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ABSTRACT 
 

Objective analysis (OA) is an essential first step in building up an assimilation system. 
Producing maps of objective analysis on a regular basis is motivated by many factors such 
as: 1) to initialize models, 2) to provide users with a spatially complete and accurate 
analysis (as compared to model output or observations alone) and 3) to bring deep insights 
into possible model erroneous behavior or bugs.  
 
In this study, CHRONOS model (v2.3.6) for surface ozone is used since CHRONOS model 
error statistics could be produced in an easy way over most of North America. On the other 
hand, EPA-AIRNOW ozone real-time data base is also available for surface ozone 
observations for a large part of North America. Data from over 1400 stations are collected 
on a hourly basis from this data base making the production of Objective analysis and data 
assimilation an attractive issue for surface ozone. 
 

The problem of Objective analysis is the same as Optimal Interpolation and is posed here 
as a problem of statistical optimization. With no data selection on observing stations, it 
becomes equivalent to a 2D-VAR (two-dimensional variational analysis). It was found that 
a FOAR representation (First Order Autoregressive Model) is more suitable to estimate 
CHRONOS model error statistics for surface ozone than SOAR (Second Order 
Autoregressive model) or TOAR (Third Order Autoregressive model) fittings usually 
adopted in meteorology for Objective analysis or data assimilation. Finally, it was also 
demonstrated that not removing the bias of innovation at each station gives better results 
(higher score for the correlation between OA against observations) as compared to the 
case when the bias of innovation is removed. 
 

Verification of Objective analysis outputs versus observations in both R&D (off-line) and 
operational mode (on-line) have demonstrated good results so far for surface ozone and 
implementation on an experimental basis started on July 4

th
 2003 at CMC. The sub-grid 

scale representativeness issue remains to be addressed in the future especially for the 
case of some reporting stations which display strong local behavior. 
  

 

SOMMAIRE 
 

L’analyse objective (AO) est une première partie essentielle dans le processus  
d’assimilation. La production de cartes AO sur une base routinière est motivée par 
plusieurs facteurs tels que : 1) initialisation des modèles, 2) fournir aux utilisateurs une 
analyse complète et précise (comparé aux sorties de modèles ou aux observations prises 
séparément) et 3) permet d’examiner en profondeur le comportement du modèle et de 
détecter des erreurs. 
 
Dans la  présente étude, le modèle CHRONOS (v2.3.6) pour la prédiction de l’ozone de 
surface est utilisé. Les erreurs de modèle peuvent être facilement produites sur tout 
l’Amérique du Nord. D’autre part, les données de surface d’ozone en temps réel sont aussi 
disponibles pour une grande partie de l’Amérique du Nord. On collecte les données de plus 
de 1400 stations sur une base horaire. Ainsi, la production d’une carte d’analyse objective 
ou de l’assimilation des données devient une option attractive pour l’ozone de surface. 
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Le problème de l’analyse objective est le même que celui de l’interpolation optimale et est 
posé ici en termes d’optimisation statistique. Lorsqu’il n’y a aucune sélection des stations 
d’observations, le problème devient équivalent au 2D-VAR (analyse variationelle en deux 
dimensions). On a trouvé qu’une représentation de type FOAR (modèle autorégressif du 
premier ordre) constitue un meilleur estimé pour les statistiques d’erreur du modèle 
CHRONOS que des représentations de type SOAR (modèle autorégressif du second 
ordre) ou TOAR (modèle autorégressif du troisième ordre) usuellement adoptés en 
météorologie dans le contexte de l’analyse objective et de l’assimilation. Finalement, on 
démontre que si le biais des innovations n’est pas enlevé, de meilleurs résultats sont 
obtenus (coefficient de corrélation plus élevé entre AO et les observations) par rapport au 
cas où le biais est enlevé. 
 
La vérification de l’AO avec les observations en modes R&D (off-line) et opérationnel (on-
line) ont démontré de bons résultats. L’implémentation sur une base expérimentale a 
débuté le 4 juillet 2003 au CMC. La représentativité sous-maille de certaines stations de 
mesure montrant des effets locaux importants est un sujet d’intérêt qui sera examiné dans 
le futur dans le contexte de l’assimilation. 
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1) INTRODUCTION 
 

Objective analysis is an essential first step in building up an assimilation system. Producing 
maps of objective analysis (OA) on a regular basis is motivated by many factors such as: 
 
1) to initialize numerical models at regular time interval (usually every 6 or 12 hours) with 
appropriate fields having overall bias and error variance which are minimum,  
 
2) to provide users with a more accurate picture of the true state of a given variable by 
using an appropriate optimal blend of model fields together with observations so that it 
produces the best possible analysis not only in the vicinity of observation points but 
everywhere in a given domain even where the observation network is sparse, 
 
 3) to trace back possible bugs that went undetected either with the numerical model or 
with the observation system ( this is done by identifying regular or systematic patterns 
appearing on the analysis increment field ).  
 
