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Abstract 30 

Diurnal precipitation is a fundamental mode of variability that climate models have 31 

difficulty in accurately simulating. Here the diurnal cycle of precipitation (DCP) in participating 32 

climate models from the Global Energy and Water Exchanges’ DCP project is evaluated over 33 

tropical and midlatitude lands. Common model biases such as excessive precipitation over the 34 

tropics, too frequent light-to-moderate rain, and the failure to capture propagating convection in 35 

the central U.S. still exist. Over the central U.S., the issues of both too weak rainfall intensity and 36 

the incorrect timing of DCP in climate runs is well improved in their hindcast runs with initial 37 

conditions from Numerical Weather Prediction analyses. But the improvement is minimal over the 38 

central Amazon. Incorporating the role of the large-scale environment in convective triggering 39 

processes helps resolve the phase-locking issue in many models where precipitation often 40 

incorrectly peaks near noon due to maximum insolation over land. Allowing air parcels to be lifted 41 

above the boundary layer improves the simulation of nocturnal precipitation which is often 42 

associated with the propagation of mesoscale systems. Including convective memory in cumulus 43 

parameterizations acts to suppress light-to-moderate rain and promote intense rainfall; however, it 44 

also weakens the diurnal variability. Simply increasing model resolution (with cumulus 45 

parameterizations still used) cannot fully resolve the biases of low-resolution climate models in 46 

DCP. The hierarchy modeling framework from this study is useful for identifying the missing 47 

physics in models and testing new development of model convective processes over different 48 

convective regimes. 49 

  50 
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1. Introduction 51 

The diurnal cycle of precipitation (DCP) is one of the most fundamental modes of 52 

atmospheric variability (Yang and Slingo, 2001). It significantly affects the surface energy budget 53 

and surface temperature (Dai et al. 1999). DCP is considered a benchmark for climate models, 54 

with which multiple aspects of the simulated precipitation, such as total amount, frequency, 55 

intensity, and duration, can be effectively evaluated (Covey et al. 2016). Several key features of 56 

the precipitation diurnal cycle have been discovered from observational studies: the diurnal cycle 57 

is stronger over land with precipitation peaking in late-afternoon or at midnight; the diurnal 58 

amplitude over land is stronger in summer than in winter; the diurnal cycle over ocean is relatively 59 

weak with the maximum precipitation typically occurring in the morning (e.g., Dai 2006; Dai and 60 

Trenberth, 2004; Dai et al. 2007; Yang and Slingo, 2001; Nesbitt and Zipser 2003; Kikuchi and 61 

Wang, 2008; Covey et al. 2016).  62 

General Circulation Models (GCMs) for weather forecasts and climate simulations have 63 

for decades exhibited difficulties in modeling the diurnal variation in precipitation, particularly 64 

over land. Tao et al. (2022) and Tang et al. (2021) examined the latest GCMs from the Coupled 65 

Model Intercomparison Project phase 6 (CMIP6, Eyring et al. 2016) and found that the simulated 66 

diurnal cycle is substantially improved in the multi-model mean of CMIP6 models compared with 67 

that of CMIP5. Tao et al. (2022) also indicated that while DCP over ocean and coastal ocean are 68 

fairly well captured by CMIP6 models, the simulated diurnal cycle over land and coastal land 69 

continues showing large biases and model spread. In general, common model deficiencies in 70 

reproducing the rainfall diurnal cycle include the too frequent convection triggering at reduced 71 

intensity, the too early precipitation onset time, and missing the nocturnal precipitation peak 72 

associated with elevated convection and propagating mesoscale convective systems (MCSs) (e.g., 73 
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Yang and Slingo, 2001; Dai 2006; Covey et al. 2016; Xie et al. 2019; Fiedler et al. 2020; Ma et al. 74 

2021; Tang et al. 2021&2022; Tao et al. 2022).  75 

The major challenges for GCMs to simulate the DCP well are primarily associated with 76 

the shortcomings and deficiencies in representing the processes that control sub-diurnal 77 

phenomena like convection and organized convective phenomena like MCSs. Previous studies 78 

have demonstrated that DCP can be substantially improved through development of advanced 79 

parameterizations (Rio et al. 2009; Park, 2014; Wang et al. 2021; Xie et al. 2019). For example, 80 

Xie et al. (2019) suggested that nocturnal precipitation peak and the eastward propagation of 81 

convection downstream of the Rockies and over the adjacent Great Plains could be better captured 82 

with a new convective trigger, as demonstrated using the Department of Energy's (DOE’s) Energy 83 

Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1) (Rasch et al. 2019; 84 

Xie et al. 2018). This new physically based convective trigger incorporates a dynamic CAPE 85 

(dCAPE) constraint (Xie and Zhang 2000) to suppress daytime convection and an Unrestricted 86 

Launch Level (ULL) (Wang et al. 2015) to capture mid-level elevated convection. The simulation 87 

of the DCP can also be improved by increasing model resolution to the convection permitting 88 

scale. A recent study by Ma et al. (2022) demonstrated that the global storm-resolving models 89 

(GSRMs) with horizontal resolutions of ~ 2-5 km convincingly exhibit superior performance in 90 

simulating the DCP compared to models with horizontal resolutions of ~ 25 km or coarser.   91 

The recent GEWEX Global Atmospheric System Studies (GASS) Diurnal Cycle of 92 

Precipitation intercomparison project (GASS-DCP, https://portal.nersc.gov/project/capt/diurnal/) 93 

was organized to better understand what key processes control the diurnal and sub-diurnal 94 

variation of precipitation and to identify the deficiencies and missing physics in current GCMs 95 

through a hierarchy of modeling approach. Processes associated with DCP are investigated and 96 

https://portal.nersc.gov/project/capt/diurnal/
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diagnosed among different models under a multi-scale modeling framework including single 97 

column models (SCMs)/Cloud-Resolving Models (CRMs), Cloud Permitting Models (CPMs), and 98 

GCMs using observations over different climate regimes. Earlier findings from a multi-year long-99 

term SCM intercomparison are documented in Tang et al. (2022). These long-term SCM 100 

simulations, which are less constrained by the specified large-scale forcing compared to traditional 101 

SCM case studies, are able to reproduce many common errors in DCP shown in their parent GCMs. 102 

The model errors in simulating DCP are primarily due to deficiencies in their deep convection 103 

parameterizations. Tang et al. (2022) suggested that additional constraints in the convective 104 

triggering function, as well as unified treatment of turbulence, shallow, and deep convection could 105 

help delay the precipitation peak for afternoon precipitation over land while the key to simulate 106 

the nocturnal peak is to allow elevated convection to be captured as indicated in Xie et al. (2019). 107 

The latter suggests parameterization of mid-level elevated convection is needed in GCMs.  108 

The present study summarizes our analysis on DCP simulated from the participating GCMs 109 

in the GASS-DCP. Unlike SCMs, GCMs contain complete interactions between model dynamics 110 

and physics, allowing the evaluation of the GCM’s skill in simulating DCP over different climate 111 

regimes. Our goal here is to provide an assessment of the participating models’ capability in 112 

simulating DCP over tropical and mid-latitude lands, and to identify the missing physics in GCMs 113 

and gain more insights into model errors through a hierarchical model approach that includes both 114 

climate simulations and short-term weather hindcasts. The hindcast approach follows Phillips et 115 

al. (2004), Williams et al. (2013), and Ma et al. (2015; 2021) with models initiated with Numerical 116 

Weather Prediction (NWP) analysis data so that GCMs can be linked to the highly time-resolved 117 

field data collected by the U.S. DOE Atmospheric Radiation Measurement (ARM) program. 118 

Physical processes that are critical for GCMs to better capture the rainfall diurnal cycle are 119 
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explored by comparing the results of models in different versions or with different physical 120 

parameterizations. In addition, the impacts of model resolution on the diurnal cycle will also be 121 

discussed by connecting results from convection-permitting model intercomparison projects such 122 

as DYAMOND (Dynamics of the Atmospheric general circulation Modeled on Non-hydrostatic 123 

