that:

$$
(\boldsymbol{\alpha} G)_{k}=\boldsymbol{\alpha}_{k} G_{k+\frac{1}{2}}+\left(1-\boldsymbol{\alpha}_{k}\right) G_{k-\frac{1}{2}} \quad ; \quad(a H)_{k-\frac{1}{2}}=a_{k-\frac{1}{2}} H_{k}+\left(1-a_{k-\frac{1}{2}}\right) H_{k-1}
$$

are introduced. In the following discussion, difference operators will be needed and we define them:

$$
(\boldsymbol{\delta} G)_{k}=\frac{G_{k+\frac{1}{2}}-G_{k-\frac{1}{2}}}{\zeta_{k+\frac{1}{2}}-\zeta_{k-\frac{1}{2}}}=\frac{G_{k+\frac{1}{2}}-G_{k-\frac{1}{2}}}{\Delta \zeta_{k}} ; \quad(\boldsymbol{\delta} H)_{k-\frac{1}{2}}=\frac{H_{k}-H_{k-1}}{\zeta_{k}-\zeta_{k-1}}=\frac{H_{k}-H_{k-1}}{\Delta \zeta_{k-\frac{1}{2}}}
$$

Now, let us consider the discretized elliptic equation derived in section 15 and which we write formally as follows:

$$
\nabla_{\zeta}^{2} P_{k}+\left[\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}\left(\boldsymbol{\delta}^{2}+\boldsymbol{\alpha} \boldsymbol{\delta}+\boldsymbol{\varepsilon}(\boldsymbol{\alpha} \boldsymbol{\delta}-\boldsymbol{\delta} a)-\boldsymbol{\varepsilon}(1-\boldsymbol{\kappa}) \boldsymbol{\alpha} a\right) P\right]_{k}=\left(L_{P}\right)_{k}
$$

There is a term, $\boldsymbol{\varepsilon}(\boldsymbol{\alpha} \boldsymbol{\delta}-\boldsymbol{\delta} \boldsymbol{a})$, which was assumed to vanish, which has no analytic equivalent but which vanishes only if the mean and difference operators commute. Let us impose this condition and examine the consequences. We get

$$
\begin{aligned}
& (\boldsymbol{\alpha} \boldsymbol{\delta} P)_{k}=\boldsymbol{\alpha}_{k}(\boldsymbol{\delta} P)_{k+\frac{1}{2}}+\left(1-\boldsymbol{\alpha}_{k}\right)(\boldsymbol{\delta} P)_{k-\frac{1}{2}}=\boldsymbol{\alpha}_{k} \frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\left(1-\boldsymbol{\alpha}_{k}\right) \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}} \\
& (\boldsymbol{\delta} a P)_{k}=\frac{(a P)_{k+\frac{1}{2}}-(a P)_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}}=\frac{a_{k+\frac{1}{2}} P_{k+1}+\left(1-a_{k+\frac{1}{2}}\right) P_{k}-a_{k-\frac{1}{2}} P_{k}-\left(1-a_{k-\frac{1}{2}}\right) P_{k-1}}{\Delta \boldsymbol{\zeta}_{k}}
\end{aligned}
$$

implying

$$
\frac{\Delta \boldsymbol{\zeta}_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}=\frac{a_{k+\frac{1}{2}}}{\boldsymbol{\alpha}_{k}} ; \quad \frac{\Delta \boldsymbol{\zeta}_{k}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}=\frac{1-a_{k-\frac{1}{2}}}{1-\boldsymbol{\alpha}_{k}}
$$

and either
(a) $\frac{\Delta \boldsymbol{\zeta}_{k+1}}{\Delta \boldsymbol{\zeta}_{k}}=\frac{\boldsymbol{\alpha}_{k}}{1-\boldsymbol{\alpha}_{k+1}} \frac{1-a_{k+\frac{1}{2}}}{a_{k+\frac{1}{2}}}$ or
(b) $\frac{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}=\frac{\boldsymbol{\alpha}_{k}}{1-\boldsymbol{\alpha}_{k}} \frac{1-a_{k-\frac{1}{2}}}{a_{k+\frac{1}{2}}}$

If the relation between the half and full levels is given, for example if, as we have chosen:

$$
\boldsymbol{\zeta}_{k-\frac{1}{2}}=\frac{\boldsymbol{\zeta}_{k}+\boldsymbol{\zeta}_{k-1}}{2}
$$

then we most likely want

$$
a_{k-\frac{1}{2}}=\frac{1}{2}
$$

From (b) we get

$$
\boldsymbol{\alpha}_{k}=\frac{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}+\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}=\frac{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}{2 \Delta \boldsymbol{\zeta}_{k}}
$$

and thus

$$
(\boldsymbol{\alpha} G)_{k}=\frac{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}} G_{k+\frac{1}{2}}+\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}} G_{k-\frac{1}{2}}}{2 \Delta \boldsymbol{\zeta}_{k}} ; \quad(a H)_{k-\frac{1}{2}}=\frac{H_{k}+H_{k-1}}{2}
$$

Instead of choosing $a_{k-\frac{1}{2}}$ off-hand as we have done, we might have imposed another condition such as the symmetry of matrix M formed by the product of the matrix obtained from the double averaging operator αa and the diagonal matrix with elements $\Delta \zeta_{k}$, i.e. if we had imposed that the tri-diagonal matrix M whose elements are

$$
\begin{aligned}
(\Delta \zeta \boldsymbol{\alpha} \boldsymbol{a} P)_{k} & =\Delta \boldsymbol{\zeta}_{k} \boldsymbol{\alpha}_{k}\left(a_{k+\frac{1}{2}} P_{k+1}+\left(1-a_{k+\frac{1}{2}}\right) P_{k}\right)+\left(1-\boldsymbol{\alpha}_{k}\right) \Delta \zeta_{k}\left(a_{k-\frac{1}{2}} P_{k}+\left(1-a_{k-\frac{1}{2}}\right) P_{k-1}\right) \\
& =M_{k+1, k} P_{k+1}+M_{k, k} P_{k}+M_{k-1, k} P_{k-1}
\end{aligned}
$$

be symmetric, i.e. setting $M_{k+1, k}=M_{k, k+1}$, i.e. $\Delta \boldsymbol{\zeta}_{k} \boldsymbol{\alpha}_{k} a_{k+\frac{1}{2}}=\left(1-\boldsymbol{\alpha}_{k+1}\right) \Delta \boldsymbol{\zeta}_{k+1}\left(1-a_{k+\frac{1}{2}}\right)$, i.e.

$$
\text { (c) } \frac{\Delta \boldsymbol{\zeta}_{k+1}}{\Delta \boldsymbol{\zeta}_{k}}=\frac{\boldsymbol{\alpha}_{k}}{1-\boldsymbol{\alpha}_{k+1}} \frac{a_{k+\frac{1}{2}}}{1-a_{k+\frac{1}{2}}}
$$

Then, combining (c) with (a), we would have again found

$$
a_{k-\frac{1}{2}}=\frac{1}{2}
$$

In the original formulation of the staggered-grid version of the model, we indeed wanted to obtain symmetric matrices in the vertical (maintaining a property of the regular-grid
version of the model) and commutation occurred naturally (only one mean being explicit in the code, the second one occurring only in the elimination process). With the new coordinate we lost the symmetric property due to the presence of a first derivative in the analytic problem. But the requirement that half-levels be exactly in the middle of full levels is good for the accuracy of the hydrostatic relation and the commutation requirement, besides simplifying the code, may serve in improving the conservative properties of the scheme.

So far we have dealt with the difference and average operators away from the boundaries. Let us now look at them near the boundaries. The equations defined on half levels apply to the top and bottom where difference and average operators operate on some variables, namely ϕ ' and q. But their values are required at one of the boundaries [ϕ 's $=\phi$ s at the surface and $q_{T}=0$ at the top] while their values at the other can be obtained by numerical integration provided the difference operator leading to them is defined which it has been (it is by construction an off-centered difference though). This is why we consider the top and bottom to be full levels as far as ϕ^{\prime} and q are concerned, respectively labeled 0 and $N+1$. The averaging operator then simply selects the corresponding value.

One last item remains to be explained referring to Figure 1 describing CharneyPhillips grid. In the preceding paragraph, we said that some equations applied to the boundaries. With the presence of ϕ^{\prime} and q, all required variables were also apparently defined there but, if so, the difference operators were off-centered and therefore only first order. Centered differences are recovered if we displace the thermodynamic and vertical momentum equations as well as the variables T and w to the middle of the half-layers nearing the boundaries [to levels $3 / 4$ and $N+1 / 4$ as shown in the figure]. This is what we have done. We believe this is beneficial for temperature in particular which is shifted from the surface to a better place from the physical as well as numerical point of view. To better assess what we have done, here is a formal representation of the three linear equations affected by the change for the top (a similar change occurs at the bottom):

$$
\begin{aligned}
&\left(L_{w}^{\prime}\right)_{\frac{3}{4}}=\frac{w_{\frac{3}{4}}}{\tau}-g \frac{q_{1}-q_{\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{\frac{3}{4}}} \\
&\left(L_{T}^{\prime}\right)_{\frac{3}{4}}=\frac{1}{\tau} \frac{q_{1}-q_{\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{\frac{3}{4}}}-\frac{1}{\tau R T_{*}} \frac{P_{1}-P_{\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{\frac{3}{4}}}-\boldsymbol{\kappa}\left[\dot{\zeta}+\frac{\mathrm{B} s+q}{\tau}\right]_{\frac{1}{2}} \\
&\left(L_{\boldsymbol{\phi}}\right)_{\frac{1}{2}}=\frac{P_{\frac{1}{2}}}{\boldsymbol{\tau}}-R T_{*} \dot{\boldsymbol{\zeta}}_{\frac{1}{2}}-g w_{\frac{3}{4}}
\end{aligned}
$$

In the thermodynamic equation defined at level $3 / 4$ the term in brackets remains evaluated at the boundary, level $1 / 2$. In the geopotential equation defined at level $1 / 2, w$ is taken at level $3 / 4$. This can be interpreted, in the first case as an interpolation, in the second case as an extrapolation, constant in both cases $\left[f_{\frac{3}{4}}=\boldsymbol{\alpha} f_{\frac{3}{2}}+(1-\boldsymbol{\alpha}) f_{\frac{1}{2}}\right.$ with $\left.\boldsymbol{\alpha}=0\right]$.

