The operational GDPS-YY 25Km Abdessamad Qaddouri & Vivian Lee

Collaborators

Michel Desgagné, Claude Girard, André Plante, Monique Tanguay, Stéphane Gaudreault, Michel Roch, Ron McTaggart-Cowan, Michel Valin, Stéphane Chamberland, Martin Charron, Jean Côté ...

Outline

- Why do we have to change the grid?
- Domain decomposition method used for GEM model on Yin-Yang grid.
- Blended variables in the overlap zone
- Some Results
- List of differences (GU25 vs GY25)

Why do we have to change the grid?

GU25 /GY25

Lat-Lon grid GU25

- 1024x800 grid-points
- 2 singular points
- High resolution near poles: 39km/0.05km
- Reached the limits of scalability for GEM model
- Needs special treatment near poles

Yin-Yang Grid GY25

- 1287x417x2 grid-points
- No singular points
- Grille spacing quasiuniform: 25km/17.2km
- Scales well for GEM model
- Needs special treatment in the overlap regions.

Timings

GU 25km – v4.7.0-rc5

PE Topo Npx x Npy x OpenMP	# of Nodes	Timing (minutes)
2x29x8	15	66
2x29x16	29	51
2x40x16 (Operations)	40	41 (I/O on 40 nodes)

GY 25km – v4.7.0-rc5

PE Topo Npx x Npy x OpenMP (x2)	# of Nodes	Timing (minutes)
27x15x1	26	53
20x12x2	30	51
20x16x2	40	43 (I/O on 1 node)
27x15x2	51	37
27x16x4	108	28

GY25 for global Forecast

$\Omega = \{ 45^{\circ} - 3\delta \le \lambda \le 315^{\circ} + 3\delta; -45^{\circ} - \delta \le \theta \le 45^{\circ} + \delta \}; \delta = 2^{\circ}$

The global forecast is based on the two-way nesting method between 2-limited area models; Qaddouri and Lee 2011 Q.J.R.Meteorol.Soc.137:1913-1926

Domain decomposition method

- On each panel (Yin/Yang)
 - A system of forced primitive equations is solved with a local solver based on Implicit semi-Lagrangian time discretisation.
 - Boundary conditions are passed by cubic-Lagrange interpolation (non-matching grids)
 - Implicit discretisation: 3D-elliptic problem is solved by the iterative Schwarz method

Forced primitive Equations Spatial discretization

Girard et al. 2014 Mon.Wea.Rev., 142, 3, 1183-1196

Time Iterative Solver

$$\frac{\mathrm{d}F_{\mathrm{i}}}{\mathrm{d}t} + G_{\mathrm{i}} = 0$$

$$\frac{F_{i}^{A}}{\tau} + G_{i}^{A} = \frac{F_{i}^{D}}{\tau} - \beta G_{i}^{D} \equiv \mathbf{R}_{i}; \quad \tau = \Delta t / 2$$

Linearisation

1 -

$$L_{i} \equiv \left(\frac{F_{i}^{A}}{\tau} + G_{i}^{A}\right)_{lin}; \qquad \qquad N_{i} \equiv \frac{F_{i}^{A}}{\tau} + G_{i}^{A} - \left(\frac{F_{i}^{A}}{\tau} + G_{i}^{A}\right)$$

Do jter=1,2 (Crank Nicholson) Do iter=1,2 (Non-linear)

$$(L_i)^{iter, jter} = (R_i)^{jter} - (N_i)^{iter-1, jter}; \qquad (N_i)^{0,1} = N_i (\mathbf{r}, t - \Delta t)$$

end do
$$i = 1, \dots, Neq$$

end do

Côté et al. 1998 Mon.wea.Rev., 126, 1373-1395

Elliptic problem $P \equiv \phi' + RT_*(Bs+q)$

$$\nabla_{\zeta}^{2}P + \frac{\gamma}{\kappa\tau^{2}RT_{*}} \left(\delta_{\zeta}^{2}P + \overline{\delta_{\zeta}P}^{\zeta} - \varepsilon (1-\kappa)\overline{P}^{\zeta\zeta} \right) = R$$