Domains, Satoh et al. 2019; Stevens et al. 2019).  124 

The paper is organized as the follows. Section 2 introduces the participating models and 125 

the designed experiments. The simulated characteristics of the mean precipitation and its global 126 

and regional features are documented in section 3. The DCP at two ARM sites is evaluated in 127 

section 4. Summary and discussions are given in section 5.  128 

         129 

2. Experiment design, participating models and observations 130 

2.1 Experiment design 131 

Two types of numerical modeling experiments are included in this study: (1) an eight-year 132 

climate simulation, and (2) a series of 5-day hindcasts covering several selected field campaigns. 133 

To provide robust statistics of the participating GCMs’ capability in simulating the DCP, eight-134 

year (2011-2018) AMIP simulations are conducted with prescribed National Centers for 135 

Environmental Prediction (NCEP) Optimally Interpolated weekly sea surface temperature (SST) 136 

and sea ice fraction. The atmospheric and land initial conditions are coming from previous multi-137 

year runs where the atmosphere and land states are fully spun-up.  138 

The short-term hindcasts, initialized every day at 00Z covering selected field campaign 139 

periods during the ARM Plains Elevated Convection at Night Experiment (PECAN) (1 June 2015 140 

– 15 July 2015) (Geerts et al., 2017) and Observations and Modeling of the Green Ocean Amazon 141 

(GOAmazon) dry season (1 September – 10 October 2014) (Martin et al. 2016), are designed to 142 
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build connection between GCMs and in-situ ARM observations. The initial conditions for 143 

atmospheric state variables in the short-term hindcasts are from the fifth generation European 144 

Center for Medium-range Weather Forecast (ECMWF) atmospheric reanalysis (ERA5, Hersbach 145 

et al. 2020) for most models except for the CMCGEM that uses initial conditions from the 146 

Canadian Global Deterministic Prediction System (Buehner et al. 2015). SST and sea ice are 147 

prescribed with NCEP Optimally Interpolated weekly SST and sea ice or with the Operational Sea 148 

Surface Temperature and Sea Ice Analysis (OSTIA) system (Good et al. 2020) for UMGA7 and 149 

UMGA8 models. The duration of each hindcast is 5-day long (120 hours). To avoid initial shock 150 

from a foreign reanalysis, our analysis on hindcasts only focuses from 24 to 120 h lead time (Day 151 

2 to Day 5). With the hindcast approach, the model simulations will not drift too far away from 152 

the observed large-scale state, and most biases can be largely attributed to model parameterizations 153 

(Xie et al., 2012; Ma et al., 2013, 2014, 2015, 2018). Therefore, results from the hindcasts can be 154 

applied to identify missing physics and deficiencies in representing atmospheric physics in the 155 

models and provide more insights into future parameterization improvement.  156 

 157 

2.2 Participating models  158 

In total, nine GCMs participated in the multi-year AMIP-style climatology runs and eight 159 

GCMs participated in the short-term hindcasts in this intercomparison project. Table 1 lists the 160 

basic information of each of the participating models, with detailed information about their model 161 

physical parameterizations documented in Tables 2 and 3. The participating models were 162 

developed for various scientific applications including weather forecasts and climate simulations 163 

over regional and global scales. Models from operational weather forecast and modeling research 164 

centers (e.g., CMCGEM, ECMWF-IFS, UMGA7, UMGA8, and MPAS) typically have much finer 165 

https://www.mdpi.com/2072-4292/12/4/720
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resolutions in both the horizontal (15 – 40 km) and vertical (55 - 137 levels) than climate models 166 

(e.g., CAM6, E3SMv2, and TaiESM1), which run at 100km in the horizontal and 30 – 72 levels 167 

in the vertical. Note that CMCGEM and ECMWF-IFS use a slightly coarser horizontal resolution 168 

(39 km and 60 km, respectively) when they are used for the multi-year AMIP climate simulations, 169 

but their resolutions are still finer than those of the climate models. Despite the finer resolutions 170 

used in the weather models, they still cannot resolve convection. So, cumulus parameterizations 171 

are used in all the participating models for representing shallow and deep convection.    172 

In addition to the differences in model resolutions, these models also differ in the 173 

representations of physical processes including turbulence, cloud microphysics, and shallow and 174 

deep convection. This is particularly true between weather and climate models. Nevertheless, there 175 

are some similarities among them, specifically for those having the same origin, such as CAM6, 176 

E3SM, and TaiESM1, which were all branched from CAM5 with modifications. The atmospheric 177 

physical parameterization in CAM6 is similar to that in E3SM, since they have gone through very 178 

similar physical parameterization updates in turbulence, shallow convection, and cloud 179 

microphysical schemes. The major differences in these two models are in 1) vertical resolution: 180 

72 levels in E3SMv2 vs. 32 levels in CAM6 and 2) parameter setting for tunable parameters related 181 

to cloud and convection. Unlike CAM6 and E3SM which include significant updates in their 182 

atmospheric physics from CAM5, TaiESM1 only made some changes in convective trigger for 183 

deep convection and kept turbulence, cloud microphysics, and shallow convection the same as 184 

CAM5 as shown in Tables 2 and 3.  185 

One common feature for all participating models is that they all use the mass flux approach 186 

with a Convective Available Potential Energy (CAPE)-based trigger and closure for deep 187 

convection schemes, which is critical for modeled DCP, although the implementation of these 188 
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technical details varies from model to model. More specifically, CAM6, E3SMv2 and TaiESM1 189 

all applied the deep convection scheme developed from Zhang and McFarlane (1995) (ZM 190 

thereafter). ECMWF-IFS and MPAS share many similarities in the deep convection scheme from 191 

Tiedtke (1989) and Bechtold et al. (2014). The mass flux schemes described in Kain and Fritsch 192 

(1990) and Gregory and Rowntree (1990) as well as their variants are used in CMCGEM and 193 

UMGA.     194 

The convective trigger controls when and where convection occurs in the model and is a 195 

key for capturing the DCP. There are large differences in how convection is triggered in these 196 

models. Besides positive CAPE that is required by all models, additional constraints also need to 197 

be met for convection onset. For example, a threshold of CAPE (>70 J/kg) is set in CAM6-CTL 198 

for convection onset. E3SMv2 implements a dynamical CAPE constraint (dCAPE) (Xie and Zhang 199 

2000) and an Unrestricted Launch Level (ULL) (Wang et al. 2015) (dCAPE-ULL) to prevent 200 

CAPE from being released spontaneously and allow air parcels to be lifted above boundary layer 201 

for mid-level convection (Xie et al. 2019), in addition to the positive CAPE trigger. The ULL 202 

method is also applied in TaiESM1 along with convective inhibition (CIN) for convection 203 

initiation (Wang et al. 2015). Similarly, ECMWF-IFS introduced a moisture-convergence term in 204 

its convective closure (Becker et al. 2021), which implicitly affects its convection onset. It also 205 

searches for unstable levels up to 300 hPa that allows elevated convection to be detected. 206 

CMCGEM recently made significant updates to its package of convective parameterizations 207 

(McTaggart-Cowan et al. 2019a&b, 2020), namely the introduction of a low-CAPE (mid-level) 208 

convection scheme and the introduction of a Lagrangian framework for convective initiation. 209 

UMGA8 introduces convective memory through implementing a prognostic entrainment scheme 210 

in its convective trigger. Given the importance of the convective trigger in DCP, several models 211 
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performed sensitivity tests by changing their convective triggering functions. For instance, a 212 

slightly revised dCAPE-ULL trigger (Cui et al. 2021) is tested in CAM6-Trig; the dilute-CAPE 213 

based trigger used in CAM6-CTL (and E3SMv1) is tested in E3SMv2-CAPETrig; UMGA8 214 

introduces convective memory in its convective trigger with other settings similar to that of 215 