Appendix 6. The Dynamic Core Code and vertical discretization: A brief description

The dynamic core code is essentially organized as follows:
set_zeta, set_dync, set_oprz, preverln: compute constants and parameters of the vertical discretization

Timestep Loop

tstpdyn: performs a dynamical time step calling rhs, adw, pre, nli, sol, bac

- rhs: compute the 6 basic Right-Hand-Side terms: $\mathbf{R}_{h}, R_{w}, R_{T}, R_{C}, R_{\phi}$
(section 14)

$$
\begin{array}{ll}
\mathbf{R}_{h}=\frac{\mathbf{V}_{h}}{\boldsymbol{\tau}} & -\boldsymbol{\beta}\left(f \mathbf{k} \mathbf{x} \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\left(1+\overline{\boldsymbol{\mu}}^{\zeta}\right) \nabla_{\zeta} \boldsymbol{\phi}^{\prime}\right) \\
R_{w}=\frac{w}{\boldsymbol{\tau}} & -\boldsymbol{\beta}(-g \boldsymbol{\mu}) \\
R_{T}=\frac{1}{\boldsymbol{\tau}}\left[\ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}\left(\mathrm{B} s+\bar{q}^{\zeta}\right)\right] & -\boldsymbol{\beta}(-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}}) \\
R_{C}=\frac{1}{\boldsymbol{\tau}}\left[\overline{\mathrm{~B}}^{\zeta} s+\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)\right] & -\boldsymbol{\beta}\left(\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\zeta}+\bar{\zeta}^{\zeta}\right) \\
R_{\boldsymbol{\phi}}=\frac{\overline{\boldsymbol{\phi}^{\prime}}}{\boldsymbol{\tau}} & -\boldsymbol{\beta}\left(-R T_{*} \dot{\boldsymbol{\zeta}}-g w\right)
\end{array}
$$

Departure Outer-Loop

- adw: adw_pos: Compute the next estimate of the departure points. adw_int: Evaluate Right-Hand-Side terms at departure points.
- pre: combine R_{T}, R_{w}, R_{ϕ} into $R_{T}{ }^{\prime}, R_{\phi}$, combine $\mathbf{R}_{h}, R_{w}, R_{C}$ into $R_{C}{ }_{C}$ and finally $R_{C}{ }_{C}, R_{T}, R_{\phi}$ into R_{P} :
(section 16)

$$
\begin{aligned}
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(R_{T}+\frac{R_{w}}{g \boldsymbol{\tau}}+\frac{\boldsymbol{\varepsilon}}{R T_{*}} R_{\phi}\right) \equiv R_{T}^{\prime} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(R_{T}+\frac{R_{w}}{g \boldsymbol{\tau}}-\frac{\boldsymbol{\kappa}}{R T_{*}} R_{\phi}\right) \equiv R_{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{\zeta} \cdot \mathbf{R}_{h}-\frac{1}{\boldsymbol{\tau}}\left(R_{C}-\frac{{\overline{R_{w}}}^{\zeta}}{g \tau}\right) \equiv R^{\prime \prime}{ }_{C} \\
& R_{C}^{\prime \prime}-\left(\boldsymbol{\delta}_{\zeta} R^{\prime \prime}{ }_{T}+{\overline{R^{\prime \prime}}}_{T}^{\zeta}\right)-\boldsymbol{\varepsilon}{\overline{R^{\prime \prime}}}_{\phi}^{\zeta} \equiv R_{P}
\end{aligned}
$$

The final version of the Right-Hand sides are: $\mathbf{R}_{h}, R_{w}, R_{T}, R{ }_{\phi}, R_{P}$
Non-linear Inner_Loop

- nli: compute non-linear Left-Hand sides: $\mathbf{N}_{h}, N_{w}{ }_{w}, N_{T}{ }_{T}, N_{C}, N_{\phi}$
(section 12)

$$
\begin{aligned}
& \mathbf{N}_{h}=f \mathbf{k} \times \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\overline{\boldsymbol{\mu}}^{\zeta} \nabla_{\zeta} \boldsymbol{\phi}^{\prime} \\
& N_{w}^{\prime}=-g\left(\boldsymbol{\mu}-\boldsymbol{\delta}_{\zeta} q\right) \\
& N^{\prime}{ }_{T}=\frac{1}{\boldsymbol{\tau}}\left[\ln \left(\frac{T}{T_{*}}\right)+\frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\phi}^{\prime}+R T_{*} B s\right)}{R T_{*}}\right] \\
& N_{C}=\frac{1}{\boldsymbol{\tau}}\left[\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)-\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right] \\
& N_{\boldsymbol{\phi}}=0
\end{aligned}
$$

and combine them into $N{ }_{T}, N{ }_{\phi}, N{ }_{C}, N_{P}$
(section 16)

$$
\begin{aligned}
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(N_{T}^{\prime}+\frac{N_{w}^{\prime}}{g \boldsymbol{\tau}}+\frac{\boldsymbol{\varepsilon}}{R T_{*}} N_{\boldsymbol{\phi}}\right) \equiv N_{T}{ }_{T} \\
& \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(N_{T}^{\prime}+\frac{N_{w}^{\prime}}{g \boldsymbol{\tau}}-\frac{\boldsymbol{\kappa}}{R T_{*}} N_{\phi}\right) \equiv N^{\prime \prime}{ }_{\phi} \\
& \nabla_{\zeta} \cdot \mathbf{N}_{h}-\frac{1}{\boldsymbol{\tau}}\left(N_{C}-\frac{\overline{{N_{w}^{\prime}}^{\zeta}}}{g \boldsymbol{\tau}}\right) \equiv N^{\prime \prime}{ }_{C} \\
& N^{\prime \prime}{ }_{C}-\left(\boldsymbol{\delta}_{\zeta} N "_{T}+\overline{N_{T}} \boldsymbol{\zeta}\right)-\boldsymbol{\varepsilon} \overline{N^{\prime \prime}}{ }_{\phi}{ }^{\circ} \equiv N_{P}
\end{aligned}
$$

and obtain final Right-Hand Side of the Elliptic Problem $L_{P}=R_{P}-N_{P}$, including modifications imposed by boundary conditions $\left(L_{P}^{\prime}\right)_{1}$ and $\left(L_{P}^{\prime}\right)_{N}$.
(appendix 4b)

Appendix 7. The hydrostatic option

We start with the final form of the equations given in section 5:

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta}(B s+q)+(1+\boldsymbol{\mu}) \nabla_{\zeta} \boldsymbol{\phi}^{\prime} & =0 \\
\frac{d w}{d t}-g \boldsymbol{\mu} & =0 \\
\frac{d}{d t}\left[\ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}(B s+q)\right]-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}} & =0 \\
\frac{d}{d t}\left[B s+\ln \left(1+\frac{\partial B}{\partial \zeta} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\left(\frac{\partial}{\partial \zeta}+1\right) \dot{\boldsymbol{\zeta}} & =0 \\
\frac{d \boldsymbol{\phi}^{\prime}}{d t}-R T_{*} \dot{\boldsymbol{\zeta}}-g w & =0 \\
1+\boldsymbol{\mu}-e^{q}\left[\frac{\partial q}{\partial(\boldsymbol{\zeta}+B S)}+1\right] & =0 \\
\frac{T}{T_{*}}-e^{q} \frac{\partial\left(\zeta-\boldsymbol{\phi}^{\prime} / R T_{*}\right)}{\partial(\boldsymbol{\zeta}+B s)} & =0
\end{aligned}
$$

The hydrostatic approximation may be considered to consist in neglecting non-hydrostatic pressure effects, therefore assuming $q=0$. Then $\mu=0$ also and the vertical acceleration $d w / d t$ is neglected. In fact, the vertical motion w becomes irrelevant. Neither the vertical momentum nor the geopotential tendency equations are required in the solution system although we may still solve the geopotential tendency equation to diagnose w. Therefore, we only need to solve:

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta} B s+\nabla_{\zeta} \boldsymbol{\phi}^{\prime} & =0 \\
\frac{d}{d t}\left[\ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa} B s\right]-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}} & =0 \\
\frac{d}{d t}\left[B s+\ln \left(1+\frac{\partial B}{\partial \zeta} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\left(\frac{\partial}{\partial \zeta}+1\right) \dot{\zeta} & =0 \\
\frac{T}{T_{*}}-\frac{\partial\left(\zeta-\boldsymbol{\phi}^{\prime} / R T_{*}\right)}{\partial(\zeta+B s)} & =0
\end{aligned}
$$

All the terms involving the prognostic vertical momentum and diagnostic μ equations which were not already equal to zero are set to vanish: $F_{w}, G_{w}, L_{w}, N_{w}, R_{w}, L_{\mu}, N_{\mu}, L^{\prime}{ }_{w}, N^{\prime}{ }_{w}$. The parameter $\varepsilon=0$, hence $\gamma=1$.