Objective analysis is posed here as an optimization problem. The basic goal is to find an 
expression which will minimize the error variance of the combined field of model and 
observation. The classical theory of optimal interpolation (OI) has been applied here.  
 
In meteorology, objective analysis have been used extensively over the past 20 years or so 
to initialize models (Daley, 1991; Mitchell et al., 1996). The first Objective analysis was 
implemented here at CMC in the 70’s for the 500 mbs wind field obtained from radiosondes 
(Rutherford, 1972). Today, objective analysis is produced on a routinely basis of many 
meteorological fields at different levels (including the surface) in many countries in the 
world. Algorithms such as 3D-VAR or 4D-VAR (three or four dimensional variational 
analysis) are used on a routine basis to assimilate different types of data (satellite, 
radiosondes, buoys, ship or airplane reports, surface measurements, etc.). 
 
In the field or air quality, data assimilation is now emerging at a rapid pace. However, at 
the surface, data assimilation of chemical species is still in its infancy. Very few attempts 
have been made so far and those were achieved with mitigated success. It has been found 
that it is rather difficult to obtain good error statistics for surface observations for regional 
or large-scale chemical transport models (see for example, Tilmes, 1999 for Germany).  
Many reasons could explain this fact: surface observations are too close to sources, 
topography destroys the model error covariance signal with distance, difficulty to share 
regional or global error statistics among countries or different parts of the same country 
(this is thought to be the case in US), etc. 
 

In this study, CHRONOS model is used since model error statistics could be produced over 
most of North America. On the other hand, EPA-AIRNOW data base is  available for  
surface ozone observation for a large part of US and many parts of Southern Canada. 
Moreover, the relatively flat topography found over Eastern North America and the 
importance of transport of ozone above the boundary layer makes surface ozone an 
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excellent candidate for objective analysis and data assimilation in North America and 
particularly for Canada

1
. 

 

2) THEORY 
 

Basics of Optimal Interpolation 
 
The problem of Objective analysis is the same as Optimal Interpolation and is posed here 
as a problem of statistical  optimization. 
 

The basic equation of objective analysis or optimal interpolation (OI)  is  
 

                                Xa = Xb + K(yo - HXb)       (1)    
 

 where the different components of the equation are defined below: 
 
Xa: objective analysis field matrix ( dimension 350 X 250) 
Xb: trial field (forecast from CHRONOS model)   (dimension 350 X 250) 
K : gain matrix  ( dimension 350 X 250 X NS) 
y

o
: observation vector (dimension NSX1). 

H: interpolation operator for model at the station location (cubic semi-Lagrangian or linear). 
 
Equation 1 simply states the fact that we want an analysis to depend linearly on 
observation departures from model. The dimension 350X250 corresponds to the current 
CHRONOS grid model (Version 2.3.6) and NS is the number of reporting stations utilized 
in the objective analysis (OA).  
  
It can be shown that the formulation of the K matrix which minimizes the variance of 
analysis (var (Xa)) is given by (see, for example,  Bouttier et Courtier, 2000); 
 

                           K = (HPf)t (H(HPf)t+R)-1                                            (2) 

                              
with the symbols defined below: 
P

f 
 : model forecast error covariance matrix (NS X NS) 

t
 : transpose of a matrix 
R : observation error covariance matrix (dimension is  NS X NS; with R being a diagonal 
matrix). 
 
In equation 2, a basic assumption is that observation error (R) and forecast error (P

f
) are 

supposed to be not statistically correlated. The quantity, y
o 

- HX
b
 , is called the innovation 

and  represents the value of observation minus interpolated model value at point of 
observation (dimension NS X 1). Note that observation error R refers to interpolation error 

and instrument error lumped together. The term H(HP
f
)
t
  in equation 2, represents the 

model forecast error covariance between observation locations k1 and k2, and is supposed 
of the form: 
                                                           
1
 This will be even more true if the existing network of stations in Canada would be expanded to cover  a 

bigger area of Canada so more data is available in the assimilation system. 
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        H(HPf(k1,k2))
t = σf(k1) σf(k2) exp { - |x(k1)- x(k2)|/Lc }    (3) 

 
 

where σf is the model forecast error evaluated at a given point, x is position vector 
for a given reporting station and Lc , a quantity so-called the correlation length. In this 
report, Lc  is assumed to be constant over the domain for a given hour.  
 
The only remaining quantity to be defined in equation (2) is (HP

f
)
t
. The following expression 

describes the latter quantity, that is; 
 

       (HPf(i,j,k1))
t = σf(i,j) σf(k1) exp { - |x(i,j)- x(k1)|/Lc }         (4). 

 
 

In equation (4), σf(i,j) is taken as a constant since it was not possible, in this study, to 
evaluate the model error at a grid point i,j (that is in the model space). Note, however, that 

in equation (3),  since σf is evaluated in the observation space, a value is available for each 

observing station. The averaged domain value of σf  in the observation space is then used 

as a mean for  σf(i,j) in equation (4) (i.e in model or grid space). There is no radius for data 
selection of observing stations for a particular grid point so that this generalized OI is 
equivalent to a variational analysis in two dimension (2D-VAR).  
 