UMGA7. By comparing the results of these sensitivity tests, we can explore the impact of different 216 

convective triggering processes on the simulation of DCP in GCMs.  217 

As shown in Table 1, in total, seven GCMs have performed both the eight-year climate 218 

runs and the 5-day hindcasts. Comparisons between these two types of experiments from the same 219 

model will provide  hints on whether the biases of GCMs in simulating the DCP are most likely 220 

attributed to errors from the large-scale circulation and surface conditions or those from the 221 

physical parametrizations. Results from climate runs and hindcasts are analyzed and evaluated 222 

using various observational data sets as summarized in Table 4. Discussions of the model results 223 

will generally follow the order from low-resolution GCMs (CAM6-CTL, CAM6-Trig, E3SMv2, 224 

E3SMv2-CAPETrig, TaiESM1) to GCMs from the weather forecast and research centers with 225 

much finer resolutions (CMCGEM, ECMWF-IFS, UMGA7&8, MPAS).   226 

 227 

2.3 Observations  228 

            Due to differences in retrieval algorithm, gap-filling and other aspects of data product 229 

creation, differences among observational data sets for precipitation must be carefully considered 230 

when using for model comparison. Our selection of observations is limited by the requirement of 231 

sub-daily frequency for direct DCP comparison; while for the background comparisons to 232 

climatology, we include observational data sets that have only daily and longer timescales as well. 233 

The primary data sets used for model comparison are:  234 
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• Global Precipitation Climatology Project (GPCP, Adler et al. 2003) monthly products 235 

version 2.3 for annual mean distribution and GPCP 1 Degree Daily (1DD) precipitation 236 

dataset version 1.3 for daily mean distribution.    237 

• Climate Prediction Center (CPC) Morphing technique (CMORPH, Joyce et al. 2004) 238 

bias-corrected product version 1.0 for daily mean distribution and diurnal cycle. We use 239 

the hourly CMORPH with a spatial resolution of 0.25 degree. 240 

• The Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for 241 

GPM (IMERG, Huffman et al. 2019) data product for daily mean distribution and diurnal 242 

cycle. The IMERG provides 30-min precipitation rates with coverage from 60oS to 60oN 243 

in 0.1 degree.     244 

• The Tropical Rainfall Measuring Mission (TRMM, Huffman et al. 2007) 3B42 version 245 

7 data for diurnal cycle which has 3-hourly precipitation rates from 50oS to 50oN in 0.25 246 

degree.  247 

• The ARM variational analysis (VARANAL) products to evaluate the DCP at the ARM 248 

Southern Great Plains site (SGP) and the Manacapuru site for the GOAmazon field 249 

campaign (MAO). VARANAL uses ground-based radar measurements to represent the 250 

rainfall average over a domain comparable to a GCM grid box: a ~ 3o3o domain at SGP 251 

(Tang et al. 2019; Xie et al. 2004) and a domain with ~110 km radius at MAO (Tang et 252 

al. 2016).  253 

            Data from simulations and observations were all interpolated to 1o1o degree resolution 254 

using conserved method.  255 

  256 

3. Overall performance over the globe 257 
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In this section, we will focus on the eight-year (2011-2018) AMIP-style climatology runs 258 

with global coverage to evaluate the overall performance of nine GCMs including CAM6-CTL, 259 

CAM6-Trig, CMCGEM, ECMWF-IFS, E3SMv2, E3SMv2-CAPETrig, TaiESM1, UMGA7 and 260 

UMGA8 (climate runs in Table 1). Model data is saved every 3 hours. The potential impact of 261 

model physics on the simulated precipitation distributions and diurnal cycles will also be discussed 262 

by comparing results from models with different parameterizations or in different model versions.    263 

 264 

3.1 Mean precipitation 265 

Figure 1 displays the annual mean GPCP estimated precipitation, and the bias from AMIP 266 

simulations. The spatial correlations (CORR) and root-mean-square errors (RMSE) between the 267 

GCMs and GPCP are also given in the figure to quantify model performance. Several common 268 

model biases are noted across the GCMs. For example, they tend to produce excessive 269 

precipitation over large portions of the tropics but less precipitation over the central U.S. and South 270 

America compared to observations, consistent with the results of Coupled Model Intercomparison 271 

Project Phase 6 (CMIP6) models (Tang et al. 2021). Overall, the performance of ECMWF-IFS is 272 

better than other GCMs in simulating the annual mean precipitation (Fig. 1h), with the highest 273 

CORR (0.94) and the lowest RMSE (0.87). The dry bias shown in most climate models over the 274 

central US and South America is quite low in ECMWF-IFS. It is noted that UMGA7 also shows 275 

smaller error over these two regions compared to other participating models, however, it produces 276 

the largest wet bias over tropical oceans. CMCGEM and UMGA8 also indicate a good skill over 277 

the central US, but they both show large dry bias over the Amazon region. Similar results are also 278 

noted using CMORPH and IMERG for model comparison (not shown). 279 
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The overall impact of the dCAPE-ULL convective trigger on the annual mean precipitation 280 

is small as demonstrated by the similar distribution of mean precipitation errors between CAM6-281 

CTL and CAM6-Trig and between E3SMv2 and E3SMv2-CAPETrig. However, the use of the 282 

dCAPE-ULL trigger has different impacts on the mean precipitation in CAM6 and E3SM. With 283 

the new trigger, E3SMv2 shows an overall better result than E3SMv2-CAPETrig with some 284 

encouraging improvements in South America, especially in reducing the Amazonia dry biases 285 

(Fig. 1d&e). In contrast, CAM6-Trig (Fig. 1c) shows slightly larger errors in the mean 286 

precipitation than CAM6-CTL (Fig. 1b). Although TaiESM1 was also branched from CAM5 and 287 

used ZM for deep convection, it shows larger biases and smaller CORR compared to CAM6 and 288 

E3SMv2, indicating that other physical processes and their interactions with deep convection also 289 

impact mean precipitation. The convective memory introduced in UMGA8 does not change the 290 

mean precipitation errors in UMGA7 much. While UMGA8 shows some improvements over 291 

South Africa and the tropical Indian Ocean, it produces a larger dry bias over the Amazon basin 292 

compared with that in UMGA7 (Figs. 1i&j).  293 

 294 

3.2 Frequency and amount of precipitation 295 

As shown in Figure 1, the majority of precipitation error occurs in the tropics. On the other 296 

hand, the warm and dry bias over the central U.S. in the summer is one of the most conspicuous 297 

model biases that has persisted in many generations of climate models. To further explore the 298 

regional features, the precipitation intensity distributions of the annual mean in the tropics (30oS – 299 

30oN) and over the summer contiguous U.S. (CONUS) are examined in Figure 2a and 2b, 300 

respectively.  301 
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Different from that of mean precipitation, discrepancies among various observational data 302 

sets are noted in the precipitation intensity distributions, which indicates certain level of 303 

uncertainty. Particularly, GPCP tends to under-represent high intensity rain rates while 304 

underrepresenting low rain rates compared with that of CMORPH and IMERG in the tropics, 305 

consistent with the findings in previous studies (Martinez-Villalobos and Neelin, 2021; Martinez-306 

Villalobos et al. 2022). Overall, compared to the observations, GCMs tend to overpredict the 307 

frequency of rainfall rates between 0.5-2.0 mm/day while underestimating rainfall rates greater 308 

than 15 mm/day over both the tropics and the summer CONUS. Note that different from other 309 

GCMs, both UMGA7 and UMGA8 tend to overpredict the frequency of very intense precipitation 310 

(> 25-30 mm/day) over the tropics. This is related to the excessive precipitation produced in the 311 

tropical and subtropical oceans in these two models. In addition, the modeled total precipitation 312 

distribution exhibits a large spread in its probability density functions (PDFs). Different from the 313 

tropics, where a strong bimodal distribution is simulated in most GCMs, the modeled precipitation 314 

shows large precipitation frequency between 0.5 and 5 mm/day over the CONUS.  315 