Vertical boundary conditions: Mixed type $\begin{bmatrix} \frac{\gamma}{\kappa\tau^2 RT_*} \left(\delta_{\zeta} P - \varepsilon \overline{P}^{\zeta} \right) \end{bmatrix}_T = -(L''_{\theta})_T \qquad \begin{bmatrix} \frac{\gamma}{\kappa\tau^2 RT_*} \left(\delta_{\zeta} P + \kappa \overline{P}^{\zeta} \right) \end{bmatrix}_S = -(L''_{\theta})_S + \frac{\phi_S}{\tau^2 RT_*}$

Horizontal boundary conditions: Dirichlet type

The others variables are calculated by back-substitution from P.

Semi-Lagrangian on GY grid

- 1-Extend each panel (Yin, Yang) by a halo (size depends on CFL_max),
- 2-Interpolate from other panel to the halos the fields and $(u,v, \dot{\zeta})$ from previous timestep,
- 3-Do Semi-Lagrangian time integration as usual in each panel. Goto 2

Qaddouri et al. 2012 Q.J.R.Meteorol.Soc.138:989-1003

Elliptic problem on GY grid with Schwarz method

- Global solution is obtained by solving iteratively 2 elliptic sub-problems (Yin/Yang)
 - 1) receive Boundary conditions (BCs) from the other panel; solve local elliptic problem.
 - 2) if boundary conditions converge, stop; else send BCs to other panel ; goto 1

Note : we use 2 degrees as overlap to increase convergence. Qaddouri et al. 2008 Appl.Numerical.Math.,58,4,459-471

Iterative Schwarz method : GY grid

GDPS_YY 25Km : only 4 iterations are needed for convergence with 2 degrees overlap

Why are there differences in the overlap?

- At each time step, the value of all the dynamical fields are prescribed by the other panel in its piloting region.
- The local solution of each panel includes the overlap region needed for the convergence of the elliptic problem.
- The two LAM solutions in the overlap can evolve independently (even though we assure a global convergence in the elliptic solver).
- Small and sharp differences may arise between the two panel point values in the overlap region (due to some schemes that have threshold parameters).

Solution: Flow relaxation scheme (blending)

 To eliminate the sharp differences, the point values in the overlap region are relaxed toward the value of the other panel at the end of dynamical time step (before physics).

$$\frac{\partial \mathbf{F}^{l}(\mathbf{x},t)}{\partial t} = k(\mathbf{x}) \left\{ F^{l}(\mathbf{x},t) - F^{3-l}(\mathbf{x},t) \right\}, = 1,2$$

No change is made when the two panel solutions are in agreement

H C Davies 1976 Q J Roy Met Soc 102 405-418

Solution: Flow relaxation scheme (blending)

• k(x) constant

$$F_r^l(x,t) = 0.5 * \left\{ F^l(x,t) + F^{3-l}(x,t) \right\}, \ l = 1,2$$

Several tests have been conducted; the solution of relaxing only the winds (u,v) and generalized vertical velocity \$\cup\$ in the overlap region has been proven the best.

Flow of GEM GY grid

Overlap zone

Differences between GU and GY

GY (proposed)	GU (current)
GEM version 4.7.0	GEM version 4.6.1
Yin-Yang Grid	Global Lat-Ion
Blending in Overlap Zone	
Advection using trapezoid wind average and cubic interpolation for trajectories	Advection using mid-point wind average and linear interpolation for trajectories
Explicit horizontal diffusion	Implicit horizontal diffusion
Vspng_zmean = False	Vspng_zmean = True
Psadj = True	Psadj = False
Geophysical fields created on each Yin and Yang grid individually	Geophysical fields created on global lat-lon
Output fields on 'U' grid	Output fields on 'Z' grid
No thermo level above momentum level (# of Thermo = # of Momentum)	Thermo level above momentum level (#of Thermo = # of Momentum+1)
Diagnostic level Winds and Temperature are <u>not</u> written out at 1.0 hyb. Instead: Winds are written at 10 meters Temperature at 1.5 meters	Diagnostic level Winds and Temperature are written out at 1.0 hyb
Scabality allows faster timings	Scalability limit reached