The main hypothesis of statistical interpolation are that observation and model errors are 
not biased and not statistically correlated between each other. The operator H must also 
be linear otherwise other methods must be used to find the matrix K which minimizes the 
error variance of Xa. Error statistics (innovation) does not necessarily obey a Gaussian 
distribution but if they do then Xa is also the maximum likelihood estimator of the true state 
(Bouttier et Courtier, 2000).  
 
The matrix A given below (which is the right hand side of equation 2) has to be inverted 
only once for a given hour and is valid for each grid point, that is; 
 

                        A-1 = (H(HPf)t + R)-1 = (HPfHt + R)-1             (5). 
 
One potential problem of (5) is when the matrix A becomes so big that it cannot be 
inverted. If this is the case, other methods (outside the scope of this study) must be used  
to get K in equation (1). Otherwise, the matrix A must be positive definite  (all eigenvalues 
must be greater than zero) and symmetrical. Tests done in the context of this report show 
that A is always symmetrical and positive definite. The conditions of having eigenvalues of 
A being positive and non-zero has been successfully tested in cases where the number of 
stations NS is below 1500 for surface ozone in North America with CHRONOS V2.3.6. 
 
 
 

 

Chi-square diagnostic 
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In the validation phase, the Chi-square diagnostic is used to verify the model error 
covariances in data assimilation systems (Ménard et al. 1999). In the observation space, it 
is defined as an inner-product of the form: 
 

                                                   Χ
2/NS = ע  A- 1

ע
t                               (6) 

 
   where  ע and ע

t
 are respectively the innovation vector and its transpose and A

- 1
  is the 

inverse of the innovation covariance matrix. 
                                         
As an average, X

2
/NS  must be close to a value around 1 where NS is the number of 

stations used in the OA system. Values outside the range 0.5 to 2.0 (in the case of 
unbiased innovation) usually indicates the presence of problems or bugs in the system 
since the real-time covariance of innovation then no longer match (at least within a factor 
2) the prescribed innovation covariance  given in equation (5). 

 

 

3) OBSERVATIONS AND TOOLS USED 

 
Observations collected from different surface ozone network across North America is 
gathered in EPA-AIRNOW data base on a real-time basis (ftp.epa.gov/airnow/products). 
Data from over 1400 stations is collected on a hourly basis from this data base. Figure 1 
shows the distribution of stations monitoring surface ozone that are potentially available for 
objective analysis (July 2003). 
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       FIGURE 1.  Surface ozone stations in EPA-AIRNOW data base.  
Data check is performed on a real-time basis to remove outliers. Automatic quality control 
(QC– level 1) consists of a procedure to remove gross error and replace them by a flag 
(usually -980). Missing data are labeled with a -999 flag. 
 
In developmental mode, necessary calculations to produce OA were done on a  LINUX 
work station using MATLAB to generate the increment analysis and for cross-validation 
calculation, SAS

2
 for error statistics calculation; TCL

3
 scripts and SPI

4
 for graphics and 

outputs. In operational mode, calculations uses TCL and UNIX scripts to collect all 
information required to assemble data whereas a FORTRAN 90 program calculates the O-
P field. The field is added up to the trial field with and put on the internal WEB page  
(http://iweb.cmc.ec.gc.ca/~afsgmof/CTM/CTMframe.html). 

 

 

4) MODELLING CHRONOS ERROR STATISTICS 

 

Description of CHRONOS model (V2.3.6) 

                                                           
2
 SAS : Statistical Analysis Software,  Cary, N.C. 

3
 TCL: tool command language 

4
 SPI: Spherical Projection Interface, a software developed at CMC. 
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The Canadian Hemispheric and Regional Ozone and NOx System (CHRONOS) has been 
designed for the prediction of atmospheric oxidants on both regional and hemispheric 
scales. The original version of the system was described initially under the generic name of 
Chemical Transport Model (CTM) by Pudykiewicz et al. (1997). 
The model is used for real-time forecasting of surface ozone and other pollutants. Main 
characteristics of the model are: 
- meteorological driver: GEM (Global Environmental Multi-scale model, resolution 24 km), 
- source of emissions: 1990 Canadian and U.S. inventories, 
- advection scheme: positive-definite, nonoscillatory, semi-Lagrangian method, 
- vertical diffusion: based on prognostic equation for TKE with the values of the vertical 
diffusion coefficient derived from GEM, 
- gas-phase chemistry mechanism: ADOM-2 mechanism; 47 advected species, 
- aerosol dynamics: sedimentation, 
- cloud processes: cloud attenuation and enhancement photolysis rates based on ADOM 
algorithm, 
- dry deposition: improved multiple resistance method  (Robichaud et al., 2003; Zhang et 
al., 2002 for non-stomatal formulation), 
- wet deposition: distribution of LWC is used to calculate the wet scavenging term by 
applying Sundqvist formulae for the rate of release precipitation, 
- grid structure: rectangular mesh with typical dimension 350 X 250 X 20 
- horizontal discretization: structured grid defined on polar steographic projection: 
resolution 21 km, 
- vertical discretization: Gal Chen terrain-following coordinates (model top at  4 km) 
-initialization and lateral boundary conditions: integration using spin up from arbitrarily 
specified initial conditions (no data assimilation); zero-gradient flow and open outflow 
boundary conditions. 
 