Models with different versions or parameterizations show some differences in the 316 

precipitation intensity distributions over both of the examined regions but the differences are in 317 

general more evident in the tropics than over the CONUS. In the tropics, the dCAPE-ULL trigger 318 

in E3SMv2 helps reduce the overestimation of frequency of rain rates in E3SMv2-CAPETrig 319 

between 1.0 and 10 mm/day, consistent with Xie et al. (2019). The reduction of light-to-moderate 320 

rain is mainly attributed to the dCAPE method applied in E3SMv2 which effectively suppresses 321 

the convection as found in Zhang and Mu (2005) and Xie et al. (2019). Similarly, the 322 

overestimation of the precipitation frequency at the bin of [1.0-10 mm/day] in CAM6-CTL is 323 

largely reduced in CAM6-Trig with the dCAPE-ULL trigger. This is also the case for UMGA8 324 
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compared to UMGA7, indicating that including convective memory acts to suppress light-to-325 

moderate rain likely because information from previous convection helps maintain and enhance 326 

the follow-up development of convection. Having convective memory in UMGA8 also promotes 327 

intense rainfall events as UMGA8 has more intense precipitation than UMGA7, consistent with 328 

cloud-resolving simulations (Daleu et al., 2020). Overall, the impact of new changes in CAM6-329 

Trig, E3SMv2 and UMGA8 on the precipitation frequency distributions is only notable in the 330 

light-moderate rain range, as the corresponding distributions are pretty similar to that of CAM6-331 

CTL, E3SMv2-CAPETrig and UMGA7, respectively, for intense rain. 332 

 333 

3.3 Global distribution of diurnal precipitation 334 

Figure 3 shows the comparison of the time phase (color) and amplitude (color density) of 335 

the first diurnal harmonic of total precipitation between three different observations (e.g., 336 

CMORPH, IMERG and TRMM) and model simulations over the tropics (20oS-20oN). The 337 

modeled precipitation over the oceans tends to peak a few hours earlier (closer to midnight) than 338 

that observed in most of the participating models, with the exception of ECMWF-IFS which 339 

closely reproduces the observed widespread morning peaks. The diurnal precipitation peaks over 340 

the Maritime continent region are also well captured by ECMWF-IFS, which reproduces the 341 

observed late-evening peaks over land and the transition to morning peaks toward the coasts and 342 

open oceans (Fig. 3f).  343 

Over the tropical continents, including Africa, South America, and South Asia, the 344 

observed late-evening to midnight precipitation peaks are in general captured by CMCGEM (Fig. 345 

3i) and ECMWF-IFS (Fig. 3j). Overall, the diurnal peak phase is similar for CAM6-CTL (Fig. 3d), 346 

E3SMv2-CAPETrig (Fig. 3g) and TaiESM1 (Fig. 3h), where the diurnal precipitation peaks are 347 
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nearly phase-locked to maximum insolation over tropical Africa and tropical South America. The 348 

similarity in simulating the diurnal timing is largely attributed to the same deep convection scheme 349 

(ZM) used in these three models. The CAPE (applied in CAM6-CTL and E3SMv2_CAPETrig) or 350 

CIN (TaiESM) triggers used in these models are so strongly tied to solar radiation that they cannot 351 

prevent CAPE from being released spontaneously after it is generated by the solar heating. The 352 

phase-locking behaviors are also noted for UMGA7 (Fig. 3k) and UMGA8 (Fig. 3l), where they 353 

both simulate morning peaks over most of the tropical land areas. The dCAPE-ULL trigger 354 

implemented in CAM6-Trig (Fig. 3e) and E3SMv2 (Fig. 3f) effectively breaks the phase-locking 355 

behaviors associated with the CAPE trigger used in CAM6-CTL, E3SMv2-CAPETrig and 356 

TaiESM1, and delays the precipitation peak at the noon or early-afternoon to between late-evening 357 

and midnight or shortly after. However, over most of the tropical land regions, the peak time in 358 

CAM6-Trig and E3SMv2 occurs a few hours earlier than the observations.  359 

The observed and modeled phase and amplitude of diurnal precipitation over the summer 360 

CONUS are displayed in Figure 4. Overall, the performance of participating models on the DCP 361 

is worse over the CONUS than over the tropics. Common model biases, including the too early 362 

daytime precipitation peak over the Southeast U.S. and the missing of nocturnal precipitation peak 363 

over the central U.S., are noted in CAM6-CTL (Fig. 4d). These model biases are notably reduced 364 

in CAM6-Trig (Fig. 4e) with the dCAPE-ULL trigger. The use of the dCAPE-ULL trigger in 365 

E3SMv2 also helps capture the nocturnal precipitation peak missed by E3SMv2-CAPETrig. But 366 

the late-afternoon peak over the eastern U.S., which is correctly simulated in E3SMv2-CAPETrig, 367 

is delayed to midnight in E3SMv2 (Figs. 4f&g). This is in contrast to the significant improvement 368 

of the new trigger in simulating diurnal timing phases over CONUS as shown in Xie et al. (2019). 369 

Further analyses indicate that the re-tuning of several adjustable parameters used in ZM during the 370 
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E3SMv2 development has a negative impact on its simulated DCP (Golaz et al. 2022). This issue 371 

is being addressed by the E3SM team for its next version of the model. Different from CAM6-372 

CTL and E3SMv2-CAPETrig, TaiESM1 successfully captures the nocturnal precipitation peak 373 

over the U.S. Great Plains (Fig. 3h). This is mainly attributed to the ULL method implemented in 374 

TaiESM1, which is key to capturing the nocturnal elevated convection (Xie et al. 2019; Wang et 375 

al. 2015). In the meantime, however, the bias of too early precipitation peaks during the daytime 376 

still persists in TaiESM1 such as over the southern and southeastern U.S., indicating that the main 377 

effect of dCAPE trigger is to delay daytime precipitation.  378 

While CMCGEM is able to produce the observed late-afternoon peak over the eastern and 379 

southeastern U.S., it misses the nocturnal precipitation maximum over the central U.S. (Fig. 4i). 380 

The performance of ECMWF-IFS over the summer CONUS is generally worse than that over the 381 

tropics. The diurnal precipitation seems to peak a few hours later over the southeastern U.S. 382 

compared to all three observations (Fig. 4j). Overall, the distributions of the summertime diurnal 383 

timing phase and amplitude are similar between UMGA7 (Fig. 4k) and UMGA8 (Fig. 4l), where 384 

both models simulate a diurnal peak a few hours earlier (around noon) than the observations over 385 

the eastern and southeastern U.S. This suggests that the convective memory added in UMGA8 has 386 

little impact on the simulated DCP. It should be noted that here we only focus on the diurnal 387 

harmonics. However, to fully represent the daily variations, harmonics in semidiurnal and higher 388 

frequencies are also needed. Detailed analysis on the modeled DCP at selected ARM sites will be 389 

discussed later in section 4. 390 

 391 

3.4 Propagation of convection over the U.S. Great Plains 392 
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The diurnal cycle of observed surface precipitation over the U.S. Great Plains is featured 393 

with a primary peak between midnight and early morning during the warm season (e.g., Dai et al., 394 

1999; Jiang et al., 2006; Klein et al., 2006). This nocturnal precipitation is usually linked to the 395 

propagating convection systems into the Great Plains, which originates from the lee of the Rocky 396 

Mountains during the afternoon (e.g., Jiang et al., 2006; Xie et al., 2014; Geerts et al., 2017). Figure 397 

5 illustrates the mean diurnal and longitudinal distribution of precipitation (averaged from 35o to 398 

45oN) from observations and GCMs over the central U.S. during the summertime. Here, a clear 399 

eastward propagation of convection is noted in all three observations (CMORPH, IMERG and 400 

TRMM) with a sharp pickup in precipitation starting at 1500-1800 LST over 105oW (Figs. 5a-c). 401 

The precipitation associated with deep convection then moves eastward to the Great Plains with 402 

increased intensity, peaking at 2100-0000 LST over 100oW. The results are in general similar 403 

among various observational data sets. 404 

Overall, most of the participating models tend to underestimate the precipitation amounts, 405 

consistent with the long-standing dry and warm bias in GCMs over the Great Plains during the 406 

warm seasons (Klein et al., 2006; Ma et al. 2018). In addition, the observed propagation features 407 

are generally absent in GCMs. This is consistent with Ma et al. (2022) which demonstrated that 408 

the multi-model means (MMM) from both “high”-resolution global models with typical resolution 409 

of ~50 km and “standard”-resolution global models with typical resolution of ~100 km fail to 410 

simulate the propagating convective in the central U.S. On the other hand, the UMGA models 411 