Appendix 8. The autobarotropic model

We build an auto-barotropic model (Dutton, The Ceaseless Wind, pp 186-7) from the three-dimensional code of GEM in order to simulate a barotropic model. We do that in
i) eliminating the physical effects,
ii) making the hydrostatic hypothesis,
iii) introducing a key $\delta_{\text {autobarot }}=0$ to eliminate the pressure tendency $d(B s) / d t$ in both the thermodynamic and continuity equations,
iv) in initializing with barotropic conditions:

$$
\mathbf{V}_{h} \neq \mathbf{V}_{h}(\zeta) ; T=T_{*}=\text { const } ; \dot{\zeta}=0 ; \phi^{\prime}+R T_{*} B s=\phi_{T}^{\prime}=\phi_{S}+R T_{*} s
$$

conditions which will be maintained afterwards, hence the name autobarotropic model.

From the complete equations:

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta}(B s+q)+(1+\boldsymbol{\mu}) \nabla_{\zeta} \boldsymbol{\phi}^{\prime} & =\mathbf{F}_{h} \\
\boldsymbol{\delta}_{H} \frac{d w}{d t}-g \boldsymbol{\mu} & =F_{w} \\
\frac{d}{d t} \ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}\left[\frac{d}{d t}(B s+q)+\dot{\boldsymbol{\zeta}}\right] & =\frac{Q}{c_{p} T} \\
\frac{d}{d t}\left[B s+\ln \left(1+\frac{\partial B}{\partial \boldsymbol{\zeta}} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\boldsymbol{\zeta}}}{\partial \boldsymbol{\zeta}}+\dot{\boldsymbol{\zeta}} & =0 \\
\frac{d \boldsymbol{\phi}^{\prime}}{d t}-R T_{*} \dot{\boldsymbol{\zeta}}-g w & =0 \\
1+\boldsymbol{\mu}-e^{q}\left[\frac{\partial q}{\partial(\boldsymbol{\zeta}+B s)}+1\right] & =0 \\
\frac{T}{T_{*}}-e^{q} \frac{\partial\left(\boldsymbol{\zeta}-\boldsymbol{\phi}^{\prime} / R T_{*}\right)}{\partial(\boldsymbol{\zeta}+B s)} & =0
\end{aligned}
$$

with B defined simply as $B=\frac{\zeta-\zeta_{T}}{\zeta_{S}-\zeta_{T}}$, we eliminate sources and sinks of momentum and heat and we make the hydrostatic approximation, reducing the number of equations and variables to (see Appendix 7):

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta} B s+\nabla_{\zeta} \phi^{\prime} & =0 \\
\frac{d}{d t} \ln \left(\frac{T}{T_{*}}\right)-\kappa\left[\frac{d}{d t}(B s)+\dot{\zeta}\right] & =0 \\
\frac{d}{d t}\left[B s+\ln \left(1+\frac{\partial B}{\partial \zeta} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\zeta}}{\partial \zeta}+\dot{\zeta} & =0 \\
\frac{T}{T_{*}}-\frac{\partial\left(\zeta-\phi^{\prime} / R T_{*}\right)}{\partial(\zeta+B s)} & =0
\end{aligned}
$$

Considering barotropic initial conditions $\left(\mathbf{V}_{h} \neq \mathbf{V}_{h}(\zeta) ; T=T_{*}=\right.$ const; $\left.\dot{\zeta}=0\right)$, we derive from the hydrostatic equation that P is uniform in the vertical:

$$
P=\phi^{\prime}+R T_{*} B s=\phi_{T}^{\prime}=\phi_{S}+R T_{*} s \neq P(\zeta)
$$

and we note that

Indeed,

$$
\begin{gathered}
s=\frac{\phi_{T}^{\prime}-\phi_{S}}{R T_{*}} \\
1-\frac{\partial\left(\zeta-\phi^{\prime} / R T_{*}\right)}{\partial(\zeta+B s)}=\frac{\partial\left(\phi^{\prime} / R T_{*}+B s\right)}{\partial(\zeta+B s)}=\frac{\partial\left(\phi^{\prime} / R T_{*}+B s\right)}{\partial \zeta} \frac{\partial \zeta}{\partial(\zeta+B s)}=0 \\
\frac{\partial\left(\phi^{\prime}+R T_{*} B s\right)}{\partial \zeta}= \\
\frac{\partial P}{\partial \zeta}=0
\end{gathered}
$$

We therefore have in the momentum equation:

$$
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+\nabla_{\zeta} \phi_{T}=0
$$

And since $P=\phi_{T} \neq P(\zeta)$, then \mathbf{V}_{h} stays $\mathbf{V}_{h} \neq \mathbf{V}_{h}(\zeta)$.

Now, even though $\dot{\zeta}=0$ and $T=T_{*}=$ const initially, temperature will change since the thermodynamic equation still says:

$$
\frac{d}{d t} \ln \left(\frac{T}{T_{*}}\right)=\kappa \frac{d}{d t}(B s) \neq 0
$$

However if we write

$$
\frac{d}{d t} \ln \left(\frac{T}{T_{*}}\right)-\kappa \delta_{\text {autobarot }} \frac{d}{d t}(B S)=0
$$

making $\delta_{\text {autobarot }}=0$, then $\frac{d}{d t} \ln \left(\frac{T}{T_{*}}\right)=0$ et T will remain constant and equal to T_{*}. Similarly, in the continuity equation, $\dot{\zeta}=0$ initially and introducing $\delta_{\text {autobarot }}=0$:

$$
\frac{d}{d t}\left[\boldsymbol{\delta}_{\text {autobarot }} B s+\ln \left(1+\frac{\partial B}{\partial \zeta} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\zeta}}{\partial \zeta}+\dot{\zeta}=0
$$

we get

$$
\begin{aligned}
\frac{d}{d t} \ln \left(1+\frac{\partial B}{\partial \zeta} s\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h} & =0 \\
\frac{d}{d t} \ln \left(1+\frac{\phi_{T}^{\prime}-\phi_{S}}{R T_{*}\left(\zeta_{S}-\zeta_{T}\right)}\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h} & =0 \\
\frac{d}{d t} \ln \left(\frac{\phi_{*_{T}}+\phi_{T}^{\prime}-\phi_{S}}{\phi_{*_{T}}}\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h} & =0 \\
\frac{d}{d t} \ln \left(\phi_{T}-\phi_{S}\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h} & =0
\end{aligned}
$$

And this relation is invariant in the vertical, hence $\dot{\zeta} \neq \dot{\zeta}(\zeta)$ and $\dot{\zeta}=0$ is maintained Hence, the model equations:

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta} B s+\nabla_{\zeta} \phi^{\prime} & =0 \\
\frac{d}{d t} \ln \left(\frac{T}{T_{*}}\right)-\kappa\left[\delta_{\text {autobarot }} \frac{d}{d t}(B s)+\dot{\zeta}\right] & =0 \\
\frac{d}{d t}\left[\delta_{\text {autobarot }} B s+\ln \left(1+\frac{\partial B}{\partial \zeta} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\zeta}}{\partial \zeta}+\dot{\zeta} & =0 \\
\frac{T}{T_{*}}-\frac{\partial\left(\zeta-\phi^{\prime} / R T_{*}\right)}{\partial(\zeta+B s)} & =0
\end{aligned}
$$

with a vertical structure (many levels, at least 3: e.g. hyb $=0.583333,0.75,0.9166666$ with $p_{\text {top }}=50000$., to satisfy the operations), but starting with barotropic conditions, simulates the barotropic equations:

$$
\begin{array}{r}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+\nabla_{\zeta} \phi_{T}=0 \\
\frac{d}{d t} \ln \left(\phi_{T}-\phi_{S}\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h}=0
\end{array}
$$

It is autobarotropic.

Appendix 9. Open top boundary conditions

The goal is to develop an open boundary condition at the top, i.e. a condition with $X_{T}=\left(\dot{\zeta}+\frac{B s+q}{\tau}\right)_{T} \neq 0$, not only $\dot{\zeta}_{T} \neq 0$ but also $B_{T} \neq 0$ (the top no more being necessarily a hydrostatic pressure level) and $q_{T} \neq 0$ (in the non-hydrostatic case).