Estimation of error statistics 
 
The first step in building up an objective analysis is to estimate error statistics. That is the 
goal of this subsection. The estimation of error statistics is based on the hypothesis of 
homogeneity (same correlation function everywhere) and isotropy (correlation function 
which only depends on distance).   
 
The technique of Hollingsworth and Lonnberg (1986) is adopted here. In this technique, 
one estimates the innovation at different locations for different time of the day and different 
seasons. Hence, for a given observing station we report on the vertical coordinate the 
variance of innovation for that station. On the other hand, we also plot on the same graph 
the covariance of innovation with other stations as a function of the distance between the 
reference station and other stations (figure 2). We then take the average of covariance in 
bins of 30 km width and then fit the result with a FOAR curve (First Order Autoregressive 
Model) which is simply an exponential of the type b0*exp(b1*d) where d, is the distance, 
b0, the value of the covariance of innovation. At zero distance (intercept), the latter turns 
out to be the “pure model error” at the reference station. Finally, b1 is the inverse of what 
we call the “ correlation length ”. This is the distance where the innovation covariance falls 
by a factor of 1/e of the value of the covariance at zero distance. It was found in this report 
that the covariance error for a given station better follows a FOAR model (First Order Auto 
Regressive) rather than a SOAR (Second Order Auto-regressive Model) or TOAR (Third 
Order Auto-regressive Model) fittings usually adopted for meteorological fields (Gauthier et 
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al., 1999; Mitchell et al., 1996). According to turbulence theoretical arguments for a tracer, 
FOAR modeling has a lower sum of square errors than that of any other function (SOAR or 
TOAR).  Note that when the contribution of advection is strong and that of photochemical 
processes weak, surface ozone can be considered as a tracer. 
 
Figure 2 is equivalent to a variogram of model departure (or innovation) covariances 
stratified against distance. At zero distance, the variogram provides averaged information 
about the “intrinsic” model error for a given reporting station and the observation error 
(Courtier et Bouttier, 2000) and we have: 
 

                            Var (yo - HXb
 )k =  Rk

2  +  HPfHt
    k                      (7) 

      or 
                          Total variance   =   Obs. Error  + Model  Error. 
                    
The term on the left of (7)  is obtained by substraction of model value from observations. 
The second term on right hand side of (7) is obtained from the variogram of figure 2 
(intercept of FOAR fit). Therefore, the first term on the right hand side of (7) is easily 
deduced and evaluation of A matrix and equation 2 are now possible. Variograms must be 
constructed for each reporting station k at different time of the day and for different 
seasons. Reporting stations where no variogram could be obtained are thought to be 
spatially non representative or non-correlated with nearby stations. How to treat those 
cases in an assimilation system is still not clear and more research is needed on that 
aspect.  Figure 2 also shows that innovation covariance vanishes as great distance as it 
should be. In most cases, the background error covariances should go to zero for very 
large distance. If this is not the case, it is usually the sign of biases in the background 
and/or the observations and the method may not work correctly (Hollingsworth and 
Lonnberg, 1986). For example, having covariance of innovation constant with distance 
would mean that the radius of influence of a particular data does not decrease with 
distance which is obviously non-physical (being associated then with infinite correlation 
length). Estimation technique used here shows that typical correlation length varies from 
100 to 300 km for surface ozone. Note that in order to simplify the approach,  the 
correlation length will be taken as a constant over the whole domain  in the rest of this 
report. 
 
The procedure NLIN of SAS/STAT

5
 (Newton method) was used for the non-linear fitting. 

Quality control was developed to filter out inappropriate curve fittings (see section 5).  

 

 

 

 

 

                                                           
5
 SAS/STAT: Statistical Analysis Software, SAS/STATS User’s Guide, Relese 6.03 Edition, Cary, NC, 1998. 
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Figure 2. Estimation of error statistics. 

 

 

 

 

MAPPING “INTRINSIC” CHRONOS MODEL ERROR 
 
Using the ideas developed above, a spatial mapping of model error statistics obtained from 
FOAR fittings was performed. Figure 3a,3b,3c and 3d respectively show a map of the 
variance of innovation for all reporting stations in the EPA-AIRNOW data base in August 
2002 for a) 12Z, b)  18Z, c) 00Z and d) 06Z. Inspection of those figures reveal that the 
variance tends to be higher where the bulk of anthropogenic emissions is located (Eastern 
US and Southern California, see figure 9 for distribution of NOx emissions in NA). Similar 
conclusions can be reached for the field of model error, figure 4, for the same time a) 12Z, 
b) 18Z, c) 00Z and d) 06Z. Note that the model error here is considered as “ pure model 
error “ or “ intrinsic model error ” since it is obtained by the technique of FOAR modelling 
described above which allows to break down the error variance as two parts; 1) model 

error variance (σf
2
) and 2) observation error, R

2
, (instrument error and interpolation

6
 error). 