(both UMGA7 and UMGA8) show some capability to simulate the propagation of convection over 412 

the Great Plains but with a greater propagation speed. For instance, the UMGA8-simulated 413 

precipitation peaks at around 1500 LST over 105oW, moves eastward to the Great Plains and peaks 414 

at around 0000 LST and 0300 LST over 100oW and 95oW, respectively (Fig. 5l). While CAM6-415 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030585#jgrd55714-bib-0015
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Trig (Fig. 5e), E3SMv2 (Fig. 5f), TaiESM1 (Fig. 5h) and ECMWF-IFS (Fig. 5j) also shows the 416 

signal of propagation of convection eastward towards the Great Plains, the rain peak time is always 417 

a few hours later compared to the observations.  418 

 419 

4. Diurnal cycle of precipitation at the ARM SGP and GOAmazon sites 420 

In this section, the simulated DCP from both AMIP-style climatology runs and short-range 421 

hindcast runs will be evaluated at two ARM sites of distinct environmental conditions: 1) the SGP 422 

site, representative of midlatitude land conditions with upper-level westerlies and a dry free 423 

troposphere, and 2) the MAO site, representative of tropical rain-forest conditions with warm, 424 

moist air in the lower and middle troposphere.  425 

 426 

4.1 The ARM SGP site 427 

a. Composite means 428 

The composite mean DCP from climate runs and the ARM continuous forcing data set (Xie 429 

et al. 2004, Tang et al. 2019), averaged for eight summer seasons (June-August, 2011-2018) at the 430 

SGP, are shown in Figure 6a. As expected, the DCP from the ARM observations presents a 431 

nocturnal peak after midnight and a daytime minimum at around noon. In general, the simulated 432 

precipitation intensity is too weak in all participating models. For CAM6-CTL and E3SMv2-433 

CAPETrig, particularly, the diurnal precipitation maximum is less than 1.5 mm/day compared with 434 

5.0 mm/day from the ARM observations. In addition, most of the participating GCMs have 435 

difficulties in capturing the ARM-observed nocturnal precipitation maximum, consistent with the 436 

results of long-term SCM tests in Tang et al. (2022). The modeled precipitation either shows a 437 

diurnal maximum around noon or displays a double-peak diurnal pattern. The timing of DCP is 438 
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only reasonably simulated by CAM6-Trig, E3SMv2 and ECMWF-IFS, although the modeled peak 439 

is still one or two hours later than the ARM observations. 440 

The better simulated diurnal phase in CAM6-Trig, E3SMv2, and ECMWF-IFS could be 441 

attributed to a relatively more accurate representation of the interactions between their convective 442 

triggering processes and the large-scale environment and the use of unrestricted launch level in 443 

these models. This is consistent with Tang et al. (2022), which indicated that models with the 444 

capability of allowing convection to be triggered above the boundary layer can better simulate the 445 

observed nocturnal precipitation. As discussed in Xie et al. (2019), the dCAPE-ULL trigger, 446 

employed in both CAM6-Trig and E3SMv2, contains a dynamic constraint related to the large-447 

scale temperature and moisture advection for suppressing daytime convection and the ULL 448 

allowing instability to be captured above the boundary layer for nocturnal elevated convection. 449 

The combination of these two approaches allows CAM6-Trig and E3SMv2 to capture the diurnal 450 

phase of precipitation at the SGP site. The observed nocturnal peak is also well simulated by 451 

ECMWF-IFS, which is probably because ECMWF-IFS incorporates moisture convergence in its 452 

closure (which has implicit impact on its trigger) and searches for unstable levels up to 300 hPa. 453 

The physics behind the dCAPE-ULL trigger and the ECMWF-IFS trigger and closure are similar. 454 

It is interesting that while TaiESM1 is able to capture the nocturnal precipitation peak, due to the 455 

ULL trigger, it produces a secondary peak near 1300 LST as well. This again indicates that the 456 

CIN trigger in TaiESM1 cannot effectively suppress spurious early afternoon convection in the 457 

model since CIN is also small during the day as a result of solar heating.  458 

Results from the 5-day hindcasts, averaged over Day 2 to Day 5 hindcast lead time, during 459 

the PECAN field campaign (June 01 – July 15, 2015) are shown in Figure 6b. With more realistic 460 

large-scale conditions enforced in the hindcasts, the participating models produce much stronger 461 
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precipitation in the hindcast runs than their climate runs. Similar results are also noted in the SCM 462 

intercomparison project where the simulated diurnal amplitude is greater in SCMs compared to 463 

GCMs (Tang et al. 2022). This suggests that the problem with too weak diurnal amplitude in the 464 

climate runs may result from the errors in the large-scale circulations and surface conditions (e.g., 465 

soil moisture) and the interaction between convection and its environment. Additionally, the 466 

observed nocturnal peak is well captured by almost all the models in the hindcast runs except for 467 

E3SMv2-CAPETrig, which continues to produce a diurnal peak in the late afternoon similar to its 468 

climate runs. Although CAM6-CTL and CAM6-Trig did not participate in the hindcast 469 

experiment, we expect the simulated DCP in CAM6-CTL to be comparable with that in E3SMv2-470 

CAPETrig given their similarities. In the meantime, most of the participating models largely 471 

overestimate the precipitation during the day and show a secondary peak between 1300 and 1800 472 

LST. The only exception to this issue is E3SMv2 which nicely reproduces the observed diurnal 473 

features. The overall better performance of E3SMv2 in both short-term hindcasts and long-term 474 

climate runs suggests that the dCAPE-ULL trigger can effectively help capture DCP over the SGP 475 

region. 476 

It is noted that CMCGEM, ECMWF-IFS, and MPAS performed the hindcast runs with 477 

very high horizontal resolutions (< 20 km). CMCGEM shows a much better performance in the 478 

hindcasts than its climate simulations. The improvement could be attributed to both the increased 479 

resolution from climate runs (39 km) to hindcasts (15 km) and the better described large-scale 480 

environments and initial conditions in the hindcast runs. But this seems not the case for ECMWF-481 

IFS and MPAS. Although the ARM-observed nocturnal precipitation maximum is captured by the 482 

hindcast runs of ECMWF-IFS, the simulated precipitation between 1500 and 2100 LST is too 483 

strong compared with that observed. Similarly, the hindcast runs of MPAS also show a diurnal 484 
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precipitation maximum in the late afternoon. The similarities between these two models could be 485 

partially because the deep convection scheme used in the 15-km MPAS runs is based on the New 486 

Tiedtke scheme in WRF, which in turn, is very similar to the scheme employed in ECMWF-IFS. 487 

This suggests that the biases of low-resolution climate models in capturing the DCP may not be 488 

fully resolved by simply increasing model resolutions as long as cumulus parameterizations are 489 

used in the model. To better capture the diurnal phase, a convection permitting resolution is 490 

needed. As demonstrated in Ma et al. (2022), models with resolutions between 2.5 km to 5 km 491 

used in the DYAMOND project do show a clear improvement in capturing the diurnal phase 492 

compared to those in the CMIP6 GCMs. 493 

For the UMGA models, UMGA8 shows considerably weaker diurnal variability than 494 

UMGA7 in both simulations, especially the hindcast runs. To further explore this, statistics of the 495 

precipitation duration for rainfall events are also examined. It is found that with convective 496 

memory, rainfall events tend to last longer in UMGA8 than UMGA7 in the hindcast runs (not 497 

shown), reducing the diurnal variability in Fig. 6b. Overall, both models show difficulties in 498 

capturing the DCP at SGP with double peaks shown in their simulated DCP (one in the afternoon 499 

and one around the midnight) although the observed nocturnal peak is reasonably captured in their 500 

hindcast simulations. 501 

 502 

b. Individual nocturnal rainfall events 503 

The DCP based on the composites of a few weeks could be biased from a few strong 504 

precipitation events. Here, simulations from the 5-day hindcast runs are further examined through 505 

day-to-day comparisons with the ARM observations. Specifically, we focus on the observed 506 