First, let us deal with the linear system (Appendix 4a):

$$
\begin{aligned}
\left(\mathbf{L}_{h}\right)_{k} & =\frac{\mathbf{V}_{h k}}{\boldsymbol{\tau}}+\nabla_{\zeta} P_{k} \\
\left(L_{w}^{\prime}\right)_{k-\frac{1}{2}} & =\frac{w_{k-\frac{1}{2}}}{\boldsymbol{\tau}}-g\left(\frac{q_{k}-q_{k-1}}{\Delta \zeta_{k-\frac{1}{2}}}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} q_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} q_{k-1}\right) \\
\left(L_{T}\right)_{k-\frac{1}{2}} & =\frac{1}{\boldsymbol{\tau}} \frac{T^{\prime}{ }_{k-\frac{1}{2}}}{T_{*}}-\boldsymbol{\kappa} X_{k-\frac{1}{2}} \\
\left(L_{C}\right)_{k} & =-\frac{1}{\boldsymbol{\tau}}\left[\boldsymbol{\sigma}_{k}^{+}\left(\frac{q_{k+1}-q_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{+} q_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} q_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\frac{q_{k}-q_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{+} q_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} q_{k-1}\right)\right] \\
& +\nabla_{\zeta} \cdot \mathbf{V}_{h k}+\frac{X_{k+\frac{1}{2}}-X_{k-\frac{1}{2}}}{\Delta \boldsymbol{\zeta}_{k}}+\boldsymbol{\sigma}_{k}^{+} X_{k+\frac{1}{2}}+\boldsymbol{\sigma}_{k}^{-} X_{k-\frac{1}{2}} \\
\left(L_{\boldsymbol{\phi}}\right)_{k-\frac{1}{2}} & =\frac{1}{\boldsymbol{\tau}}\left(\boldsymbol{\boldsymbol { \sigma }}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)-R T_{*} X_{k-\frac{1}{2}}-g w_{k-\frac{1}{2}}
\end{aligned}
$$

We know we can combine these equations into a set of only N equations in the vertical for $\mathrm{N}+2$ unknowns $P_{k}\left(k=k_{0}, \mathrm{~N}\right)$:

$$
\begin{aligned}
& \left(L_{P}\right)_{k}=\nabla_{\zeta}^{2} P_{k}+\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{1}{\Delta \boldsymbol{\zeta}_{k}}\left(\frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}-\frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right)+\boldsymbol{\sigma}_{k}^{+} \frac{P_{k+1}-P_{k}}{\Delta \boldsymbol{\zeta}_{k+\frac{1}{2}}}+\boldsymbol{\sigma}_{k}^{-} \frac{P_{k}-P_{k-1}}{\Delta \boldsymbol{\zeta}_{k-\frac{1}{2}}}\right] \\
& -\frac{\boldsymbol{\gamma} \boldsymbol{\varepsilon} 1-\boldsymbol{\kappa})}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\boldsymbol{\sigma}_{k}^{+}\left(\boldsymbol{\boldsymbol { \sigma }}_{k+\frac{1}{2}}^{+} P_{k+1}+\boldsymbol{\sigma}_{k+\frac{1}{2}}^{-} P_{k}\right)+\boldsymbol{\sigma}_{k}^{-}\left(\boldsymbol{\boldsymbol { \sigma }}_{k-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k-\frac{1}{2}}^{-} P_{k-1}\right)\right]
\end{aligned}
$$

and therefore requiring two additional equations (top and bottom boundary conditions) for its solution. A closed top boundary condition occurring at $k_{0}=1\left(\boldsymbol{\zeta}_{T}=0 ; \mathrm{B}_{T}=0 ; q_{T}=0\right)$ is satisfied by using

$$
\left(L^{\prime \prime}{ }_{T}\right)_{k_{0}-\frac{1}{2}}+\frac{X_{T}}{\boldsymbol{\tau}}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{P_{k_{0}}-P_{k_{0}-1}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}-\boldsymbol{\varepsilon}\left(\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{-} P_{k_{0}-1}\right)\right]
$$

to obtain a boundary condition in terms of X (generalized vertical motion $\dot{\zeta}$) since $X_{T}=[\dot{\zeta}+(\mathrm{B} s+q) / \tau]_{T}=0$. For an open top occurring at $k_{0} \neq 1$, we have none of the above conditions $\left(\dot{\zeta}_{T} \neq 0 ; \mathrm{B}_{T} \neq 0 ; q_{T} \neq 0\right)$. Another relation must be found. There are two possibilities:

- (i) using $L{ }^{\prime \prime}{ }_{\phi}$ to obtain a boundary condition in terms of vertical motion w, specifying $w_{\text {top }}$:

$$
\left(L^{\prime \prime}\right)_{k_{0}-\frac{1}{2}}-\frac{g w_{\text {top }}}{\tau R T_{*}}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{P_{k_{0}}-P_{k_{0}-1}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}+\boldsymbol{\kappa}\left(\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{+} P_{k_{0}}+\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{-} P_{k_{0}-1}\right)\right]
$$

- (ii) combining $L_{T}{ }_{T}$ with L_{T} as follows

$$
\left(L_{T}^{\prime \prime}\right)_{k_{0}-\frac{1}{2}}-\frac{1}{\boldsymbol{\kappa} \boldsymbol{\tau}}\left(L_{T}\right)_{k_{0}-\frac{1}{2}}+\frac{1}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2}} \frac{T_{\text {top }}^{\prime}}{T_{*}}=-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left[\frac{P_{k_{0}}-P_{k_{0}-1}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}-\boldsymbol{\varepsilon}\left(\boldsymbol{\boldsymbol { \sigma }}_{k_{0}-\frac{1}{2}}^{+} P_{k}+\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{-} P_{k_{0}-1}\right)\right]
$$

to obtain a boundary condition in terms of temperature T, specifying $T^{\prime}{ }_{\text {top }}$:

$$
-\frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}\left(\frac{P_{k_{0}}-P_{k_{0}-1}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}-\boldsymbol{\varepsilon}\left(\boldsymbol{\boldsymbol { \Phi }}_{k_{0}-\frac{1}{2}}^{+} P_{k_{0}}+\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{-} P_{k_{0}-1}\right)\right)=L_{B}=R_{B}-N_{B}+\frac{T_{t o p}^{\prime}}{\boldsymbol{\kappa} \tau^{2} T_{*}}
$$

Although vertical motion w seems the logical choice, there are two big objections: first, it is well known that vertical motion can be quite noisy and it could be difficult to get a suitably balanced field; second, in the hydrostatic case, w is not even a prognostic variable of the model.

The open top case (ii) in fact leads to equations for $P_{k_{0}-1},\left(k_{0} \neq 1\right)$ formally identical to the closed top case with $k_{0}=1$ (see Appendices 4 a and 4 b). In effect, we write

$$
P_{k_{0}-1}=\boldsymbol{\alpha}_{T} P_{k_{0}}+C_{T} L_{B}
$$

with

$$
\boldsymbol{\alpha}_{T}=\frac{1 / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}-\boldsymbol{\varepsilon} \boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{+}}{1 / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}+\boldsymbol{\varepsilon} \boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}} ; \quad C_{T}=\frac{\boldsymbol{\kappa} \boldsymbol{\tau}^{2} R T_{*}}{\boldsymbol{\gamma}} \frac{1}{1 / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}+\boldsymbol{\varepsilon} \sigma_{k_{0}-\frac{1}{2}}}
$$

Therefore

$$
\left.\begin{array}{rl}
\Delta \boldsymbol{\zeta}_{k_{0}}\left(L_{P}\right)_{k_{0}}-C^{\prime \prime}{ }_{T} L_{B}=\Delta \boldsymbol{\zeta}_{k_{0}}\left(\nabla_{\zeta}^{2} P\right)_{k_{0}} \\
+ & \frac{\boldsymbol{\gamma}}{\boldsymbol{\kappa} \tau^{2} R T_{*}}[
\end{array} \frac{P_{k_{0}+1}-P_{k_{0}}}{\Delta \boldsymbol{\zeta}_{k_{0}+\frac{1}{2}}}-\frac{\left(1-\boldsymbol{\alpha}_{T}\right) P_{k_{0}}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}+\frac{\Delta \boldsymbol{\zeta}_{k_{0}} \boldsymbol{\sigma}_{k_{0}}^{+}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}\left(P_{k_{0}+1}-P_{k_{0}}\right)+\frac{\Delta \boldsymbol{\zeta}_{k_{0}} \boldsymbol{\sigma}_{k}^{-}}{\Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}}\left(1-\boldsymbol{\alpha}_{T}\right) P_{k_{0}}\right]
$$

with

$$
C^{\prime \prime}{ }_{T}=\frac{1 / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}-\Delta \zeta_{k_{0}} \boldsymbol{\sigma}_{k_{0}}^{-}\left(1 / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}+\boldsymbol{\varepsilon}(1-\boldsymbol{\kappa}) \boldsymbol{\varpi}_{k_{0}-\frac{1}{2}}^{-}\right)}{1 / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}+\boldsymbol{\varepsilon} \boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}}
$$

and the matrix elements for $k=k_{0}$ are

$$
\begin{aligned}
& \left(\mathbf{P}_{\delta \delta}\right)_{k_{0}, k_{0}}=-\left(\mathbf{P}_{\delta \delta}\right)_{k_{0}+1, k_{0}}-\left(1-\boldsymbol{\alpha}_{T}\right) / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}} \\
& \left(\mathbf{P}_{\delta \mu}\right)_{k_{0}, k_{0}}=-\left(\mathbf{P}_{\delta \mu}\right)_{k_{0}+1, k_{0}}+\left(1-\boldsymbol{\alpha}_{T}\right) \Delta \boldsymbol{\zeta}_{k_{0}} \boldsymbol{\sigma}_{k_{0}}^{-} / \Delta \boldsymbol{\zeta}_{k_{0}-\frac{1}{2}} \\
& \left(\mathbf{P}_{\mu \mu}\right)_{k_{0}, k_{0}}=\Delta \boldsymbol{\zeta}_{k_{0}}\left[\boldsymbol{\sigma}_{k_{0}}^{+} \boldsymbol{\sigma}_{k_{0}+\frac{1}{2}}^{-}+\boldsymbol{\sigma}_{k_{0}}^{-}\left(\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{+}+\boldsymbol{\sigma}_{k_{0}-\frac{1}{2}}^{-} \boldsymbol{\alpha}_{T}\right)\right]
\end{aligned}
$$