Finally, the bias of a model is important to know since one of the fundamental assumption 
in the theory of statistical interpolation is that the bias be small at least compared to the 

                                                           
6
Interpolation error can also be view as representativeness error 
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standard deviation of model error. Figure 5 shows model bias at a) 12Z, b) 18Z, c) 00Z, d) 
06Z. Note an interesting diurnal cycle for bias. Overnight, most places show not much of 
underprediction (red color) or overprediction (blue color) whereas in the afternoon (most of 
Eastern US and California show significant overprediction).  
 
 
 
(see following pages for those figures) 

Figure 3.Total variance error at a) 12Z, b) 18Z, c) 00Z, d) 06Z 

Figure 4. Model error at a) 12Z, b) 18Z, c) 00Z, d) 06Z 

Figure 5. Bias at a) 12Z, b) 18Z, c) 00Z, d) 06Z 

CHRONOS V2.3.3, Aug 8-30 2002 interpolated in the observation space. 
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FIGURE 3A. 12Z. 

 

FIGURE 3B. 18Z. 
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                                                            FIGURE 3C. 00Z. 

 

FIGURE 3D. 06Z. 
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                                                                  FIGURE  4A.  12Z. 

 

FIGUIRE 4B. 18Z. 
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FIGURE 4C. 00Z. 

 

FIGURE 4D. 06Z. 
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FIGURE 5A. 12Z. 

 

FIGURE 5B. 18Z. 
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FIGURE 5C. 00Z. 

 

FIGURE 5D. 06Z. 
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FIGURE 6. Diurnal behavior of CHRONOS model error bias (bias = obs – 
model)  and standard deviation of error by regions (NA: North America).  
 
Figure 6 confirms  that Chronos model overpredicts for all regions of North America 
particularly near midday (around 16Z). It is clear that a strong diurnal bias cycle exists as 
far as the CHRONOS model is concerned. However, the standard deviation of error only 
shows a weak diurnal cycle varying from about 12 to about 21 ppb. At night, it tends to vary 
from one region to another more than during the day. In Canada, or Quebec&Ontario 
regions, the standard deviation of error is usually less than other regions as expected since 
less anthropogenic sources are present as compared to Eastern US for example.. 

 
It is also relevant to look at frequency distribution of innovation or model error. Figures 7 
a),b),c) and d) show those distribution for 4 times of the day: 8,12,16 and 20 EDT time (or 
12,16,20 and 00Z). Those distributions tend to be Gaussian centered around zero at night 
(figures 7A and 7D) and almost Gaussian but not centered to zero during the day (figures 
7B and 7C). This is an important verification to do since one of the main hypothesis of the 
theoretical framework of this theory is that model error distribution are Gaussian centered 
to zero.  However, the theory still works even if this criteria is not met but may or may not 
produce an “optimal” OA. Nevertheless, this aspect is not clear and is considered as a 
research topic. 
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                                                                             FIGURE 7A. 

  

                                                                            FIGURE 7B.        
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FIGURE 7C.    

 

FIGURE 7D    
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5) QUALITY CONTROL OF OBJECTIVE ANALYSIS 

 
The quality control is performed at different levels; 1) for error statistics (off-line), 2) for 
real-time innovation and for output of final OA maps (on-line). 
 
-  Error statistics 
 

Error statistics are not calculated in real-time but prior to an OA experiment
7
. They 

remain constant for a given station during a given time of the day or during a given season. 
The quality control is performed so that data is rejected if: 
 
1) intercept (i.e model error) > variance of innovation 
2)  intercept < 0 (i.e negative “intrinsic” model error) 
3) correlation length is less than 20 or greater than  2000 km 
In any of those cases, the rejected values could be replaced by mean values obtained from 
average over the whole domain of other stations having valid data. 
 
-  Real-time innovation 
 

When real-time innovation are calculated,  reporting station data is rejected if 
1)  the absolute value of innovation is greater than  100 ppb 
2)  the interpolated value of model at observation location is less than zero (this is possible 

whenever Cubic Lagrangian interpolator is used) 
3)  the observation value is less than zero (due to missing or bad observation

8
) 

 
-  Output products (Incremental analysis map and final map for OA) 
 
In increment calculations, it is possible that a negative analysis increment   (second term to 
the right hand side of equation (1)) be so big and negative that it gives a negative value in 
the OA field (Xa). In this case, the value of Xa is clipped to zero in the final map for OA, 
since negative values of pollutant concentrations are physically impossible. Finally, if the 
Chi-square diagnostic gives a value greater than 5, no OA map is produced since such a 
high value of Chi-square would indicate a major problem in the system (corrupted data or 
other bug). Note that in the incremental analysis map, white color would indicate a value 
outside the range (-50 to 50 ppb). This is a way to flag extremes values of increments in a 
real-time situation. 
 