23 

 

nocturnal precipitation days, defined as having a peak rain rate greater than 1 mm/day, and rain 507 

peak time between 0000 and 0700 LST, following Tang et al. (2022).  508 

Figure 7 illustrates the observed and simulated peak rain rate (mm/day) and rain peak time 509 

(LST) for each day during the PECAN field campaign. In total, 12 nocturnal precipitation days are 510 

selected from the ARM observations. Overall, CMCGEM compares best to the observations. Ten 511 

out of 12 (~ 83%) observed nocturnal precipitation days are correctly simulated as nocturnal 512 

precipitation days in CMCGEM, with one day having peak rain rate less than 1 mm/day (Jun-06) 513 

and one day having rain peak time at around 2300 LST (Jun-11). The nocturnal precipitation 514 

regime is also reasonably well captured by ECMWF-IFS and TaiESM1, which correctly reproduce 515 

three quarters of the identified nocturnal precipitation days from the ARM observations. The hit 516 

rate to reproduce the ARM-observed nocturnal precipitation days is the lowest in E3SMv2-517 

CAPETrig (~33%) while it doubles in E3SMv2 (~67%). The significant improvement from 518 

E3SMv2-CAPETrig to E3SMv2 in the day-to-day comparison is consistent with the results from 519 

the above composite means. Common features are noted among the participating models for the 520 

days that are recognized as nocturnal precipitation days in the ARM observations but are not in 521 

the models. In the majority of the wrong cases from the hindcast runs, the nocturnal precipitation 522 

is generally captured by the models (i.e., maximum rain rate > 1 mm/day between 00-07 LST) but 523 

the rain peak time occurs between the late afternoon and early evening.  524 

 525 

4.2 The ARM GOAmazon site 526 

a. Composite means 527 

Figure 8a shows the mean DCP from climate runs averaged for eight dry seasons 528 

(September-October, 2011-2018) and ARM observations (September-October 2014) (Tang et al. 529 
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2016) at the Manacapuru site in the central Amazon (MAO) of Brazil. Consistent with previous 530 

studies, the ARM observations show a diurnal precipitation peak in the early afternoon at around 531 

1400 LST. Overall, most of the participating models show a better performance in capturing the 532 

DCP, including both diurnal phase and amplitude, at the ARM MAO site than that at the SGP site.  533 

Note that local-driven afternoon convection is the dominant precipitation system in the dry season 534 

at the ARM MAO site (e.g., Tang et al., 2016). When including propagating convective systems 535 

mostly occurring in the wet season and at other times of the day, model performance will likely 536 

degrade (Tang et al., 2022). 537 

The common model bias of too early precipitation peaks is noted in CAM6-CTL. The 538 

observed afternoon peak at MAO is missed by CAM6-CTL. Instead, it shows a diurnal 539 

precipitation maximum at around 1100 LST. With the dCAPE-ULL trigger, CAM6-Trig 540 

reproduces the observed early-afternoon peak, but the amplitude is too weak. Different from the 541 

results at SGP, the DCP at MAO is much better simulated in E3SMv2-CAPETrig than that in 542 

E3SMv2. The observed early-afternoon rainfall maximum is well captured by E3SMv2-543 

CAPETrig, with a secondary peak around midnight. In contrast, there is no clear diurnal variation 544 

in E3SMv2. The simulated precipitation is overestimated at night but underestimated in the 545 

afternoon compared to the observations. A further analysis suggests that the change in the air parcel 546 

starting launch level from two levels above the bottom model level in E3SMv1 to just one level 547 

above in E3SMv2 has affected the dCAPE-ULL performance, in particular for daytime 548 

precipitation. While the timing of the observed afternoon precipitation peak is well captured by 549 

TaiESM1, the simulated precipitation intensity is lower compared to the ARM observations. Both 550 

CMCGEM and ECMWF-IFS show a diurnal precipitation peak at around 1600-1700 LST, a few 551 
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hours later than the ARM observations. In addition, the maximum precipitation intensity is largely 552 

overestimated in ECMWF-IFS.   553 

          Correspondingly, results from the hindcast runs during the second intensive operational 554 

periods (IOPs, dry seasons, September 01 – October 14, 2014) of the GOAmazon field campaign 555 

are shown in Figure 8b. Different from the SGP case, there is no clear improvement seen in the 556 

hindcast runs compared to the climate simulations. In fact, most of the models even show worse 557 

performance in their hindcast runs. For example, the simulated DCP from both UMGA7 and 558 

UMGA8 compare better to the observations in their climate runs than in the hindcast runs. Both 559 

UMGA7 and UMGA8 show a diurnal precipitation maximum peaking around noon, different from 560 

the observed precipitation peak in the early afternoon. Similar results are also noted in the hindcast 561 

runs of TaiESM1, with earlier rain peak time and lower maximum rain rate. Precipitation is too 562 

weak in both E3SMv2-CAPETrig and E3SMv2 hindcasts, with the diurnal precipitation maximum 563 

less than 2 mm/day in both models. For CMCGEM, both the climate runs and the hindcasts show 564 

a diurnal precipitation peak at around 1600 LST but the bias in precipitation magnitude is even 565 

larger in the hindcast runs. The only exception is ECMWF-IFS. Compared with its climate runs, 566 

the hindcast runs of ECMWF-IFS show significant improvement in both the peak time and 567 

maximum rain rate of DCP. This implies that the above-noted bias in the climate runs of ECMWF-568 

IFS could be attributed to the spurious moisture source in the semi-Lagrangian advection and the 569 

large model time step of 2700 s.  570 

The different model performances in hindcasts and climate simulations and over different 571 

climate regimes highlights the challenge in capturing the diurnal variation in precipitation in 572 

current weather and climate models. The model issue is not only related to the model physics, but 573 

also related to the large-scale environments and the interactions between model physics and 574 
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dynamics. A hierarchic modeling framework helps test new developments of model convective 575 

processes over different convective regimes to ensure the improvement is valid globally. 576 

 577 

b. Individual afternoon rainfall events 578 

Similar to SGP, the day-to-day comparisons between the hindcast runs and the ARM 579 

observations during the dry seasons of the GOAmazon field campaign are displayed in Figure 9. 580 

In this subsection, we will emphasize the days with afternoon precipitation maxima. Here, 13 581 

afternoon precipitation days are selected from the ARM observations, following the criteria of 582 

Tang et al. (2022). An afternoon precipitation day is defined as having 1) peak rain rate greater 583 

than 1 mm/day, 2) rain peak time between 1100 and 2000 LST, 3) peak rain rate 1.5 times greater 584 

than any rain rate beyond the period between 1100 and 2000 LST, and (4) it must fall into the 585 

locally driven convection case library visually selected from radar and satellite images (Tian et al., 586 

2021).  587 

Overall, ECMWF-IFS compares the best to the ARM observations, similar to earlier 588 

discussion. About 80% (10 out of 13) of the observed afternoon precipitation days are correctly 589 

simulated as afternoon precipitation days in ECMWF-IFS. The afternoon convection regime 590 

during the GOAmazon dry seasons is also reasonably captured by CMCGEM, UMGA7, and 591 

UMGA8, with a hit rate of 69%, 62%, and 62%, respectively. While TaiESM1 performs pretty 592 

well in capturing the nocturnal precipitation days during PECAN, it misses the majority of the 593 

observed afternoon precipitation days in the 2nd IOP of the GOAmazon experiment. Further 594 

analysis indicates that the wrong cases in TaiESM1 are mainly attributed to days that do not exhibit 595 

peak rain rate 1.5 times greater than any rain rate outside of 1100 to 2000 LST. More specifically, 596 

about 67% of the wrong cases in TaiESM1 fulfill the first two criteria but fail the third criterion in 597 
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the definition of the ARM-observed afternoon precipitation days described above. The observed 598 

afternoon precipitation days are generally poorly simulated in both E3SMv2 and E3SMv2-599 