All of this is trivial then (in Appendices 4a and $\mathbf{4 b}$, replace indices $1,3 / 2,1 / 2$, respectively by $k_{0}, k_{0}+1 / 2, k_{0}-1 / 2$), except for the calculation of the right-hand sides corresponding to L_{B}, i.e. R_{B} and N_{B} :

$$
\begin{aligned}
& R_{B}=\left(R^{\prime \prime}\right)_{k_{0}-\frac{1}{2}}-\frac{1}{\kappa \tau}\left(R_{T}\right)_{k_{0}-\frac{1}{2}} \\
& N_{B}=\left(N^{\prime \prime}{ }_{T}\right)_{k_{0}-\frac{1}{2}}-\frac{1}{\kappa \tau}\left(N_{T}\right)_{k_{0}-\frac{1}{2}}
\end{aligned}
$$

More explicitly for N_{B},

$$
N_{B}=\left(N^{\prime \prime}\right)_{k_{0}-\frac{1}{2}}-\frac{1}{\boldsymbol{\kappa} \tau^{2}}\left[\ln \left(\frac{T_{k_{0}-\frac{1}{2}}}{T_{*}}\right)-\frac{T_{k_{0}-\frac{1}{2}}^{\prime}}{T_{*}}\right]
$$

In the non-hydrostatic case, another condition is needed, namely the true pressure at the top, $p_{\text {top }}$, from which we may calculate

$$
q_{T}=\ln \left(p_{\text {top }} / \boldsymbol{\pi}_{T}\right)=\ln p_{\text {top }}-\left(\boldsymbol{\zeta}_{T}+\mathrm{B}_{T} s\right)=\ln p_{\text {top }}-\left(\boldsymbol{\zeta}_{k_{0}-\frac{1}{2}}+\mathrm{B}_{k_{0}-\frac{1}{2}} S\right)
$$

Appendix 10. Aspects of horizontal discretization

First of all, note that by 'horizontal' is meant a model 'quasi-spherical' constant ζ surface. In the horizontal then, the equations in spherical coordinates are discretized on an Arakawa C grid, with the wind image components $U_{i+\frac{1}{2}, j}\left(i=0, N_{i}, j=1, N_{j}\right)$ and $V_{i, j+\frac{1}{2}}\left(i=1, N_{i}, j=0, N_{j}\right) \quad$ staggered with respect to all the other variables $\left.w_{i, j}, T_{i, j}, \dot{\boldsymbol{\zeta}}_{i, j}, s_{i, j}\right), \boldsymbol{\phi}_{i, j}, \boldsymbol{\mu}_{i, j}\left(i=1, N_{i}, j=1, N_{j}\right)$, an Arakawa C grid with the U points with indices $i=0$ and $i=N_{i}$ coinciding by symmetry and with the V points with indices $j=0$ and $j=N_{j}$ respectively landing on the south and north pole and therefore vanishing. Looking at the equations (section 5), we find that only three equations require attention: the two horizontal momentum equations

$$
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T \nabla_{\zeta}(B s+q)+(1+\boldsymbol{\mu}) \nabla_{\zeta} \boldsymbol{\phi}^{\prime}=0
$$

with

$$
\mathbf{V}_{h}=u \hat{\boldsymbol{\lambda}}+v \hat{\boldsymbol{\theta}}=\frac{a}{\cos \boldsymbol{\theta}}[U \hat{\boldsymbol{\lambda}}+V \hat{\boldsymbol{\theta}}]
$$

defined in terms of its longitudinal component u in the direction $\hat{\lambda}$ and its latitudinal component v in the direction $\hat{\boldsymbol{\theta}}$, or the so-called corresponding wind images U and V, and with the gradient operator given by:

$$
\nabla_{\zeta}=\frac{\hat{\boldsymbol{\lambda}}}{a \cos \boldsymbol{\theta}} \frac{\partial}{\partial \boldsymbol{\lambda}}+\frac{\hat{\boldsymbol{\theta}}}{a} \frac{\partial}{\partial \boldsymbol{\theta}}=\frac{1}{a \cos \boldsymbol{\theta}}\left[\hat{\boldsymbol{\lambda}} \frac{\partial}{\partial X}+\hat{\boldsymbol{\theta}} \frac{\partial}{\partial Y}\right]
$$

with $d X=d \boldsymbol{\lambda}$ and $d Y=d \boldsymbol{\theta} / \cos \boldsymbol{\theta}=d \sin \boldsymbol{\theta} / \cos ^{2} \boldsymbol{\theta}$, and the continuity equation written as follows:

$$
\frac{d}{d t} \ln \left(\pi \frac{\partial \ln \pi}{\partial \zeta}\right)+D+\frac{\partial \dot{\zeta}}{\partial \zeta}=0
$$

where

$$
D=\nabla_{\zeta} \cdot \mathbf{V}_{h}=\frac{1}{a \cos \boldsymbol{\theta}}\left[\frac{\partial u}{\partial \lambda}+\frac{\partial(v \cos \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]=\frac{1}{\cos ^{2} \boldsymbol{\theta}}\left[\frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}\right]
$$

is the horizontal divergence discretized very simply as follows:

$$
\begin{gathered}
D_{i j}=\frac{1}{\cos ^{2} \boldsymbol{\theta}_{j}}\left[\left(\boldsymbol{\delta}_{X} U\right)_{i j}+\left(\boldsymbol{\delta}_{Y} V\right)_{i j}\right] \\
\left(\boldsymbol{\delta}_{X} U\right)_{i j}=\frac{U_{i+\frac{1}{2}, j}-U_{i-\frac{1}{2}, j}}{\Delta X_{i}} ; \quad\left(\boldsymbol{\delta}_{Y} V\right)_{i j}=\frac{V_{i, j+\frac{1}{2}}-V_{i, j-\frac{1}{2}}}{\Delta Y_{j}}
\end{gathered}
$$

Note that in a global integration we have periodicity in the λ - $(X$ - $)$ direction, so $U_{\frac{1}{2}, j}=U_{N_{i}+\frac{1}{2}, j}$, and, since V vanishes at both poles, $V_{i, \frac{1}{2}}=V_{i, N+\frac{1}{2}}=0$, the problem is closed in the horizontal.

The 'horizontal' vector momentum equation is modified to be solved as a threedimensional vector equation in Cartesian coordinates subject however to the constraint that the wind keeps parallel to the earth's surface (Côté, MWR 1988):

$$
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k} \mathbf{x} \mathbf{V}_{h}+R T \nabla_{\zeta}(B s+q)+(1+\boldsymbol{\mu}) \nabla_{\zeta} \boldsymbol{\phi}^{\prime}+\mathbf{m} \mathbf{r}=0
$$

The constraint, mr , where \mathbf{r} is the earth's radius and m a Lagrange multiplier, acts as a supplementary force normal to the surface. We then introduce the semi-Lagrangian implicit discretization (section 8) directly on the vector equation:

$$
\begin{aligned}
\frac{\mathbf{V}_{h}^{A}-\mathbf{V}_{h}^{D}}{\Delta t}+b^{A}\left(\mathbf{G}_{h}^{A}+\mathrm{m} \mathbf{r}^{A}\right)+\left(1-b^{A}\right)\left(\mathbf{G}_{h}^{D}+\mathrm{m} \mathbf{r}^{D}\right) & =0 \\
\frac{\mathbf{V}_{h}^{A}}{\boldsymbol{\tau}}+\mathbf{G}_{h}^{A}+\mathrm{m} \mathbf{c} & =\frac{\mathbf{V}_{h}^{D}}{\boldsymbol{\tau}}-\boldsymbol{\beta} \mathbf{G}_{h}^{D} \equiv \mathbf{R}_{h}^{D} \\
\frac{\mathbf{V}_{h}^{A}}{\tau}+\mathbf{G}_{h}^{A} & =\mathbf{R}_{h}^{D}-\mathrm{m} \mathbf{c} \equiv \mathbf{R}_{h}^{C}
\end{aligned}
$$

with $\mathbf{c}=\mathbf{r}^{A}+\boldsymbol{\beta} \mathbf{r}^{D}$. Multiplying through scalarly by \mathbf{r}^{A}

$$
\mathbf{r}^{A} \cdot\left[\frac{\mathbf{V}_{h}^{A}}{\tau}+\mathbf{G}_{h}^{A}+\mathbf{m} \mathbf{c}\right]=\mathbf{r}^{A} \cdot \mathbf{R}_{h}^{D}
$$

gives $\mathrm{m}=\frac{\mathbf{r}^{A} \cdot \mathbf{R}_{h}^{D}}{\mathbf{r}^{A} \cdot \mathbf{c}}$, since by construction \mathbf{r}^{A} is \perp to both \mathbf{V}_{h}^{A} and \mathbf{G}_{h}^{A}. In Cartesian coordinates

$$
\mathrm{m}=\frac{x^{A} R_{x}^{D}+y^{A} R_{y}^{D}+z^{A} R_{z}^{D}}{x^{A} c_{x}+y^{A} c_{y}+z^{A} c_{z}}
$$