 
 
 
 
 
 

 

 
                                                           
7
 To obtain error statistics which follows the real-time evolution of fields would require switching to the theory 

of Kalman filter. 
8
 Usually the symbol for missing data is -999 and -980 for bad data 
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6) RESULTS 

 

a) case study of July 21 2003 at 18Z 

 
We give below the model output, observations, analysis increment and OA maps for July 
21 2003 at 18Z as an example of a typical case obtained in a real time operational 
environment. High values of surface ozone were forecast  in Eastern US that day as 
depicted in figure 8A. Observations (figure 8B)  show lower values of ozone. 

  

 
FIGURE 8A. BACKGROUND OR MODEL FIELD (Xb) 
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FIGURE 8B. OBSERVATIONS (y

o
) 
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FIGURE 8C. ANALYSIS INCREMENT MAP 
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FIGURE 8D.  OBJECTIVE ANALYSIS MAP  (Xa) 

 

 

 
Inspection of the above figures reveal that the model significantly overpredicts particularly 
over Eastern US and  California. That is why analysis increments are strongly negative in 
those areas (figure 8c). The final OA map is obtained by adding analysis increments (figure 
8c) to the trial field (figure 8a) to obtain figure 8d. Note that there is a broad link between 
the location of emission sources of ozone precursors (see figure 9 for NOx) and analysis 
increments (figure 8c) as anticipated. Scatter plots of model against observations and 
objective analysis against observations are shown in figure 10a) and b). Results show, as 
expected, dramatic improvement of the correlation coefficient (r

2
 increases from 0.36 for Xb 

to 0.67 for Xa ) and very significant reduction of RMSE for the regression fit. The mean bias 
(MB) is almost reduced to almost zero. The intercept of the fit is also significantly reduced 
with OA (Xa) as compared to that of the model  (Xb). 
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                  FIGURE 9. Location of major NOx sources in North America. 
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FIGURE 10A. Scatter plot and regression fit for Xb

 
against observations for 

July 21 2003 at 18Z. The line 1:1 and 2:1 are also drawn in light gray color as 
reference. 
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FIGURE 10B. Scatter plot and regression fit for Xa

 
against observations for 

July 21 2003 at 18Z. 
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b) case study of July 31 at 20Z 

 
As a second example, we show here the case of July 31

st
 2003 at 20Z which also shows 

high forecast values for ozone over Eastern US and California. 

 

 
 

FIGURE 11A. Model output (Xb) for July 31, 2003 at 20Z. 
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FIGURE 11B. OA output (Xa) for July 31, 2003 at 20Z. 
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FIGURE 11C. Analysis increment for July 31 2003 at 20Z. 
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FIGURE 11D. Observations for July 31 2003 at 20Z. 

 
For the case of July 31 2003 at 20Z, we find again that CHRONOS model 

significantly overpredicts and over roughly the same regions. A regular inspection of 
analysis increment during July and August 2003 have revealed consistent pattern of 
negative analysis increment in Eastern US and Southern California and positive increment 
along the Northwest Coast  of North America. Those patterns give insights into model 
behavior. For example, persistant negative analysis increments (overprediction) over 
regions of high anthropogenic emissions density (see figure 9) is consistant with the fact of 
likely inadequate fields of prescribed emissions. On the other hand, persistant positive 
increments over the Northwest US and West Coast of Canada suggests that stratospheric 
ozone which usually replenishes the background noise (phenomenon missing in 
CHRONOS model)  affects those regions more likely because of lack of pollution sources 
upstream. Finally, during cold fronts episodes or other well organized weather systems, 
analysis increments were found to match clouds indicating a potential problem with the 
cloud fraction seen by CHRONOS model

9
. 

 
Scatter plot of model against observations and objective analysis against observations are 
given in figure 12. Results again show dramatic improvement of the correlation coefficient  

                                                           
9
 This bug is being corrected in CHRONOS at the time of writing this report by lifting model top to include 

more upper levels. 
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(r
2
 increases from 0.35 for Xb in figure 12A to 0.69 for Xa  in figure 12B) with a reduction of 

a factor about 2 of the RMSE for the regression fit. The mean bias drops from -8.4 to -1. 
 

 

 
FIGURE 12A. Scatter plot and regression fit for Xb

 
against observations for 

July 31 2003 at 20Z. 
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FIGURE 12.B. Scatter plot and regression fit for Xa
 
against observations for 

July 31 2003 at 20Z. 