CAPETrig. Statistically, 50% of the wrong cases in E3SMv2-CAPETrig are attributed to 600 

precipitation peaking too early (before 1100 LST); while the wrong cases in E3SMv2 are largely 601 

(54%) contributed by a diurnal precipitation maximum peaking during the nighttime (after 2000 602 

LST). 603 

 604 

5. Discussions and conclusions 605 

Accurate simulation of diurnal precipitation continues to be an ongoing challenge for 606 

GCMs, particularly over land. Problems in simulating the DCP are primarily due to deficiencies 607 

in representing convection initiation, evolution, and propagation, as well as the interaction between 608 

convection and its large-scale atmospheric environment and the underlying land surface. In this 609 

study, the simulation of the DCP in participating GCMs is evaluated using both 8-year AMIP-type 610 

climate runs and 5-day hindcasts for the ARM PECAN and GOAmazon field campaigns initialized 611 

with NWP analyses. Particularly, we focus on the DCP at the ARM SGP and MAO sites,  612 

representative of midlatitude and tropical land, respectively.    613 

Common model biases are noted in the GCM climate runs, such as the excessive 614 

precipitation over the tropics, the too frequent light rain, and the missing propagating convection 615 

systems in the central U.S. At the SGP, the precipitation intensity is largely underestimated by all 616 

participating GCMs in the climate runs, but this bias is noticeably improved in the hindcast runs. 617 

This indicates that the too weak rainfall intensity in the climate runs may be due to errors in the 618 

large-scale circulation and surface conditions (e.g., soil moisture) and the interaction between 619 

convection and its environment. In addition, the timing of the simulated diurnal peak is largely 620 
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improved from the climate runs to hindcast runs. The observed nocturnal precipitation peak, 621 

missed by most models in the climate runs, is reasonably well captured in the hindcasts. This 622 

suggests that a well constrained large-scale condition is critical for GCMs to correctly simulate the 623 

DCP at the SGP. Different from the SGP, the GCM hindcasts show no clear improvement at the 624 

MAO. The model bias of both peak rain rate and its timing in the GCM climate runs persists in the 625 

corresponding hindcast runs.  626 

The impact of model physics on the simulated DCP is examined by comparing models with 627 

different versions or physical parameterizations. In general, models that incorporate the role of the 628 

large-scale environment in convective triggering processes, such as ECMWF-IFS, E3SMv2, and 629 

CAM6-Trig, are able to improve the phase-lock issue in many GCMs where precipitation peaks 630 

near noon due to the unrealistically strong coupling of convection with surface heating over land. 631 

Models that allow convection to be decoupled from the boundary layer, such as ECMWF-IFS, 632 

E3SMv2, CAM6-Trig, and TaiESM, show capabilities in capturing nocturnal precipitation which 633 

is often associated with propagation of mesoscale systems. The convective memory introduced in 634 

UMGA8 helps reduce the overestimation of the frequency of light-to-moderate rain in the tropics 635 

while promoting intense rainfall events. But its impact is in general minor in the mean precipitation 636 

and DCP over both SGP and MAO. In fact, it actually acts to reduce the diurnal variation as 637 

precipitation events tend to maintain longer with memory. 638 

Results from this study suggest that the DCP biases of low-resolution climate models 639 

cannot be fully resolved by simply increasing model resolutions as long as cumulus 640 

parameterizations are used in the model simulations. To better address the impact of model 641 

resolution on the simulated DCP, studies based on the intercomparisons of Cloud Permitting 642 

Models (CPMs) are needed. Current weather and climate models continue having difficulties in 643 
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capturing the diurnal variations of precipitation. As shown, different model performances are noted 644 

in hindcasts and climate simulations and over different climate regimes. The simulated DCP is the 645 

result of the interaction between model physics, the large-scale environment and the physics-646 

dynamics coupling. The hierarchy modeling framework applied in the GASS-DCP project has 647 

been proven very useful to identify strengths and weaknesses of model parameterizations and test 648 

new approaches to simulate convective processes in different convective regimes. 649 
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Table 1. Participating models and their basic information. 

 
Model name  Full name  Run type Horizontal resolution Vertical levels Timestep Contact Person 

CAM6-CTL NCAR CAM6 Climate 0.9°1.25° 32 30m Guang Zhang,  

Zeyu Cui 

CAM6-Trig NCAR CAM6 with revised 
convection trigger 

Climate 0.9°1.25° 32 30m Guang Zhang,  
Zeyu Cui 

*CMCGEM Canadian Meteorological Center 

Global Environmental Multiscale 
Climate, Hindcasts Hindcasts: 15 km 

Climate: 39 km 

84  

(top at 0.1hPa) 

Hindcasts: 450s 

Climate: 900s 

Paul Vaillancourt, 

Jing Yang 

*ECMWF-IFS ECMWF Integrated Forecast 

System 
Climate, Hindcasts Hindcasts: 18 km 

Climate: 60 km 

137 Hindcasts: 720s 

Climate: 2700s  

Peter Bechtold 

*E3SMv2 E3SM version 2 Climate, Hindcasts 1° (~110 km near equator) 72 30m Shaocheng Xie,  

Hsi-Yen Ma 

*E3SMv2-CAPETrig E3SMv2 with revised convective 

trigger turned off 
Climate, Hindcasts 1° (~110 km near equator) 72 30m Same as above 

MPAS Model for Prediction Across Scales Hindcasts 15 km 55 75s May Wong 

*TaiESM1 Taiwan Earth System Model 

version 1 
Climate, Hindcasts 0.9°1.25° 30 30m Yi-Chi Wang 

*UMGA7 Unified Model Global Atmosphere 

(UMGA) version 7 
Climate, Hindcasts N320 (440 km near equator) 70  

(top at 80km) 

12m Kwinten Van 

Weverberg 

*UMGA8 UMGA version 8 Climate, Hindcasts Same as above Same as above Same as above Same as above 

* denotes the models that run both climate simulations and hindcasts. 
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Table 2. Model physics in the participating models 

 
Model name  Turbulence  Stratiform clouds Shallow convection References Contact Person 

CAM6-CTL CLUBB MG2, CLUBB CLUBB Danabasoglu et al. (2020) Guang Zhang,  

Zeyu Cui 

CAM6-Trig CLUBB MG2, CLUBB CLUBB Danabasoglu et al. (2020) 
Cui et al. (2021) 

Guang Zhang,  
Zeyu Cui 

*CMCGEM TKE = 1.5 Sundqvist scheme Modified Bechtold et al. (2001) McTaggart-Cowan et al. (2019a) Paul Vaillancourt, 

Jing Yang 

*ECMWF-IFS K-diffusion Prognostic cloud scheme (4 water 
species + cloud fraction) 

Same as deep (see Table 2) only 
differs by entrainment and closure 

https://www.ecmwf.int/en/publicati
ons/ifs-documentation 

Peter Bechtold 

*E3SMv2 CLUBB MG2, CLUBB CLUBB Golaz et al. (2022) Shaocheng Xie,  

Hsi-Yen Ma 

*E3SMv2-CAPETrig CLUBB MG2, CLUBB CLUBB Same as above Same as above 

MPAS MYNN Thompson prognostic microphysics 

(non-aerosol-aware) 

Scale-aware New Tiedtke Skamarock et al. (2012) 

Nakanishi and Niino (2006, 2009) 
Olson et al. (2019) 

Thompson et al. (2008) 

Wang (2022) 

May Wong 

*TaiESM1 UW MG, GTS (Shiu et al. 2021) UW Lee et al. (2019) Yi-Chi Wang 

*UMGA7 First-order turbulence 

closure (Lock et al. 2000) 
with modification 

described in Lock (2001) 

and Brown et al. (2008) 

Macrophysics: Prognostic cloud 

fraction and prognostic condensate 
(PC2) scheme (Wilson et al., 2008a, b) 

 

Microphysics: Single-moment scheme 
based on Wilson and Ballard (1999)  

Mass-flux convection scheme 

based on Gregory and Rowntree 
(1990) 

Walters et al. (2019) Kwinten Van 

Weverberg 

*UMGA8 Same as above Same as above Same as above Same as above Same as above 

* denotes the models that run both climate simulations and hindcasts. 
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Table 3. Deep convective parameterizations in the participating models. 