Therefore the metric correction to be applied to \mathbf{R}_{h}^{D}, in order for the result to remain on the sphere, is:

$$
\left\{\begin{array}{l}
R_{x}^{C} \\
R_{y}^{C} \\
R_{z}^{C}
\end{array}\right\}=\left\{\begin{array}{l}
R_{x}^{D}-\mathrm{mc}_{\mathrm{x}} \\
R_{y}^{D}-\mathrm{mc}_{\mathrm{y}} \\
R_{z}^{D}-\mathrm{mc}_{\mathrm{z}}
\end{array}\right\}=\left\{\begin{array}{l}
R_{x}^{D}-\mathrm{m}\left(x^{A}+\boldsymbol{\beta} x^{D}\right) \\
R_{y}^{D}-\mathrm{m}\left(y^{A}+\boldsymbol{\beta} y^{D}\right) \\
R_{z}^{D}-\mathrm{m}\left(z^{A}+\boldsymbol{\beta} z^{D}\right)
\end{array}\right\}
$$

However, \mathbf{R}_{h} is given in spherical coordinates in terms of wind images:

$$
\mathbf{R}_{h}=\frac{a}{\cos \boldsymbol{\theta}}\left[R_{U} \hat{\boldsymbol{\lambda}}+R_{V} \hat{\boldsymbol{\theta}}\right]
$$

with

$$
\begin{aligned}
& R_{U}=\frac{U}{\boldsymbol{\tau}}-\boldsymbol{\beta}\left[-f V+\frac{1}{a^{2}}\left(R T \frac{\partial(B s+q)}{\partial X}+(1+\boldsymbol{\mu}) \frac{\partial \boldsymbol{\phi}^{\prime}}{\partial X}\right)\right] \\
& R_{V}=\frac{V}{\boldsymbol{\tau}}-\boldsymbol{\beta}\left[+f U+\frac{1}{a^{2}}\left(R T \frac{\partial(B s+q)}{\partial Y}+(1+\boldsymbol{\mu}) \frac{\partial \boldsymbol{\phi}^{\prime}}{\partial Y}\right)\right]
\end{aligned}
$$

To obtain the Cartesian coordinates $\left(R_{x}^{D}, R_{y}^{D}, R_{z}^{D}\right)$ of \mathbf{R}_{h}^{D} from its spherical coordinates $(R$ ${ }_{U}^{D}, R_{V}^{D}$), we apply the coordinate transformation law at the departure point:
$\left\{\begin{array}{l}R_{x}^{D} / a \\ R_{y}^{D} / a \\ R_{z}^{D} / a\end{array}\right\}=\left\{\begin{array}{ccc}-\sin \lambda^{D} & -\sin \theta^{D} \cos \lambda^{D} & \cos \theta^{D} \cos \lambda^{D} \\ \cos \lambda^{D} & -\sin \theta^{D} \sin \lambda^{D} & \cos \theta^{D} \sin \lambda^{D} \\ 0 & \cos \theta^{D} & \sin \theta^{D}\end{array}\right\}\left\{\begin{array}{c}R_{U}^{D} / \cos \theta^{D} \\ R_{V}^{D} / \cos \theta^{D} \\ 0\end{array}\right\}=\left\{\begin{array}{cc}-\sin \lambda^{D} / \cos \theta^{D} & -\tan \theta^{D} \cos \lambda^{D} \\ \cos \lambda^{D} / \cos \theta^{D} & -\tan \theta^{D} \sin \lambda^{D} \\ 0 & 1\end{array}\right\}\left\{\begin{array}{l}R_{U}^{D} \\ R_{V}^{D}\end{array}\right\}$
Hence

$$
\left\{\begin{array}{l}
R_{x}^{D} / a \\
R_{y}^{D} / a \\
R_{z}^{D} / a
\end{array}\right\}=\left\{\begin{array}{cc}
-y^{D} / \cos ^{2} \theta^{D} & -x^{D} z^{D} / \cos ^{2} \theta^{D} \\
x^{D} / \cos ^{2} \theta^{D} & -y^{D} z^{D} / \cos ^{2} \theta^{D} \\
0 & 1
\end{array}\right\}\left\{\begin{array}{l}
R_{U}^{D} \\
R_{V}^{D}
\end{array}\right\}
$$

using

$$
\left\{\begin{array}{l}
x^{D} \\
y^{D} \\
z^{D}
\end{array}\right\}=\left\{\begin{array}{ccc}
-\sin \lambda^{D} & -\sin \theta^{D} \cos \lambda^{D} & \cos \theta^{D} \cos \lambda^{D} \\
\cos \lambda^{D} & -\sin \theta^{D} \sin \lambda^{D} & \cos \theta^{D} \sin \lambda^{D} \\
0 & \cos \theta^{D} & \sin \theta^{D}
\end{array}\right\}\left\{\begin{array}{l}
0 \\
0 \\
1
\end{array}\right\}=\left\{\begin{array}{c}
\cos \theta^{D} \cos \lambda^{D} \\
\cos \theta^{D} \sin \lambda^{D} \\
\sin \theta^{D}
\end{array}\right\}
$$

Finally, to obtain the spherical coordinates $\left(R_{U}^{C}, R_{V}^{C}\right)$ of \mathbf{R}_{h}^{C}, from its Cartesian coordinates ($R_{x}^{C}, R_{y}^{C}, R_{z}^{C}$), we apply the inverse transformation at the arrival point:

$$
\left\{\begin{array}{c}
R_{U}^{C} / \cos \theta^{A} \\
R_{V}^{C} / \cos \theta^{A} \\
0
\end{array}\right\}=\left\{\begin{array}{ccc}
-\sin \lambda^{A} & \cos \lambda^{A} & 0 \\
-\sin \theta^{A} \cos \lambda^{A} & -\sin \theta^{A} \sin \lambda^{A} & \cos \theta^{A} \\
\cos \theta^{A} \cos \lambda^{A} & \cos \theta^{A} \sin \lambda^{A} & \sin \theta^{A}
\end{array}\right\}\left\{\begin{array}{l}
R_{x}^{C} / a \\
R_{y}^{C} / a \\
R_{z}^{C} / a
\end{array}\right\}
$$

hence

$$
\left\{\begin{array}{c}
R_{U}^{C} \\
R_{V}^{C} \\
0
\end{array}\right\}=\left\{\begin{array}{ccc}
-y^{A} & x^{A} & 0 \\
-z^{A} x^{A} & -z^{A} y^{A} & \cos ^{2} \theta^{A} \\
x^{A} & y^{A} & z^{A}
\end{array}\right\}\left\{\begin{array}{c}
R_{x}^{C} / a \\
R_{y}^{C} / a \\
R_{z}^{C} / a
\end{array}\right\}
$$

using

$$
\left\{\begin{array}{l}
x^{A} \\
y^{A} \\
z^{A}
\end{array}\right\}=\left\{\begin{array}{l}
\cos \theta^{A} \cos \lambda^{A} \\
\cos \theta^{A} \sin \lambda^{A} \\
\sin \theta^{A}
\end{array}\right\}
$$

The vanishing of the last row of \mathbf{R}_{h}^{C} is true by construction, $\mathbf{r}^{A} \cdot \mathbf{R}_{h}^{C}=0$. We use the information to simplify the middle row getting finally:

$$
\left\{\begin{array}{l}
R_{U}^{D} \\
R_{V}^{D}
\end{array}\right\}=\left\{\begin{array}{ccc}
-y^{A} & x^{A} & 0 \\
0 & 0 & 1
\end{array}\right\}\left\{\begin{array}{l}
R_{x}^{C} / a \\
R_{y}^{C} / a \\
R_{z}^{C} / a
\end{array}\right\}
$$

In summary then, having $\left(R_{U}^{D}, R_{V}^{D}\right)$, i.e. \mathbf{R}_{h}^{D} in spherical coordinates, we

1) transform \mathbf{R}_{h}^{D} to Cartesian coordinates, computing $R_{x}^{D}, R_{y}^{D}, R_{z}^{D}$,
2) compute \mathbf{c}, m and \mathbf{R}_{h}^{C} in Cartesian coordinates,
3) transform \mathbf{R}_{h}^{C} back to spherical coordinates, i.e. compute R_{U}^{C}, R_{V}^{C}