 

 

 

c) case study of August  30 2002 at 00Z 

   
For cases during August 2002, correlation coefficient are even higher as compared for 
those cases in July 2003 shown above. As an example, the explained variance (given by 
r
2
) of OA vs observations is about 0.88 (figure 13B) as compared with 0.69 for the 

CHRONOS output (figure 13A) for August 30 2002 at 00Z. The relatively high correlation of 
the model (figure 13A) could be explained with better performance of CHRONOS during 
pollution episodes and for certain hour of the day (such as 00Z). As far as OA is 
concerned, (figure 13B) an additional explanation for the even higher correlation is the fact 
that error statistics were originally calculated for the period of August 2002. Since this case 
falls during the same period which was used to build model error statistics, it is not 
surprising to obtain such high values for the coefficient of correlation (Xa versus 
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observations in figure 13b). This illustrates the variability of error statistics from one year to 
another as far as summer is concerned and explains why the XHI square test sometimes 
shows values far from the expected value of 1 (for OA using unbiased innovation). 

 
 

 

 
Figure 13A. Scatter plot Chronos output vs observations for August 

30 2002 at 00Z. 
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Figure 13B. Scatter plot OA output vs observations for August 30 

2002 at 00Z. 
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7) ALGORITHM AND COMPUTER PROGRAMS IN 

OPERATIONAL CONFIGURATION 

 
Since July 4

th
 2003 at 6Z, the objective analysis and incremental analysis  fields for surface 

ozone has been available on the internal MSC Web Page as an experimental product 
(http://iweb.cmc.ec.gc.ca/~afsgmof/CTM/CTMframe.html). 
The computer scripts for data transfer were written in Unix and TCL and the program which 
calculates analysis increment in  Fortran 90. Annex 1 gives the algorithm and logic for the 
Version 1.0 of Objective Analysis for surface ozone. Annex 2 provides the code for each 
blocks described below. 

 
Here is the basic flow of main steps involved in producing the OA map in the operational 
configuration and the complete path of the appropriate code: 
 
       1) cronfile: clock triggers the launching of OA driver at appropriate time  

(usually 0:45 past the hour) 
/users/dor/afsr/air/crontab/pollux 
2) driver is launched: starts the Objective analysis cycle 
/users/dor/afsr/air/cron/script/analyseobjective 
3) get observations from EPA site 
/users/dor/afsr/air/cron/script/GetEPA 
4) brings all data together and calculates innovation 
/users/dor/afsr/air/cron/script/OA_getInput.tcl 
5) calculate analysis increment 
/users/dor/afsr/air/cron/src/increment/increment.f90 
6) output analysis increment and produce OA map 
/users/dor/afsr/air/cron/script/OA_obsGrid.tcl 

 
Archives of all the output products including the Chi-square diagnosis and a file 
containing real-time innovation are to be found (for the current month) at the following 
path: 
/users/dor/afsr/air/cron/data/analyseobejctive. 
The file: archiveOA_YYYY/MM.txt contains the fields Xa,Xb and analysis increment 
whereas xhicar-YYYYMM.txt  contains archives for the Chi-square diagnosis. 
Note that observations in real-time are stored in: 
/users/dor/afsr/air/cron/data/Obs/O3. 

 
At the end of the month, local archives are transferred to a long term archive system on 
tape (CFS): /users/dor/afsr/air/archives_OA. 
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8) VERIFICATION OF OBJECTIVE ANALYSIS 

 
Verification were performed at two levels; 1) in the developmental phase where rigorous 
and extensive tests were used (off-line) and 2) in the operational configuration (on-line) 
where two diagnostic tools are utilized: a) Chi-square diagnostic and 2) comparison of the 
scatter plot OA vs observation with  the scatter plot of model vs observation. 

 
-  DEVELOPMENTAL MODE (off-line) 
 
In order to demonstrate the feasibility of OA for surface ozone, extensive verification must 
be done before implementation. Several checks were performed in this phase: check if 1) 
eigenvalues of the matrix A were all positive (see section on THEORY), 2) the variance of 
O-A (variance of innovation of objective analysis is reduced compared to the variance of O-
P (variance of innovation of model). The latter test has to be done by using an independent 
set of stations to verify (about 1/3 of stations used for verification and 2/3 used for 
producing the OA field) and is shown below. 

 

 

           

 
                                      Figure 14A.  
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                                              Figure 14 B. 
 
 
Figure14 shows the error variance of observation minus prediction (var O-P) plotted 
against the error variance of model against observation (var O-A) for A) 00Z and B) 12Z. 
Note that circles indicate stations selected for verification for more than 50% of the days 
whereas squares indicate stations selected between 25-50% of the days for verification. 
Red color indicates Canadian stations and blue, US stations. 

 
For verification purposes, the selection of stations were randomly done for each individual 
day of the study period. This is to avoid any possible bias in the process of selection. 
Figure 14 show that stations lying to the left of the 1:1 straight line have reduced their 
variance of error with OA (var(O-A)) as compared with that of model (var(O-P)). This 
reduction of variance with OA happens for the majority of stations as it should do. Most of 
stations have reduced the variance of errors by a factor of 2 or more. 
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                                                  ratio  var(O-P)/var(O-A) 
 

FIGURE 15A. Distribution frequency of number of stations against ratio var(O-
P) divided by var(O-A). The data set used is from Aug 8-30 2002 at 12Z.  
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                                                  ratio   var(O-P)/var(O-A) 
 

FIGURE 15B. Distribution frequency for number of stations against ratio 
var(O-P) divided by var(O-A). The data set used is from Aug 8-30 2002 at 00Z.  
 