 
Model name Deep convection Closure Convective trigger Downdraft References 
CAM6-CTL ZM Dilute CAPE CAPE > 70 J/kg Downdraft starts from the 

level of minimum moist 

static energy 

Zhang and McFarlane (1995) 
Neale et al. (2008) 

CAM6-Trig ZM with revised 

trigger 

Dilute CAPE CAPE > 0; dCAPE > 45 J/kg/hr; allowing 

convective parcel to launch above PBL but below 
600 hPa 

Downdraft starts from the 

level of minimum moist 
static energy 

Zhang and McFarlane (1995) 

Xie et al. (2019) 
Cui et al. (2021) 

*CMCGEM Mass flux CAPE Look for a 60 hPa mixed parcel, to which a flow-

dependent temperature perturbation is added, in the 
lowest 300 hPa that is buoyant once lifted to the 

LCL 

Starts at the level of 

minimum saturation 
equivalent potential 

temperature 

Kain and Fritsch (1990, 1992) 

McTaggart-Cowan et al. 
(2019a, 2019b) 

*ECMWF-IFS Bulk mass flux Dilute CAPE + moisture 

convergence 

Simplified test ascent from all levels up to 

maximum 300 hPa, positive buoyancy at cloud 
base 

Saturated, 0.3 updraft mass 

flux at level of free sink 

Tiedtke (1989) 

Bechtold et al. (2004, 2008, 
2014) 

Becker et al. (2021) 

 

*E3SMv2 ZM with revised 

convective trigger 

Dilute CAPE dCAPE_ULL trigger:  

(1) CAPE > 0;  

(b) dCAPE > 0;  
(c) The air parcel launch level is chosen between 

the surface and 600 hPa 

Downdraft starts from 

updraft-top mass flux 

Xie et al. (2019) 

Zhang and McFarlane (1995) 

*E3SMv2-CAPETrig ZM Dilute CAPE CAPE trigger: 
(1) CAPE >70 J/kg; 

(2) The air parcel launch level is chosen within the 

boundary layer 

Downdrafts starts from 
updraft-top mass flux 

Xie et al. (2018) 
Zhang and McFarlane (1995) 

MPAS Scale-aware New 
Tiedtke 

Relaxes CAPE to a value 
generated by the planetary 

boundary layer processes 

(Bechtold et al. 2014)  

CAPE exists in an entraining ascending air parcel 
with cloud depth exceeding 2 km 

Downdrafts are driven by 
precipitation evaporation 

in the updrafts and 

originate at the level of 
free sink 

Tiedtke (1989) 
Bechtold et al. (2008, 2014) 

Zhang and Wang (2017) 

Wang (2022) 

*TaiESM1 ZM + ULL + CIN Dilute CAPE ULL: The air parcel launch level is chosen 

between the surface and 600 hPa 
 

CIN: convective inhibition estimated by difference 

between launching level and LFC < 150 hPa 

Downdraft starts from 

updraft-top mass flux 

Wang et al. (2015) 

Zhang and McFarlane (1995) 

*UMGA7 Mass-flux convection 
scheme based on 

Gregory and 

Rowntree (1990) 

CAPE: closure based on 
Fritsch and Chappell (1980) 

The diagnosis of shallow and deep convection is 
based on an undilute parcel ascent from the near 

surface for grid boxes where the surface buoyancy 

flux is positive and forms part of the boundary-
layer diagnosis (Lock et al., 2000) 

Gregory and Allen (1991) Gregory and Rowntree (1990) 
Gregory and Allen (1991) 

Walters et al. (2019) 

*UMGA8 Same as above Same as above Similar to the above but with the prognostic 

entrainment to introduce convective memory in the 
model.  

Same as above Gregory and Rowntree (1990) 

Gregory and Allen (1991) 
Willett et al. (in preparation) 

* denotes the models that run both climate simulations and hindcasts. 
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Figure 1. Annual mean precipitation rate (mm/day): (a) GPCP observational estimate, model bias from (b) CAM6-CTL, (c) CAM6-

Trig, (d) E3SMv2, (e) E3SMv2-CAPETrig, (f) TaiESM1, (g) CMCGEM, (h) ECMWF-IFS, (i) UMGA7, and (j) UMGA8. RMSE, root-

mean-square error. CORR, linear correlation coefficient between observation and model.  
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Figure 2. Daily mean precipitation frequency (unit: dF/dlog(P)) functions of total precipitation for the GPCP (black, solid), CMORPH 

(black, dotted) and IMERG (black, dashed) observations and model simulations (colored) for (a) annual mean over the tropics (30oS-

30oN), and (b) June-July-August mean over CONUS. The precipitation rates (unit: mm/day) are firstly averaged over daily intervals. 

The frequency distribution is then derived by combining data from all the grid boxes at 1° × 1° resolution without any further averaging. 

The x axis bin edges are specified as xn + 1/xn = 1.07 to ensure an equal space of log10(1.07) in the logarithm scale, starting at 0.1 

mm/day and ending at 617.3 mm/day. The frequency values are normalized by the x interval. Results are only shown up to 0.3 mm/day 

due to the data uncertainties.   
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Figure 3. Annual mean time phase (color) and amplitude (color density) of the first diurnal harmonic of total precipitation (mm/day) 

from (a) CMORPH, (b) IMERG, (c) TRMM, (d) CAM6-CTL, (e) CAM6-Trig, (f) E3SMv2, (g) E3SMv2-CAPETrig, (h) TaiESM1, (i) 

CMCGEM, (j) ECMWF-IFS, (k) UMGA7, and (l) UMGA8. 
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Figure 4. Same as Figure 3 except for the contiguous United States in June-July-August season. 
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Figure 5. Diurnal and longitudinal (averaged from 35o-45oN) distribution of precipitation over the central U.S. from (a) CMORPH, (b) 

IMERG, (c) TRMM, (d) CAM6-CTL, (e) CAM6-Trig, (f) E3SMv2, (g) E3SMv2-CAPETrig, (h) TaiESM1, (i) CMCGEM, (j) ECMWF-

IFS, (k) UMGA7, and (l) UMGA8 averaged over June-July-August of 2011-2018. The black dots denote the rain peak time for each 

longitudinal position. 
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Figure 6. The composite mean diurnal cycle of precipitation (mm/day) for (a) climate runs (June-August, 2011-2018) and (b) hindcast 

runs (June 01 – July 15, 2015). Results from the 5-day hindcasts are averaged over Day 2 to Day 5 hindcast lead time. Domain-mean 

precipitation measurements from the ARM continuous forcing data set and the VARANAL for PECAN are used in (a) and (b), 

respectively. 
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Figure 7. Peak rain rate (unit: mm/day) and rain peak time (LST) for each day during the PECAN field campaign. The 12 nocturnal 

precipitation days selected from the ARM observations are highlighted with gray-shaded areas. The rain peak time is only shown for 

days with peak rain rate greater than 1 mm/day. Definitions of nocturnal precipitation days are described in section 4.1.  
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Figure 8. The composite mean diurnal cycle of precipitation (mm/day) for (a) climate runs (September-October, 2011-2018) and (b) 

hindcast runs (September 01 – October 14, 2014). Results from the 5-day hindcasts are averaged over Day 2 to Day 5 hindcast lead 

time.  
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Figure 9. Peak rain rate (unit: mm/day) and rain peak time (LST) for each day during the 2nd IOP of the GOAmazon field campaign. 

The 13 afternoon precipitation days selected from the ARM observations are highlighted with gray-shaded areas. The rain peak time is 

only shown for days with peak rain rate greater than 1 mm/day. Definitions of afternoon precipitation days are described in section 4.2. 

 