In order to solve this semi-Lagrangian equation, in fact all of the other equations as well, we must first solve the equation for the displacements themselves. Consider

$$
\frac{d \mathbf{r}}{d t}=\mathbf{V}=|\mathbf{V}| \mathbf{t}
$$

where \mathbf{t} is a unit vector tangent to the spherical earth in the direction of \mathbf{V} and $|\mathbf{V}|$ is the module of \mathbf{V} assumed constant during the displacement. For simplicity, we have taken the radius of the earth \mathbf{r} as a unit vector all along. Then, in the plane of the displacement, the trajectory is an arc of circle, a great circle displacement. If $\mathbf{r}^{D}, \mathbf{t}^{D}$ and $\mathbf{r}^{A}, \mathbf{t}^{A}$ are unit vectors respectively at the departure and arrival points, we have

$$
\left\{\begin{array}{c}
\mathbf{r}^{A} \\
\mathbf{t}^{A}
\end{array}\right\}=\left[\begin{array}{cc}
\cos \Delta & \sin \Delta \\
-\sin \Delta & \cos \Delta
\end{array}\right]\left\{\begin{array}{c}
\mathbf{r}^{D} \\
\mathbf{t}^{D}
\end{array}\right\} \text { or }\left\{\begin{array}{c}
\mathbf{r}^{D} \\
\mathbf{t}^{D}
\end{array}\right\}=\left[\begin{array}{cc}
\cos \Delta & -\sin \Delta \\
\sin \Delta & \cos \Delta
\end{array}\right]\left\{\begin{array}{c}
\mathbf{r}^{A} \\
\mathbf{t}^{A}
\end{array}\right\}
$$

where $\Delta=|\mathbf{V}| \Delta t$. We therefore can write

$$
\mathbf{r}^{D}=\mathbf{r}^{A} \cos \Delta-\sin \Delta \mathbf{t}^{A} \quad \text { or } \quad \mathbf{r}^{D}=\frac{\mathbf{r}^{A}-\sin \Delta \mathbf{t}^{D}}{\cos \Delta}
$$

where $\mathbf{t}^{D}=\mathbf{V}^{D} /|\mathbf{V}|$.
Assuming that \mathbf{V} is known in spherical coordinates (U, V) and having a first estimate of the location (λ^{M}, θ^{M}) of the mid-point \mathbf{r}^{M} between the departure and arrival points, we first obtain \mathbf{V}^{M} by interpolating \mathbf{V} at that position. Then we proceed to improve the estimate of \mathbf{r}^{M} by performing a great circle displacement solving the above equation. We may proceed as follows:

1) compute $|\mathbf{V}|=\sqrt{\frac{\left(U^{M}\right)^{2}+\left(V^{M}\right)^{2}}{\cos ^{2} \theta^{M}}}$ and $\Delta=\frac{\Delta t}{2}|\mathbf{V}|$
2) compute the arrival position \mathbf{r}^{A} in Cartesian coordinates $\left(x^{A}, y^{A}, z^{A}\right)$
3) compute \mathbf{V}^{M} in Cartesian coordinates using old \mathbf{r}^{M} position

$$
\begin{aligned}
& \mathbf{V}^{M}=\dot{\mathbf{r}}^{M}=\left\{\begin{array}{l}
\dot{x}^{M} \\
\dot{y}^{M} \\
\dot{z}^{M}
\end{array}\right\}=\left\{\begin{array}{c}
-\sin \lambda^{M} \cos \theta^{M} \dot{\lambda}^{M}-\cos \lambda^{M} \sin \theta^{M} \dot{\theta}^{M} \\
\cos \lambda^{M} \cos \theta^{M} \dot{\lambda}^{M}-\sin \lambda^{M} \sin \theta^{M} \dot{\theta}^{M} \\
\cos \theta^{M} \dot{\theta}^{M}
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-\left(y^{M} U^{M}+x^{M} z^{M} V^{M}\right) / \cos ^{2} \theta^{M} \\
\left(x^{M} U^{M}-y^{M} z^{M} V^{M}\right) / \cos ^{2} \theta^{M} \\
U^{M}
\end{array}\right\} \\
& \text { 4) compute new } \mathbf{r}^{M} \text { in Cartesian coordinates: } \mathbf{r}^{M} \equiv\left\{\begin{array}{l}
x^{M} \\
y^{M} \\
z^{M}
\end{array}\right\}=\frac{1}{\cos \Delta}\left\{\begin{array}{l}
x^{A} \\
y^{A} \\
z^{A}
\end{array}\right\}-\frac{\tan \Delta}{|\mathbf{V}|}\left\{\begin{array}{l}
\dot{x}^{M} \\
\dot{y}^{M} \\
\dot{z}^{M}
\end{array}\right\}
\end{aligned}
$$

5) obtain \mathbf{r}^{M} in spherical coordinates: $\left\{\begin{array}{l}\lambda^{M} \\ \theta^{M}\end{array}\right\}=\left\{\begin{array}{c}\tan ^{-1}\left(y^{M} / x^{M}\right) \\ \sin ^{-1}\left(z^{M}\right)\end{array}\right\}$

In the model, the process is an iterative one (section 8). So we repeat the procedure until convergence. Once the new mid-point position \mathbf{r}^{M} valid at $t-\Delta t / 2$ is found, the true departure position \mathbf{r}^{D} valid at $t-\Delta t$ is obtained by doubling the great circle displacement:
6) obtain $\mathbf{r}^{D}=2 \cos \Delta \mathbf{r}^{M}-\mathbf{r}^{A}=\left\{\begin{array}{l}x^{D} \\ y^{D} \\ z^{D}\end{array}\right\}=2 \cos \Delta\left\{\begin{array}{l}x^{M} \\ y^{M} \\ z^{M}\end{array}\right\}-\left\{\begin{array}{l}x^{A} \\ y^{A} \\ z^{A}\end{array}\right\}$, first in Cartesian and
7) finally in spherical coordinates: $\left\{\begin{array}{l}\lambda^{D} \\ \theta^{D}\end{array}\right\}=\left\{\begin{array}{c}\tan ^{-1}\left(y^{D} / x^{D}\right) \\ \sin ^{-1}\left(z^{D}\right)\end{array}\right\}$

We are now ready for the discretization in the horizontal. The equation

$$
\frac{\mathbf{V}_{h}^{A}}{\boldsymbol{\tau}}+\mathbf{G}_{h}^{A}=\mathbf{L}_{h}+\mathbf{N}_{h}=\mathbf{R}_{h}^{C}
$$

is decomposed into its components (section 10):

$$
\begin{aligned}
L_{U}+N_{U} & =\left[\frac{U}{\tau}-f V+\frac{1}{a^{2}}\left(R T \frac{\partial(B s+q)}{\partial X}+(1+\boldsymbol{\mu}) \frac{\partial \boldsymbol{\phi}^{\prime}}{\partial X}\right)\right]^{A}=R_{U}^{C} \\
L_{V}+N_{V} & =\left[\frac{V}{\tau}+f U+\frac{1}{a^{2}}\left(R T \frac{\partial(B s+q)}{\partial Y}+(1+\boldsymbol{\mu}) \frac{\partial \boldsymbol{\phi}^{\prime}}{\partial Y}\right)\right]^{A}=R_{V}^{C}
\end{aligned}
$$

and horizontally discretized as follows

$$
\begin{aligned}
& \left(L_{U}+N_{U}\right)_{i+\frac{1}{2}, j}=\left[\frac{U}{\tau}-f\langle V\rangle^{X X}+\frac{R \bar{T}^{X}}{a^{2}} \boldsymbol{\delta}_{X}(B s+q)+\frac{1+\overline{\boldsymbol{\mu}}^{X}}{a^{2}} \boldsymbol{\delta}_{X} \boldsymbol{\phi}^{\prime}\right]_{i+\frac{1}{2}, j}^{A}=\left(R_{U}^{C}\right)_{i+\frac{1}{2}, j} \\
& \left(L_{V}+N_{V}\right)_{i, j+\frac{1}{2}}=\left[\frac{V}{\tau}+f\langle U\rangle^{X Y}+\frac{R \bar{T}^{Y}}{a^{2}} \boldsymbol{\delta}_{Y}(B s+q)+\frac{1+\overline{\boldsymbol{\mu}}^{Y}}{a^{2}} \boldsymbol{\delta}_{Y} \boldsymbol{\phi}^{\prime}\right]_{i, j+\frac{1}{2}}^{A}=\left(R_{V}^{C}\right)_{i, j+\frac{1}{2}}
\end{aligned}
$$

using the following simple two-point difference and mean operators:

$$
\begin{array}{ll}
\left(\boldsymbol{\delta}_{X} A\right)_{i+\frac{1}{2}, j}=\frac{A_{i+1, j}-A_{i, j}}{\Delta X_{i+\frac{1}{2}}} ; & \left(\bar{A}^{X}\right)_{i+\frac{1}{2}, j}=\boldsymbol{\sigma}^{X}{ }_{i+\frac{1}{2}} A_{i+1, j}+\left(1-\boldsymbol{\sigma}^{X}{ }_{i+\frac{1}{2}}\right) A_{i, j} \\
\left(\boldsymbol{\delta}_{Y} A\right)_{i, j+\frac{1}{2}}=\frac{A_{i, j+1}-A_{i, j}}{\Delta Y_{j+\frac{1}{2}}} ; & \left(\bar{A}^{Y}\right)_{i, j+\frac{1}{2}}=\boldsymbol{\sigma}^{Y}{ }_{j+\frac{1}{2}} A_{i, j+1}+\left(1-\boldsymbol{\sigma}^{Y}{ }_{j+\frac{1}{2}}\right) A_{i, j}
\end{array}
$$

as well as the four-point (cubic interpolation) mean operators:

$$
\begin{array}{r}
\langle V\rangle_{i, j}^{Y}=\boldsymbol{\alpha}_{j} \quad V_{i, j-\frac{3}{2}}+\boldsymbol{\beta}_{j} \quad V_{i, j-\frac{1}{2}}+\boldsymbol{\gamma}_{j} \quad V_{i, j+\frac{1}{2}}+\boldsymbol{\delta}_{j} \quad V_{i, j+\frac{3}{2}} \\
\langle V\rangle_{i+\frac{1}{2}, j}^{Y X}=\left\langle\langle V\rangle^{Y}\right\rangle_{i+\frac{1}{2}, j}^{X}=\boldsymbol{\alpha}_{i+\frac{1}{2}}\langle V\rangle_{i-1, j}^{Y}+\boldsymbol{\beta}_{i+\frac{1}{2}}\langle V\rangle_{i, j}^{Y}+\boldsymbol{\gamma}_{i+\frac{1}{2}}\langle V\rangle_{i+1, j}^{Y}+\boldsymbol{\delta}_{i+\frac{1}{2}}\langle V\rangle_{i+2, j}^{Y} \\
\langle U\rangle_{i, j}^{X}=\boldsymbol{\alpha}_{i} \quad U_{i-\frac{3}{2}, j}+\boldsymbol{\beta}_{i} \quad U_{i-\frac{1}{2}, j}+\boldsymbol{\gamma}_{i}
\end{array} U_{i+\frac{1}{2}, j}+\boldsymbol{\delta}_{i} \quad U_{i+\frac{3}{2}, j} .
$$