 

Figure 15A and B show histograms of the ratio of var(O-P)/var(O-A). A ratio less than 1 
indicates a deterioration introduced by OA whereas a ratio over 1 indicates an 
improvement of the error variance caused by OA. In Figure 15A, for about 36 stations, the 
ratio is about equal or superior to 1 whereas for only 6 stations it is below 1 (between 0.5 
and 1). In Figure 15B, most stations also show a ratio over 1 although we note the fact that 
we can observe a little bit more deterioration (number of stations having their ratio less 
than 1) at 00Z when compared to the case of 12Z. This could be explained by the fact that 
model error and bias is larger at 00Z than at 12Z (see figure 6). Nevertheless, in both 
figures, a big majority of stations have reduced their error variance with OA as it should be. 

 
 At 12 and 00Z , most stations reduce their error variance by about a factor 2. At 00Z, at 
least one station has a reduction factor of 21. This clearly shows the potential power of 
improving accuracy with field Xa (objective analysis).  

 
 

-  OPERATIONAL MODE (on line) 
In the operational mode it is desirable to use the maximum number of stations to produce 
the OA field. Therefore, no independent set of stations is used for the sole purpose of 
verification in this configuration. Therefore, scatter plots var(O-P) versus var(O-A) are not 
presented here. However, verification was done using the Chi-square statistics. Such 
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verification was done for August 2002. Along with Chi-square values, the coefficient of 
correlation for model and objective analysis fields unbiased (BIAS=0) and biased (BIAS not 
equals 0) against observations are shown below. 
 

 
 

 

 

 

 
 

                   FIGURE 16. Verification for 00Z (A) and 06Z (B). 
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              FIGURE 16 (contd). Verification of OA for 12Z (C) and 18Z (D). 
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Figure 16A,B,C and D show the XHI squared statistics for the case of unbiased innovation 

(bias removed or BIAS =0) and bias not removed (B not equals 0) for four times of the day 
(00Z,06Z,12Z and 18Z) for the period August 7 – 30 2002. As it should be, the XHI 
squared value average around 1 when the bias of innovation is removed for all periods. At 
the bottom part of each figures are plotted r squared (variance explained or squared 
coefficient of correlation) of OA vs observations for each day of the period at a given hour. 
Results show that 1) R squared is significantly higher for OA (bias removed or not) than for 
the CHRONOS output (labeled as R

2
 (Model)), 2) the best results for the coefficient of 

correlation are found when the bias is not removed even if the XHI squared statistics does 
no longer average to one. For this reason, it was decided not to remove the bias for the 
operational version of OA. 

 

 

SUMMARY AND CONCLUSIONS 
 
On July 4

th
 2003, for the first time at CMC (Canadian Meteorological Center) and within the 

MSC (Meteorological Service of Canada), an objective analysis map for surface ozone 
was produced on an experimental basis in the context of a “ semi-operational configuration 
“. The theory of OI (optimal interpolation) with no data selection has been used to build up 
the OA system so that it makes it equivalent to a 2D-VAR analysis. In this study, 
CHRONOS model outputs (V2.3.6) for surface ozone are combined with EPA-AIRNOW 
ozone real-time data base (over 1400 reporting stations). 
 

Verification of objective analysis versus observations in both R&D and operational mode 
have demonstrated relatively good results so far. Moreover, a regular inspection of analysis 
increment during August 2002, July and August 2003 have revealed consistent patterns of 
negative analysis increments in Eastern US and California and positive increment along 
the Northwest Coast  of North America. Those patterns give deep insights into model 
behavior. On the other hand, representativeness of some stations which displays very local 
signal is an issue which remain to be addressed and is considered as a research topic.  

 
It was found that FOAR modeling (First Order Autoregressive Model) is more suitable to 
estimate model error statistics for surface ozone than SOAR  (Second Order 
Autoregressive model) or TOAR (Third Order Autoregressive model) fittings usually 
adopted in meteorology for Objective analysis or data assimilation. 
 
The usefulness of OA maps is wide: 1) initialization of air quality models 2) provide the 
users with a more spatially complete and accurate analysis surface ozone (as compared 
with model output or observations alone) 3) bring deep insights into possible model 
erroneous behavior or bugs. Finally, it is suggested that those maps of OA can be used to 
construct a sound ozone climatology, seasonal maps of SUM60, AOT40 or other 
specialized index which links the impact of air pollution and environmental impacts. 

 
The work done in the context of this report is the first building block towards a full 

system of data assimilation for surface chemical species. 
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                          ANNEX 1. Algorithm of  an operational OA system 
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              ANNEX 2. Computer code used in the operational version V1.01. 
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