The left-hand-sides (dropping the superscript ${ }^{A}$) are linearized separately (section 11):

$$
\begin{aligned}
& \left(L_{U}\right)_{i+\frac{1}{2}, j}=\frac{U_{i+\frac{1}{2}, j}}{\boldsymbol{\tau}}+\frac{1}{a^{2}}\left(\boldsymbol{\delta}_{X} P\right)_{i+\frac{1}{2}, j} \\
& \left(L_{V}\right)_{i, j+\frac{1}{2}}=\frac{V_{i, j+\frac{1}{2}}}{\boldsymbol{\tau}}+\frac{1}{a^{2}}\left(\boldsymbol{\delta}_{Y} P\right)_{i, j+\frac{1}{2}}
\end{aligned} \quad P=\boldsymbol{\phi}^{\prime}+R T_{*}(B S+q)
$$

leaving as non-linear terms (section 12):

$$
\begin{aligned}
& \left(N_{U}\right)_{i+\frac{1}{2}, j}=-f\langle V\rangle_{i+\frac{1}{2}, j}^{Y X}+\frac{R \bar{T}_{i+\frac{1}{2}, j}^{X}}{a^{2}}\left[\boldsymbol{\delta}_{X}(B s+q)\right]_{i+\frac{1}{2}, j}+\frac{\overline{\boldsymbol{\mu}}_{i+\frac{1}{2}, j}^{X}}{a^{2}}\left(\boldsymbol{\delta}_{X} \boldsymbol{\phi}^{\prime}\right)_{i+\frac{1}{2}, j} \\
& \left(N_{V}\right)_{i, j+\frac{1}{2}}=+f\langle U\rangle_{i, j+\frac{1}{2}}^{X Y}+\frac{R \bar{T}_{i, j+\frac{1}{2}}^{Y}}{a^{2}}\left[\boldsymbol{\delta}_{Y}(B s+q)\right]_{i, j+\frac{1}{2}}+\frac{\overline{\boldsymbol{\mu}}_{i, j+\frac{1}{2}}^{Y}}{a^{2}}\left(\boldsymbol{\delta}_{Y} \boldsymbol{\phi}^{\prime}\right)_{i, j+\frac{1}{2}}
\end{aligned}
$$

Table 1. The equations of GEM in 4 transformations

$$
\begin{aligned}
\frac{d \mathbf{V}}{d t}+f \mathbf{k x} \mathbf{V}+R T \nabla \ln p+g \mathbf{k} & =\mathbf{F} \\
\frac{d \ln T}{d t}-\boldsymbol{\kappa} \frac{d \ln p}{d t} & =\frac{Q}{c_{p} T} \\
\frac{d \ln \boldsymbol{\rho}}{d t}+\nabla \cdot \mathbf{V} & =0 \\
\boldsymbol{\rho} & =\frac{p}{R T}
\end{aligned}
$$

Vertical coordinate transformation: z to ζ (unspecified)

$$
\begin{aligned}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R T\left(\nabla_{\zeta} \ln p-\nabla_{\zeta} z \frac{\partial \zeta}{\partial z} \frac{\partial \ln p}{\partial \zeta}\right) & =\mathbf{F}_{h} \\
\frac{d w}{d t}+R T \frac{\partial \zeta}{\partial z} \frac{\partial \ln p}{\partial \zeta}+g & =F_{w} \\
\frac{d \ln T}{d t}-\boldsymbol{\kappa} \frac{d \ln p}{d t} & =\frac{Q}{c_{p} T} \\
\frac{d}{d t} \ln \left(\boldsymbol{\rho} \frac{\partial z}{\partial \zeta}\right)+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\frac{\partial \dot{\zeta}}{\partial \zeta} & =0 \\
\frac{d z}{d t}-w & =0 \\
\boldsymbol{\rho} & =\frac{p}{R T}
\end{aligned}
$$

Vertical coordinate transformation: z to ζ (specified)

Going to model thermodynamic variables $\phi^{\prime}, q, s, \dot{\zeta}$

Discretizing in the vertical

Table 2. The Equations of GEM vertically discretized on Charney-Phillips grid

$$
\begin{array}{rll}
\frac{d \mathbf{V}_{h}}{d t}+f \mathbf{k x} \mathbf{V}_{h}+R \bar{T}^{\zeta} \nabla_{\zeta}(B s+q)+\left(1+\overline{\boldsymbol{\mu}}^{\zeta}\right) \nabla_{\zeta} \boldsymbol{\phi}^{\prime} & =\mathbf{F}_{h} & --- \\
\frac{d w}{d t}-g \boldsymbol{\mu} & =F_{w} & - \\
\frac{d}{d t}\left[\ln \left(\frac{T}{T_{*}}\right)-\boldsymbol{\kappa}\left(\mathrm{B} s+\bar{q}^{\zeta}\right)\right]-\boldsymbol{\kappa} \dot{\boldsymbol{\zeta}} & =\frac{Q}{c_{p} T} & - \\
\frac{d}{d t}\left[\overline{\mathrm{~B}}^{\zeta} s+\ln \left(1+\boldsymbol{\delta}_{\zeta} \mathrm{B} s\right)\right]+\nabla_{\zeta} \cdot \mathbf{V}_{h}+\boldsymbol{\delta}_{\zeta} \dot{\boldsymbol{\zeta}}+\overline{\boldsymbol{\zeta}}^{\zeta} & =0 & --- \\
\frac{d \overline{\boldsymbol{\phi}}^{\zeta}}{d t}-R T_{*} \dot{\boldsymbol{\zeta}}-g w & =0 & - \\
1+\boldsymbol{\mu}-e^{\bar{q}^{\zeta}}-e^{\bar{q}^{\zeta}} \frac{\boldsymbol{\delta}_{\zeta} q}{\boldsymbol{\delta}_{\zeta}(\boldsymbol{\zeta}+B s)} & =0 & - \\
\frac{T}{T_{*}}-e^{\bar{q}^{\zeta}} \frac{\boldsymbol{\delta}_{\zeta}\left(\boldsymbol{\zeta}-\boldsymbol{\phi}^{\prime} / R T_{*}\right)}{\boldsymbol{\delta}_{\zeta}(\zeta+B s)} & =0 & -
\end{array}
$$

$\mathbf{V}_{h}:$ horizontal wind;
f : Coriolis parameter
w : vertical velicity;
$\boldsymbol{\kappa}=R / c_{p}$
T : temperature;
ϕ : geopotential;
$q=\ln (p / \pi):$ non-hydrostatic \log - pressure deviation
p : pressure; $\quad \boldsymbol{\pi}$: hydrostatic pressure; $\quad \partial \phi / \partial \boldsymbol{\pi}=-R T / p$
$\boldsymbol{\mu}=\partial p / \partial \boldsymbol{\pi}-1$: ratio of vertical acceleration to gravitational acceleration
$s=\ln \left(\boldsymbol{\pi}_{s} / p_{\text {ref }}\right): \log$-surface-pressure; $\quad B, \mathrm{~B}=\bar{B}^{\zeta}:$ metric parameter
$\dot{\zeta}=d \zeta / d t ; \quad \zeta:$ model vertical coordinate
Π^{ζ} : averaging operator;
$\boldsymbol{\delta}_{\zeta}$: differencing operator
$p_{\text {top }} / p_{\text {ref }}=\eta_{T}<\eta<1$:specified π-like model levels; $\quad p_{\text {ref }}=10^{5} \mathrm{~Pa}$

$$
\zeta=\zeta_{S}+\ln (\eta)
$$

$\ln p_{\text {top }}=\zeta_{T} \leq \zeta \leq \zeta_{S}=\ln p_{\text {ref }}:$ calculated $\ln \pi$-like model coordinate levels

$$
A=\zeta ; \quad B=\left(\frac{\zeta-\zeta_{T}}{\zeta_{S}-\zeta_{T}}\right)^{r} ; \quad \ln \pi=A+B s
$$

Boundary Conditions: $\quad \dot{\zeta}_{S}=\dot{\zeta}_{T}=0 \quad\left[q_{T}=\ln \left(p_{\text {top }} / \pi_{T}\right)=0 ; \phi_{S}=g z_{\text {topo }} ; p_{\text {top }}=\mathrm{const}\right]$

